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Abstract 

Background 

Cell migration is a fundamental cell biological process of key importance in health and 

disease. Advances in imaging techniques have paved the way to monitor cells motility. 

An ever-growing collection of computational tools to track cells has improved our 

ability to analyze moving cells. However, few if any tools let the user supervise and 

correct cell tracks that are automatically detected. Thus, we developed CellMAPtracer, 

a tool to track cells in a semi-automated supervised fashion, thereby improving the 

accuracy and facilitating the long term tracking of migratory and dividing cells. 

CellMAPtracer is available with a user-friendly graphical user interface and does not 

require any coding or programming skills. 

 

Results 

We used CellMAPtracer to track fluorescently-labelled BT549 breast cancer cells. It 

allowed us to track dividing cells and determine the fate of the daughter cells with 
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respect to migration speed or directionality and cell cycle length. Of note, we were 

able to track multi-daughter divisions, wherein a cell divides and gives rise to more 

than two cells. We also identified a not previously described speed change in the 

terminal phase of the cell cycle.  

 

Conclusion 

CellMAPtracer is a software tool for tracking cell migration and proliferation through 

a user-friendly interface that has a great potential to facilitate new discoveries in cell 

biology. 

 

 

Background 

Cell migration is a fundamental biological process that plays important roles during 

tissue morphogenesis, immunology, wound healing, or tumor progression (Friedl and 

Gilmour, 2009). Thus, investigating cell motility is important for many research areas 

such as developmental biology, physiology, neuroscience, or cancer biology. The 

visualisation of fluorescently-labeled cells using time-lapse video microscopy 

experiments plays an important role in understanding how cells move and what 

governs their migratory movements. To draw robust conclusions, cell movements 

need to be tracked with a high level of accuracy and a minimum level of bias. Thus, 

the development of tools for automated or semi-automated cell tracking is key to 

obtain quantitative data from biologic experiments. However, identifying and tracing 

fluorescently-labeled cells that migrate, proliferate, interact or die from time-lapse 

microscopy is a laborious and error-prone process.  

 

Historically, cell tracking has been performed by manual selection on a reference point 

within a cell for each time-lapse frame (Masuzzo et al., 2016). While workable in 

occasions, see for instance (Sugihara et al., 2015), this approach is often prohibitively 

time consuming and prone to user bias due to the difficulty in manually defining cell 

positions and the noticeable inconsistency between different users (Cordelières et al., 

2013). Manual tracking is also error-prone to either over-representing particular 

angles between displacements or repeating previous x-y coordinates (Gorelik & 

Gautreau, 2014). On the other hand, automated tracking algorithms can provide 

objective migration tracks due to the elimination of errors associated with the human 

factor. However, automated tracking can itself generate artifacts due to the high 

possibility of undergoing a flip-flop switch between neighbour cells within the track of 

a particular cell. Thus, the tracking efficiency decreases dramatically with high density 
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and fast movements. This may obscure biologically-relevant differences between 

experimental settings or generate spurious results. Today, a large number of cell 

tracking systems exist (Sacan et al., 2008; Shen et al., 2010; Van Valen et al., 2016; 

Cooper et al., 2017; DuChez, 2017; Tsai et al., 2019). Unfortunately, the majority of 

automated tracking tools lack track supervision and editing functionality features, 

such as target selection, trajectory inspection and error correction (Meijering et al., 

2012). The absence of these features requires adjusting numerous parameters to 

optimize performance to the point where tracks are acceptable. Furthermore, the 

difficulty level in automated tracking depends on the quality of the recorded video 

sequences. Often, time spent on adjusting parameters and recalculating cell tracks is 

comparable with full manual tracking. Importantly, tracking moving proliferating cells 

in time-lapse video sequences remains challenging due to the change in the 

morphology and the size of the labeled cells/nuclei. Many tracking systems are not 

sensitive to cell division but they can only track cells within one cell-cycle period. Some 

systems can keep tracking cells for more than one generation by selecting one of the 

two daughter cells. In both cases, all tracked cells are originally independent with 

indistinguishable cell division periods throughout the track. Therefore, studying the 

migratory changes during cell division is not applicable.  

 

To solve these problems, we introduce CellMAPtracer, an open, free and user-friendly 

graphic interface for tracking fluorescently-labeled cells. CellMAPtracer allows 

studying migratory and proliferating cells in a supervised and semi-automatic fashion. 

CellMAPtracer is applicable for a variety of 2D cell migration assays, such as random 

migration and directed migration. It is capable of combining automated tracking with 

manual curation. It provides basic motility analysis and categorized trajectory data for 

deeper trajectory investigation. CellMAPtracer allows users to trace and follow 

individual cells throughout the course of the live-imaging. This can enable the user to 

visualize the tracks of the descended cells and their ancestor in an interactive multi-

generation plot. The obtained trajectory data can be used to precisely estimate the 

doubling time of the tracked cell population as well as answering questions that are 

difficult to date. For instance, do two daughter cells migrate and divide synchronously? 

Does the cell directionality profile change before and during cell division? 

CellMAPtracer is the only user-friendly multi platform tracking software that allows 

precise long-term tracking of proliferating cells by simple inspection and correction 

(see Supplementary table 1). 

 

CellMAPtracer availability and 

Installation 
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CellMAPtracer is built using MATLAB (v 9.8) and can be freely obtained as: (A) a 

standalone executable program for Microsoft Windows, macOS or GNU/Linux; (B) a 

MATLAB App/Toolbox; and (C) the source MATLAB code.  

 

(A) CellMAPtracer standalone executable program.  

Navigate to https://github.com/ocbe-uio/CellMAPtracer/releases/tag/v1.0. Three 

assets of CellMAPtracer for Windows, Linux and macOS versions can be found and 

downloaded. After downloading the version compatible with your Operating System, 

users should uncompress the file and follow the instructions in the corresponding 

“readme.txt”.  

(B) CellMAPtracer MATLAB App 

To be able to run CellMAPtracer App within the MATLAB environment, users should 

follow three simple steps: 1) Download the “App” folder from the CellMAPtracer 

repository: https://github.com/ocbe-uio/CellMAPtracer. 2) In MATLAB, go to APPS tab 

and click “Install App” and find ”CellMAPtracer.mlappinstall” then install it. 3) Open 

CellMAPtracer App from Application list in MATLAB. 

 

C) CellMAPtracer from the source MATLAB code 

To be able to run CellMAPtracer code, users should clone the CellMAPtracer 

repository from https://github.com/ocbe-uio/CellMAPtracer and then run 

“CellMAPtracer_Main.m” after opening a project in MATLAB. 

CellMAPtracer description & workflow 

CellMAPtracer is a desktop application with a graphical user interface (GUI) capable of 

loading multi-TIFF stacks (8 and 16 bits) of spatio-temporal live cell images as input 

(Fig. 1a). The output is an interactive multi-generation trajectory plot (Fig. 1b) and 5 

categories of trajectory data. The 5 categories include: all cells, dividing cells, non-

dividing cells, daughter cells and dividing daughter cells. Each of these contains two 

excel sheets. The first sheet contains the measurements of cell migration parameters 

such as the total distance, displacement, directionality and speed. The second sheet 

contains the x-y coordinates of tracked cells in the corresponding category 

(Supplementary Fig. 1). The purpose of the categorization is to enable users to easily 

plot the cell migration statistics without the need of advanced programming skills. 

Such plots can help highlight the migratory phenotype of cells in each category and 

draw conclusions about the doubling time, the heterogeneity of daughter cells, speed-

directionality dynamics prior and through cell division. 
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Fig. 1: CellMAPtracer graphical user interface. (a) The main user interface window used 

to track a single cell and all its descendant cells. (b) A representative interactive multi-

generation trajectory plot of a cell (orange) and its descendant daughters (yellow) and 

granddaughters (blue). 
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CellMAPtracer is based on two detection approaches for nuclei segmentation. The 

first approach uses a paradigm called tracking-by-detection. It relies on a fluorescence 

detector to initialize, adjust, reinitialize, supervise, and terminate a tracker 

(Breitenstein et al., 2011). CellMAPtracer analyses the frame-to-frame position of a 

target cell. For each frame, contrast-limited adaptive histogram equalization is 

used to separate nuclei from the background by converting greyscale images into 

binary images. All above-threshold contiguous regions are considered nuclear objects 

taking into account the spatial characteristics of segmentation. The second approach 

of cell segmentation is the watershed transformation. This finds ‘watershed ridge 

lines’ in an image and treats an image as a surface where light pixels of the 

nuclei represent high elevations and dark pixels of the background represent low 

elevations (Meyer, 1994). This fast and intuitive method allows to separate close 

nuclei from each other regardless the similarity degree in the signal intensity (Kornilov 

& Safonov, 2018). As a result, highly accurate, instance segmentation is generated. 

After nuclei detection, the position of each nucleus is determined by finding its centre 

of mass, which is calculated based on the basis in all of all the pixels in the particle 

having the same intensity. Positions of all nuclei within the field of view are compared 

with the position of the tracked cell on the last frame. To find the new cell position, 

the algorithm calculates the distances between the last position of the target cell 

nucleus and current position of each other nucleus. The position with minimum 

distance is set as the new position of the tracked cell. (Supplementary Fig. 2). To save 

computational time, the local features are computed only within a fraction of image 

defined by the interactive slider in the CellMAPtracer tracking window. 

 

We designed CellMAPtracer to allow cell tracking to be done automatically and 

monitored step-wisely (Fig. 2). Tracking errors can distort the cell trajectory results. 

For that reason, we designed CellMAPtracer interface to include multi-features for 

importing, highlighting cell division, inspecting and correcting existing tracked 

cells/nuclei to reach near 100% tracking accuracy. In case the algorithm mistakenly 

tracked the target cell or switch to another cell, the user can manually correct the 

tracking by pausing the automated tracking and clicking on the correct position on the 

current frame. The corrected position will be corrected further if the “Use center of 

mass after manual correction” button is activated. Otherwise the exact position 

selected by the user will be recorded. In case the intensity of the target cell/nucleus is 

very low, the “Use center of mass after manual correction” button should be 

deactivated. 

 

During the course of tracking, the migratory cell might undergo a cell-

division. CellMAPtracer allows marking cell divisions and lineage tracing 

of all descendant cells independently. From intensity and morphology perspectives, 
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cell division is a very dynamic process. The naked eye can in most cases recognize the 

occurrence of cell division. However, the automated cell division detection, which is 

mainly benefited from the representational power of deep learning models, requires 

enormous computational power and training copious amounts of data (Ciaparrone et 

al., 2020). To handle such difficulties, when the user notices a division event a single-

click user intervention is needed. This simple intervention initiates tracks for the new 

daughter cells. There is no limitation of number of marked divisions. Therefore, 

CellMAPtracer can optimally handle long-term live imaging experiments. 
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Fig. 2: CellMAPtracer workflow. (a) CellMAPtracer front window, where users can load 

either a TIFF image stack or calculated tracks. (b) Starting the tracking process by 

clicking on “Track Single Cell” button. (c) Selecting the cell to be tracked. (d) Tracking 

window, where users can run the automated tracking and monitor it step-wisely. (e) 

Marking a cell division by clicking on the “Cell Division” button. 

 

 

Results 

As a proof of concept, we use CellMAPtracer to track and analyze human breast cancer 

migrating randomly on a 2D space. We used the triple-negative breast cancer cell line 

of BT549, stably expressing nuclear green fluorescent proteins (GFP). The 

methodology of the cell culture, the generation of GFP-BT549 stably-labeled cells, the 

dense-random migration assay and live imaging are explained in the supplementary 

materials (supplementary file S1). 

 

From the first frame of three multi-TIFF, 8 bits image stacks (Ghannoum & Antos, 

2020), a total of 103 cells were manually selected to be tracked. Other cells were also 

tracked but they were manually excluded due to fluorescence intensity issues or early 

disappearance from the scanning field. These 103 cells and their descendants were 

followed during 72 hours of live imaging. At the end of the tracking course, a total of 

648 cells were tracked. From all tracked cells, 42% underwent a cell division. A 27% of 

all tracked cells were dividing daughter cells, which are generated from parent cells 

and undergone a second round of division themselves. The trajectory time of those 

dividing daughter cells gives a precise estimation of the doubling time. In our case, the 

doubling time of BT549 cells (n=175) averaged 31.1 ± 8.5 hours with a median of 30.2 

hours and a mode of 24.7 hours (fig. 3a-3b). Correlation analysis showed a negligible 

correlation between the doubling time and both the speed and directionality of 

movement (fig. 3c). On the other hand, the doubling time was moderately correlated 

(r = 0.6) with the total distance (fig. 4d). 
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Fig. 3: Descriptive and correlation statistics of the doubling time of BT549 cells (n=175). 

(a) Density plot of the doubling time of BT549 cells. (b) Violin plot showing the median 

and the interquartile range of the doubling time of BT549 cells. (c) Very weak negative 

correlation (Spearman's rank correlation coefficient= -0.2) between the doubling time 

and directionality. (d) Moderate correlation (Spearman's rank correlation coefficient= 

0.6) between the doubling time and the total distance.   

 

Next, we show how CellMAPtracer enables users to gain insights about the 

heterogeneity between daughter cells. For a meaningful comparison, the considered 

trajectory time should be long enough and comparable between the two daughter 

cells. Here, and based on the distribution of the trajectory time of daughter cells (Fig. 

4a-4b), we selected the cells that have a minimum trajectory time of 10 hours with no 

trajectory time difference larger than 3 hours between the two daughter cells. A total 

of 120 pairs of daughter cells were used as input for the heterogeneity analysis. 

Interestingly, the two daughter cells show relatively different trajectory measure 

values (Fig. 4c). The median difference in the total distance is 46.00μm. The median 

difference in the displacement is 40.90μm. The median difference in the directionality 

is less that 10%. The median difference in the average speed is 1.77μm /h. We also 

show how to analyse the synchronization degree in undergoing cell division. For that, 
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only daughter cells with both cells undergoing cell division were included in the 

analysis (n=70 pairs). This can be easily done by selecting the cells in the “Daughter 

cells excel file” based on the “isDivided” column. It is noticeable that the majority of 

the two daughter cells do not divide at exactly the same time, but with some 

difference in the range of 5 hours (Fig. 4d-4e). Only 10% of the daughter cells divided 

with precise synchronization. The mode time difference is 1.2 hours. The mean time 

difference is 5.7 hours with a standard deviation of 5.5 hours. The time difference until 

cell division between daughter cells is weakly correlated with both the directionality 

difference (r=0.25) and the average speed difference (r=0.23) between the daughter 

cells (Fig. 5).  

 

In order to study the speed-directionality dynamics prior and through cell division, 

cells with a minimum trajectory time of 24 hours and a maximum of 48 hours were 

selected (n= 152). The trajectory paths of the selected cells were analyzed for 24 hours 

prior generating daughter cells as a consequence of cell division. Moreover, the 

trajectory path was divided into 2 main phases, a preparatory phase of 20 hours and 

a G2-M phase of 4 hours (Cooper, 2000; Alberts et al., 2002). During the preparatory 

phase, the cell undergoes normal growth processes while also preparing for cell 

division. It consists of three stages; G1, S and the first half of G2. To be able to draw 

conclusions, we divided the preparatory phase into 5 equal periods (p1, p2, p3, p4 and 

p5), each of which has a trajectory time of 4 hours, which is similar to the trajectory 

time of the G2-M phase. The G2-M phase refers to a particular period of cell division, 

which includes the second half of the G2 phase and mitosis. From a cell migration 

point of view, the G2-M phase is highly important due to the disassembly of the Golgi 

apparatus (Rabouille & Kondylis, 2007). Intactness of the Golgi is known to play an 

important role in regulating cell migration (Bisel et al., 2008; Wei & Seemann, 2017; 

Millarte & Farhan, 2012). For the sake of simplicity, we will refer to the p5 period as 

the G2-M phase. The speed-directionality dynamics were analyzed for all the 152 cells. 

This was done by computing the migration measures of average distance per step, 

directionality and average speed in the preparatory and the G2-M phases as well as in 

each of the 5 periods of the preparatory phase. During the G2-M phase, the average 

distance per step and average speed of cells are significantly lower than corresponding 

measures during the first three periods of the preparatory phase (Fig. 6a and 6c) as 

well as lower than the average values of all the periods of the preparatory phase (Fig. 

6b and 6d). Moreover, the directionality of the cells during the G2-M phase is 

significantly lower than their directionality during the preparatory phase (Fig. 6e-6f). 

 

Finally, we demonstrate that CellMAPtracer helps making discoveries in cell biology. 

During the tracking process we observed a phenomenon that, to the best of our 

knowledge, has not been previously described and that we propose to call “terminal 

speed jump”. The trajectory analysis of the tracked cells shows that 60.5% of the 

BT549 cells exhibit one or more instantaneous dramatic change in the speed within 
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the last hour just prior generating daughter cells (Fig. 7). A cell is marked as undergoing 

a terminal speed jump if it shows one or more instantaneous speeds, during the last 

hour of G2_M phase, with at least double of the average instantaneous speeds during 

the whole G2_M phase. Moreover, that instantaneous speed should be at least three 

fold the neighbour instantaneous speed during the last hour of G2_M phase 

(Supplementary Fig. 3).  
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Fig. 4: Heterogeneity between BT549 daughter cells. (a) Violin plot showing the median 

and the interquartile range of the trajectory time of daughter cells (n=540), the dashed 

line refers to the minimum required trajectory time of 10 hours. (b) Violin plot showing 

the distribution of the trajectory time difference between daughter cells (n=540), the 

dashed line refers to the maximum allowed trajectory time difference of three hours. 

(c) Boxplots showing the heterogeneity between of BT549 daughter cells (n=120 pairs) 

based on 4 migration measures of total distance, displacement, directionality and 

average speed. (d-e) The distribution of the time difference between daughter cells 

(n=71 pairs) till cell division.   

 

Fig. 5: Representative examples of the heterogeneity between BT549 daughter cells. 

(a) An example of a cell (cell number 12 in red) with heterogeneous daughter cells 

(yellow). (b) An example of a cell (cell number 32 in red) with relatively homogeneous 

daughter cells (yellow). (c-d) Weak correlation between the time difference till cell 

division with both the directionality difference daughter cells (Spearman's rank 

correlation coefficient= 0.25) and the average speed difference (Spearman's rank 

correlation coefficient=0.23) between the daughter cells . The blue dot represents cell 

# 12 whereas the magenta dot represents cell # 32.  
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Fig. 6:  Migration measures in the preparatory and the G2-M phases (n=152). Gray 

bars represent the corresponding migration measure in the preparatory phase. The 

doted gray bars represent the average value of the corresponding migration measure 

in all the periods of the preparatory phase. Red bars represent the corresponding 

migration measure in the G2-M phase. (a-b) Bar plot of the average distance per step. 
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(c-d) Bar plots of the average speed. (e-f). Bar plots of the directionality. (*P≤ 0.05; ** 

P≤ 0.01; ***P≤ 0.001) 

Fig. 7: Speed Profile during the preparatory and the G2-M phases. (a) Examples of cells 

with a terminal speed jump [C3] and without [C15.1.2]. (b) Speed Profile of cells (n= 

92) with terminal speed jump. (c) Speed Profile of cells (n= 60) with terminal speed 

jump. Red line shows the average instantaneous speeds whereas the gray shaded area 

shows the standard deviation.  
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Discussion 

CellMAPtracer is an open and easy-to-use software for tracking and extracting 

trajectory data of fluorescently-labelled cells through a user-friendly GUI. 

CellMAPtracer was designed with the aim to provide users with highly efficient 

tracking of migratory proliferating cells over multiple days through supervising, 

inspecting and correcting the tracking data in an enjoyable manner. As a proof of 

concept, breast cancer cells were scanned for 3 days. Over 100 cells were randomly 

tracked. To better evaluate and understand the resulting tracks, CellMAPtracer offers 

options to visualize and extract the resulting trajectory data. Users can interactively 

visualize any tracked cell and its descendants and compare the values of their 

migration measures and trajectory data (Fig. 1). Such comparisons give a quick and 

precise characterization of the tracked cells. In particular, it allows to unambiguously 

estimate the doubling time of the studied cells. Literature shows a wide spectrum in 

the doubling time of the BT549 cells, from 25.5 hours (Heiser et al., 2012), 51 hours 

(Cowley et la., 2014) to 3.7 days (Sweeney et al., 1998). A classical way of computing 

the doubling time uses initial and final cell counts in cultures and assumes exponential 

growth. CellMAPtracer, instead, enables user to get a real-time estimation of the 

doubling time directly from the trajectory time of the dividing daughter cells (Fig 3b). 

CellMAPtracer can also shed light on the synchronization degree in terms of of the 

division and migration between daughter cells. Our results for BT549 cells showed that 

two daughter cells do not follow the same migratory pattern and only 10% of the 

daughter cells divided synchronously. The speed-directionality dynamics prior and 

through cell division is an enigma. The categorical output of CellMAPtracer enables 

user with basic programming skills to gain extra insights about the speed-directionality 

dynamics of dividing cells. Our results showed that BT549 cells on 2D culture have 

during the G2-M phase have significantly less average speed, directionality and 

average instantaneous distance during the G2-M phase and 2D culture (fig. 6). A 

previous study (Esmaeili Pourfarhangi et al., 2018) reported such difference prior and 

through cell division in another breast cancer cell line cultured in 3D with no difference 

in 2D. During tracking, CellMAPtracer can help users detect unusual phenomena. We 

noticed an unusual phenomenon in BT549 cells, we refer it as the terminal speed jump 

we found in BT549 cells. A terminal speed jump was observed in 60.5% of the dividing 

BT549 cells. We also observed the phenomenon of multi-daughter cell division (i.e. 

more than two daughter cells), which is known to occur in aneuploid cancer cells. The 

three or more daughter cells were unevenly sized (Tse et al., 2012). While multi-

daughter divisions are known, the terminal speed jump would be interesting to 

investigate. We can only speculate what this phenomenon might be attributed to. As 
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cells progress towards and through mitosis, they are known to become rounder. This 

rounding is due to inactivation of the small GTPase Rap1 and consequently weakening 

or disassembling focal adhesions (Lancaster et al., Dev. Cell, 2013). The loosening of 

focal adhesions might enable cells to increase the speed for a very short period of time. 

Correlation of focal adhesion disassembly with the terminal speed jump is an 

interesting area for future investigation. 

 

Conclusion 

Tracking migratory proliferating cells in long-term cultures with nearly 100% accuracy 

is a big challenge. Using CellMAPtracer, it is now straightforward to trace and follow 

individual cells and their descendants accurately. The lineage tracing of all descendant 

cells and their ancestors allows a better computation of the doubling time and 

understanding the heterogeneity of daughter cells and the speed-directionality 

dynamics prior and through cell division. 
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