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Abstract 

Loss of hepatic fructose-1, 6-bisphosphate aldolase B (Aldob) leads to a paradoxical 

upregulation of glucose metabolism to favor hepatocellular carcinogenesis but the 

upstream signaling events remain poorly defined. Akt is highly activated in HCC and 

targeting Akt is being explored as a potential therapy for HCC. Herein we demonstrate 

that Aldob suppresses Akt activity through a protein complex containing Aldob, Akt, 

and protein phosphatase 2A (PP2A), leading to inhibition of cell viability, cell cycle 

progression, glucose metabolism and tumor growth. Interestingly, Aldob directly 

interacts with phosphorylated Akt (p-Akt) and promotes the recruitment of PP2A to 

dephosphorylate p-Akt, and this scaffolding effect of Aldob is independent of its 

enzymatic activity. Loss of Aldob or disruption of Aldob/Akt interaction in Aldob 

R304A mutant restores Akt activity and tumor promoting effects. Consistently, Aldob 

and p-Akt expression are inversely correlated in human HCC tissues, and Aldob 

downregulation coupled with p-Akt upregulation predicts a poor prognosis for HCC. 

We have further discovered that a specific small-molecule activator of PP2A (SMAP) 

efficiently attenuates HCC tumorigenesis in Aldob-deficient cell lines and xenografts. 

Our work reveals a novel non-glycolytic role of Aldob in negative regulation of Akt 

activation, suggesting that inhibiting Akt activity and reactivating PP2A may be a 

potential therapeutic approach for HCC treatment. 
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Introduction 

Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and 

the 4th leading cause of cancer-related deaths worldwide [1]. Despite considerable 

improvement in the diagnosis and treatment for HCC, the clinical prognosis of HCC 

remains disappointing primarily as a result of an incomplete understanding of the 

molecular mechanisms underlying HCC progression and limited therapeutic options [2]. 

Abnormal activation of the PI3K/Akt signaling pathway is a hallmark of many 

human malignancies, especially HCC [3]. In response to growth factors or cytokines, 

activated PI3K generates phosphatidylinositol-3, 4, 5-trisphosphate (PIP3), which 

recruits Akt for phosphorylation at threonine 308 (T308) by phosphoinositide-

dependent kinase 1 (PDK1) and serine 473 (S473) by mechanistic target of rapamycin 

complex 2 (mTORC2) [4]. Activated Akt triggers the subsequent cellular response 

through the phosphorylation of various downstream substrates or induction of multiple 

gene expression. For instance, inhibitory phosphorylation of glycogen synthase kinase 

3β (GSK3β) by active Akt leads to increased stability and accumulation of CyclinD1, 

thereby promoting cell cycle progression [5]. Besides, activated Akt enhances the 

expression and activity of numerous glycolytic enzymes, such as glucose transporter, 

hexokinase 1 (HK1), and phosphofructokinase 1, resulting in the upregulation of 

glucose uptake and glycolysis [6, 7]. Importantly, a series of feedback controls 

counteract Akt activation to maintain the transient signal. In addition to signal 

termination by phosphatase and tensin homolog (PTEN), protein phosphatase 2A 

(PP2A) and PH domain and leucine rich repeat protein phosphatase (PHLPP) function 

as Akt phosphatases directly dephosphorylating Akt [8, 9]. Therefore, a delicate 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.09.141986doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.09.141986
http://creativecommons.org/licenses/by/4.0/


4 
 

balance between protein kinase-catalyzed phosphorylation and protein phosphatase-

mediated dephosphorylation is vital for Akt kinase activity in cellular homeostasis; 

dysregulation of this balance may lead to tumorigenesis. However, the upstream 

signaling networks involved in the regulation of Akt activity remain to be fully 

characterized. 

Fructose-1, 6-bisphosphate aldolase catalyzes the cleavage of fructose-1, 6-

bisphosphate (FBP) to glyceraldehyde-3-phosphate and dihydroxyacetone phosphate in 

glycolysis. Aldolase B (Aldob) is abundantly expressed in the liver, kidney and small 

intestine, whereas aldolase A (Aldoa) and aldolase C (Aldoc) are the muscle isoform 

and central nervous system isoform, respectively [10]. In humans, gene dysfunction or 

deficiency of Aldob causes hereditary fructose intolerance (HFI), a recessively 

inherited disorder of fructose metabolism [11]. Aldolase has been implicated in diverse 

physiological and pathological processes [12]. A recent study has identified that 

aldolase acts as a sensor of FBP and glucose availability in the regulation of AMP-

activated protein kinase (AMPK) [13]. Dissociation of aldolase from the actin 

cytoskeleton leads to increased aldolase activity and enhanced glycolytic flux, which is 

positively regulated by PI3K signaling [14]. Aldob has been documented to be 

downregulated in HCC tissues in transcriptomic and proteomic studies, which is 

correlated with multiple malignant characteristics of HCC [15-17]. Our recent study 

identified a novel tumor-suppressive mechanism by which Aldob regulates metabolic 

reprogramming in HCC by interacting with the rate-limiting enzyme in pentose 

phosphate pathway, glucose-6-phosphate dehydrogenase (G6PD). Loss of Aldob leads 
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to a novel mode of metabolic reprogramming in favor of glucose metabolism by 

upregulating glycolysis, PPP and TCA for HCC progression. However, the upstream 

signaling events leading to HCC progression and metabolic reprogramming due to the 

loss of Aldob remain largely unknown. 

Here we report that Aldob negatively regulates Akt activation, which is required for 

Aldob-induced suppression of cancer cell proliferation, glucose metabolism and 

tumorigenesis. Aldob directly binds to p-Akt potentiating PP2A interaction and 

dephosphorylation of p-Akt, resulting in the inhibition of Akt phosphorylation and 

downstream oncogenic signaling. This novel protein interaction appears to be 

independent of Aldob enzymatic activity. Moreover, a novel small molecule activator 

of PP2A (SMAP) elicits anti-tumor efficacy comparable to Akt allosteric inhibitor 

(MK2206) in blocking the tumorigenic effects driven by Aldob deficiency in vitro and 

in vivo. Interestingly, we discover an inverse correlation between Aldob and p-Akt 

expression in HCC tumor tissues, and a combination of low Aldob and high p-Akt 

expression is associated with the worst prognosis for HCC patients. Collectively, our 

work highlights that targeting Akt is a viable approach to treat HCC and PP2A 

activation using small molecule modulators of this phosphatase has the potential as a 

new targeted approach for HCC treatment. 

 

Results 

Aldob expression is negatively correlated with Akt activation in human HCC and 

the expression of Aldob/p-Akt predicts overall survival of HCC patients 
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Our recent study has revealed a novel tumor suppressive role for the glycolytic 

enzyme Aldob in HCC through directly binding to G6PD and inhibiting its activity, 

acting as a metabolic switch in glucose metabolism and regulating the metabolic 

reprogramming. Accumulating body of evidence has demonstrated that metabolic 

reprogramming in cancer cells to meet increased bioenergetic and biosynthetic 

requirements during tumorigenesis depends on multiple intracellular signaling 

pathways [18]. Among them, activated Akt signaling has a profound impact on 

metabolic reprogramming through upregulating glycolytic enzymes and promoting 

aerobic glycolysis [19]. Therefore, we set out to examine the role of Akt signaling in 

HCC in the context of Aldob downregulation and metabolic reprogramming. We first 

investigated the clinical relevance between Aldob expression and Akt activation in 

human HCC. As showed in Fig 1A, reduced Aldob expression and enhanced Akt 

phosphorylation levels at both the threonine 308 (pT308-Akt) and serine 473 (pS473-

Akt) residues were observed in tumor tissues as compared to matched adjacent normal 

liver tissues. Next, we performed tissue microarray (TMA) analysis in paired clinical 

samples from HCC patients (Fig 1B; S1 Table, n=70). Aldob expression was negatively 

correlated with Akt activation in human HCC tissues (Fig 1C, R2=0.146, p=0.001). We 

also found that low Aldob expression was significantly correlated with α-fetoprotein 

(AFP), albumin level, and tumor encapsulation (S1 Table). Kaplan-Meier survival 

analysis showed that the overall survival time for patients with low Aldob expression 

was notably shorter than those with high Aldob expression (Fig 1D, p=0.016). 

Conversely, patients with high pT308-Akt level exhibited shorter overall survival 
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compared with patients with low pT308-Akt level (Fig 1E, p=0.029). In addition, an 

elevated level of p-Akt was significantly correlated with prothrombin time, number of 

tumors, and tumor encapsulation (S1 Table). More importantly, a low Aldob expression 

coupled with high pT308-Akt levels was associated with the worst overall prognosis 

(Fig 1F, p=0.001). In conclusion, our study uncovers a novel inverse correlation 

between Aldob and p-Akt expression in human HCC and low Aldob expression with 

high p-Akt predicts the worst prognosis for HCC patients, suggesting an important role 

of Akt signaling in HCC in the context of Aldob downregulation. 

 

Aldob inhibits Akt kinase activity and downstream signaling in HCC 

To investigate the relationship of Aldob downregulation and activation of Akt 

signaling, we observed that, in liver-specific ALDOB knockout (KO) mouse primary 

hepatocytes (PHs), Aldob deletion significantly augmented Akt activation compared to 

wild-type (WT) PHs, as evidenced by increased levels of pT308-Akt, pS473-Akt and 

Akt downstream targets, including pS9-GSK3β and pT389-S6K, without affecting the 

expression of Akt, GSK3β, and S6K (Fig 2A). Notably, we also detected a significantly 

enhanced expression of HK1, a key enzyme in the first irreversible step of glycolysis 

by catalyzing the ATP-dependent phosphorylation of glucose to glucose-6-phosphate, 

which plays a critical role in cellular glucose uptake and utilization [20], suggesting 

that loss of Aldob may facilitate glucose metabolism through activation of Akt 

signaling (Fig 2A). Similarly, we observed a prominent elevation of Akt kinase activity 

in liver tissues of ALDOB KO mice compared to WT mice after diethylnitrosamine 
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(DEN) treatment (Fig 2B). These data suggest a potential tumor-suppressive role of 

Aldob through inhibiting oncogenic Akt activity, consistent with our previous work that 

loss of Aldob promotes DEN-induced HCC tumorigenesis in ALDOB KO mice. 

To further address the role of Aldob in the regulation of Akt phosphorylation in HCC, 

we generated stable Aldob-overexpressing liver cancer cell lines Huh7 and LM3, which 

at baseline express low levels of Aldob, and found that ectopic expression of Aldob 

resulted in a marked reduction of Akt, GSK3β and S6K phosphorylation levels (Fig 

2C). Conversely, silencing Aldob by siRNA restored Akt phosphorylation and its 

downstream targets (Fig 2D). Next, we analyzed the kinetics of Akt activation and 

attenuation in response to insulin (Fig 2E) and epidermal growth factor (EGF) (Fig 2F) 

stimulation. Downregulation of Aldob led to increased levels of pT308-Akt, pS473-Akt 

with coordinate changes in immediate Akt downstream substrate pS9-GSK3β 

expression in a time-dependent manner (Fig 2E and 2F). Additionally, we performed 

an in vitro Akt kinase assay and demonstrated that overexpressed Aldob dramatically 

inhibited Akt kinase activity, as assessed by the decreased phosphorylation level of Akt 

substrate GSK3α (Fig 2G). Taken together, all these results strongly suggest that Aldob 

suppresses Akt phosphorylation and its kinase activity in HCC. 

 

Aldob inhibits Akt kinase activity and suppresses HCC through impeding cell 

cycle progression and attenuating glycolysis and TCA metabolism 

Given that aberrant activation of Akt signaling promotes cancer progression through 

regulating cell proliferation, metabolism and survival [3], we next investigated the 
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functional consequence of Aldob-mediated suppression of Akt kinase activity. We 

observed that enforced expression of Aldob inhibited cell viability and colony 

formation capability. Consistently, inhibition of Akt activity by MK2206, a highly 

selective allosteric Akt inhibitor [21], significantly blocked cell proliferation and 

eliminated the growth inhibitory effects of Aldob expression (Fig 3A and B). 

Furthermore, activation of Akt signaling by ectopic expression of Myc-Akt1 

significantly enhanced cell survival and abolished Aldob overexpression-induced cell 

growth arrest (S1A and S1B Fig). These results indicate that Akt-dependent signaling 

plays an essential role in Aldob-mediated suppression of HCC cell proliferation. 

Meanwhile, Aldob overexpression or inhibiting Akt activity by MK2206 significantly 

increased the proportion of cells in the G1-phase, resulting in a decreased percentage 

of cells in S-phase, indicating that Aldob induces cell cycle arrest at the G1-to-S 

transition (Fig 3C). Consistent with this observation, up-regulated Aldob or Akt 

inhibition by MK2206 obviously reduced pT308-Akt, pS473-Akt, pS9-GSK3β and 

CyclinD1 expression, while elevating the levels of cell cycle inhibitors p21 and p27 

(Fig 3D). More importantly, alteration of Akt activation dramatically diminished the 

effects of Aldob on cell cycle progression and cell cycle-related proteins expression 

(Fig 3C and D; S1C and S1D Fig). 

Metabolic reprogramming has been recognized as the core hallmark for various 

cancers [22]. Enhanced aerobic glycolysis, known as the Warburg effect, is frequently 

observed along with abnormally high rates of glucose uptake in rapidly proliferating 

cancer cells [23]. As the central route of oxidative phosphorylation, the tricarboxylic 
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acid (TCA) cycle is also upregulated to meet increased cellular energy, biosynthesis 

and redox needs [24, 25]. The downstream effectors of Akt signaling play a central role 

in cancer cell metabolic reprogramming. To further determine whether Aldob-mediated 

inhibition of Akt activity is involved in Aldob-induced metabolic reprogramming, we 

used stable isotope labeled [U-13C6] glucose as a tracer to track intracellular metabolic 

flux (Fig 3E). The M+3 (13C labeled at all three positions) fraction of enriched labeled 

metabolites in glycolysis including pyruvate, lactate and alanine were significantly 

decreased in Huh7-Aldob cells compared with control (Fig 3F). Meanwhile, Aldob 

overexpression also observably reduced the M+2 (13C labeled at two positions) fraction 

of labeled metabolites in TCA cycle, such as fumarate, malate, aspartate, glutamate and 

citrate (Fig 3G). Besides, blocking Akt activity by MK2206 efficiently weakening 

Aldob-induced inhibition of metabolic flux in glycolysis and TCA cycle (Fig 3F and 

G). These results suggest that Aldob suppresses Akt activity, resulting in decreased 

cellular metabolism in glycolysis and TCA.  

On the other hand, knockdown of Aldob via siRNA markedly enhanced Akt activity, 

promoted cell proliferation and cell cycle progression, increased the fraction of M+3 

labeled metabolites from U-13C-glucose in glycolysis and of M+2 labeled metabolites 

in TCA cycle, and rescued overexpressed Aldob-mediated inhibition of cell growth and 

metabolism (S2A-H Fig). Moreover, MK2206 exposure also reversed the growth-

promoting effects of Aldob knockdown in Huh7-Aldob cells (S2A-H Fig). We found 

similar patterns of cell proliferation and cell cycle progression effects in LM3 cells 

(S3A-D Fig). These results suggest that Aldob impedes cell cycle progression and 
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represses glucose metabolism through inhibiting Akt signaling, which contributes to 

Aldob-induced cell growth suppression. 

We then established a subcutaneous xenograft mouse model to investigate the effects 

of Aldob expression on tumorigenesis in vivo. As illustrated in Fig 3H-I, tumors derived 

from Huh7-Aldob cells exhibited slower growth and smaller sizes than those from 

Huh7-Vector cells. Inhibition of Akt activity by MK2206 alone significantly inhibited 

tumor growth. Additionally, a combination of Aldob overexpression and inhibition of 

Akt activity showed additive effect on tumor growth inhibition. Interestingly, Huh7-

Vector cells appeared to be more responsive to MK2206 than Huh7-Aldob cells in 

which Akt signaling was already suppressed at baseline. Moreover, Ki67 expression 

was consistent with the differences noted in tumor weights and size (S1E Fig). Likewise, 

western blot analysis revealed that Aldob overexpression and MK2206 treatment alone 

significantly inhibited Akt activation and its downstream signaling compared to control 

group, respectively, and the combination of the two had the lowest levels of Akt 

signaling-related proteins (S1F Fig). No changes in body weight were observed 

throughout the study (S1G Fig). Together, these data demonstrate that Aldob exhibits 

tumor suppressive effects through inhibition of Akt signaling in vitro and in vivo; 

inhibition of Akt activity by the allosteric inhibitor suppresses tumorigenesis caused by 

the loss of Aldob. 

 

Aldob directly interacts with Akt to suppress Akt activity and HCC cell growth, 

whereas disruption of Aldob/Akt interaction in Aldob mutant cells restores Akt 
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activity and cell proliferation 

Next, we tested whether Aldob modulated Akt activity through a protein-protein 

interaction by performing immunoprecipitation (IP) experiments. As shown in Fig 4A, 

endogenous Aldob pulled down Akt1 in WT mice liver tissues. Reciprocally, Aldob 

was detected in the endogenous Akt1 immunocomplex. However, ALDOB KO 

significantly weakened immunoprecipitated interacting proteins, suggesting that Aldob 

and Akt1 bind with each other. Consistently, the interactions between overexpressed 

Aldob and endogenous or exogenous Akt1 were observed by co-IP assays in HCC cell 

lines (Fig 4B and C; S3E Fig). Knockdown of Aldob or Akt1 expression by siRNA 

greatly decreased Aldob interaction with Akt1 (Fig 4B). Moreover, we detected a direct 

interaction between the recombinant GST-Akt1 and His-Aldob performed by GST pull-

down analysis (Fig 4D). In addition, Aldob and Akt2 combined with each other (S4A 

Fig). Collectively, these results demonstrate that Aldob physically interacts with Akt. 

Hepatic Aldob is indispensable for glucose and fructose metabolism, and its 

deficiency as result of ALDOB gene mutation leads to HFI in humans [26]. The residues 

at Arg43, Arg46, Lys108, Lys147, Arg149, Lys 230 and Arg304 line within the active 

site pocket of Aldob, and play an important role in substrate binding and catalysis [27, 

28]. Mutations involved in aforementioned residues have been identified in the ALDOB 

gene of HFI patients [29, 30]. To determine whether the enzymatic activity of Aldob is 

required for the this novel interaction, we individually mutated the seven positively 

charged amino acid residues to alanine and found that among the four point mutants 

(R43A, K108A, K230A, and R304A) with considerably reduced Aldob-Akt interaction, 
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they exhibited varied Aldob enzymatic activities: R43A and K230A (completely dead), 

K108A (32.1%) and R304A (49.1%) of WT Aldob (Fig 4E). Among them, R304A 

mutant has the most significantly attenuated interactions with Akt. Moreover, the other 

three mutants (R46A, K147A, and R149A) with moderately attenuated Aldob-Akt 

interaction, also had variable enzyme activities: R46A maintained 60.2% activity and 

the other two did not have significant enzyme activity (Fig 4E). Together, these data 

clearly indicate that the interaction of Aldob with Akt is independent of Aldob 

enzymatic activity.  

To further identify the Akt interacting region on Aldob, a full-length and two 

truncated mutants of Aldob including a.a. 1-155 (amino acid 1-155 fragment containing 

clone), and a.a. 1-240 were constructed to examine their Akt-binding capability. 

Intriguingly, both Aldob truncated mutants failed to interact with Akt compared to the 

full-length Aldob, indicating that the C-terminal region of Aldob (a.a. 241-364) is most 

likely the region for Akt interaction (S4B Fig), consistent with the observation that 

R304A has the weakest Aldob-Akt interaction. We next tested whether Aldob-Akt 

interaction is essential for Aldob regulation of Akt activity and HCC cell growth. 

Overexpression of WT Aldob significantly downregulated Akt signaling, whereas 

disruption of Akt/Aldob interaction in R304A mutant abrogated Aldob-induced 

inhibition of Akt signaling (Fig 4F). Consistently, R304A mutant efficiently rescued 

cell viability, colony formation, and cell cycle progression in Aldob-overexpressing 

cells (Fig 4G-I). Together, these data indicate that Aldob directly interacts with Akt to 

suppress Akt activity and disruption of this interaction releases Akt kinase activity to 
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promote cancer cell growth. 

 

Aldob preferentially associates with Akt in a phosphorylation-dependent manner 

Because the state of Akt phosphorylation is critical for the integration of various 

extracellular cues to downstream signaling events for multiple biological processes, we 

next studied whether the phosphorylation state of Akt played any role in the regulation 

of the protein-protein interaction between Akt and Aldob. To this end, we examined the 

effect of Akt1 phospho-deficient mutants (Akt1-T308A and Akt1-S473A) on Aldob-

binding capability. Compared with Akt1-WT, both Akt1 phospho-deficient mutants 

displayed reduced binding with Aldob, suggesting that Akt1 kinase activity is critical 

for Akt1 and Aldob interaction (Fig 5A). Next, we treated Aldob and Akt1 transfected 

Huh7 cells with insulin or EGF to further examine the correlation between Akt1 

phosphorylation status and Aldob interaction with Akt1. Interestingly, the interaction 

of Aldob and Akt1 tracked with the kinetics of Akt1 activation and attenuation in 

response to either insulin or EGF, with the binding between Aldob and Akt1 almost 

peaking when the levels of phosphorylated Akt (p-Akt) were the highest (Fig 5B and 

C). Furthermore, blocking Akt phosphorylation through MK2206 treatment 

prominently decreased Aldob interaction with Akt1 (Fig 5D). Together, these results 

indicate that Aldob preferentially binds to the phosphorylated form of Akt. 

 

Aldob promotes Akt interaction with PP2A and accelerates PP2A-mediated Akt 

dephosphorylation 
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Given that Akt interacted with Aldob in an Akt phosphorylation-dependent manner, 

we hypothesized that phosphatases of Akt may be involved in Aldob-induced 

repression of Akt activity. Interestingly, as shown in Fig 2, Akt phosphorylation at both 

T308 and S473 was significantly reduced in response to Aldob expression. Previous 

study suggested that PP2A directly dephosphorylates Akt at both T308 and S473 [31, 

32]. Moreover, phosphorylation of Akt at T308 has been identified to play a more 

crucial role in activating Akt [33, 34]. Thus we examined the possible involvement of 

the serine/threonine phosphatase PP2A in Aldob-mediated regulation of Akt activity. 

Strikingly, we observed an abundance of the catalytic subunit of PP2A (PP2AC), but 

little PHLPP, in the exogenous Aldob immunocomplex (Fig 6A). Meanwhile, no 

interaction of Aldob with the Akt kinase PDK1 was observed (Fig 6B). 

Since PP2A has been shown to bind directly to Akt and dephosphorylate Akt [35], 

we speculated that Aldob might nucleate the Akt interaction with PP2A to trigger Akt 

dephosphorylation resulting in inhibition of downstream signaling. To support this 

hypothesis, we performed GST pull down assay and found that WT Aldob but not the 

Akt1-binding deficient Aldob-R304A mutant significantly enhanced Akt1 interaction 

with PP2AC (Fig 6C). Similarly, endogenous Akt1 pulled down both Aldob and PP2AC 

in the liver tissue of WT mice, whereas loss of Aldob drastically diminished Akt1-

immunoprecipitated Aldob and PP2AC in ALDOB KO mice (Fig 4A), further 

suggesting that Aldob acts as a scaffold protein for the Akt/PP2A complex. Next, we 

performed in vitro PP2A phosphatase activity assay using phosphorylated Akt as a 

substrate and observed a time-dependent decrease of p-Akt at both T308 and S473 
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residues upon incubation with active PP2A. More importantly, WT Aldob remarkably 

augmented the PP2A-induced reduction of p-Akt expression, while no significant effect 

was found on the Akt1-binding deficient Aldob-R304A mutant (Fig 6D). Furthermore, 

we examined the effect of okadaic acid (OA) on these processes. OA is an inhibitor of 

serine/threonine protein phosphatase PP1 and PP2A, exhibiting greater selectivity 

toward the latter up to concentration of 100 nM [36]. As shown in Fig 6E, OA treatment 

effectively restored Akt phosphorylation levels in Aldob-overexpressing cells, which 

almost comparable to untreated control cells, suggesting that Aldob-induced inhibition 

of Akt activity is dependent on PP2A. To further verify these results in human HCC 

samples, we randomly selected two pairs of HCC tissue samples for IP assays. The 

endogenous interaction between Aldob and Akt1 was identified in peripheral normal 

liver tissues of HCC patients (Fig 6F). However, downregulated Aldob in tumor tissues 

significantly decreased Akt1-immunoprecipitated Aldob and PP2AC when compared 

to corresponding adjacent normal tissues (Fig 6F), further suggesting that 

Aldob/Akt/PP2A signaling is involved in human HCC progression. Taken together, 

Aldob interacts with p-Akt to promote the recruitment of the phosphatase PP2A and 

accelerate PP2A-mediated dephosphorylation, which is primarily responsible for 

Aldob-induced downregulation of Akt phosphorylation.  

 

PP2A activation using SMAP downregulates Akt activity and suppresses HCC 

progression 

PP2A is generally considered as a tumor suppressor that dephosphorylates multiple 
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critical oncogenic proteins, such as Akt, ERK, and MYC [37]. Functional inactivation 

of PP2A has been linked to tumor development in many cancers [38]. Thus, 

pharmacologic restoration of PP2A phosphatase activity has emerged as an attractive 

strategy for cancer therapy [39]. Recent studies have reported that a series of specific 

small-molecule activators of PP2A (SMAPs) reengineered from tricyclic neuroleptics 

effectively activate PP2A, resulting in the dephosphorylation of key targets Akt and 

ERK, and blocking tumor growth of lung, prostate cancer and pancreatic 

neuroendocrine tumors both in vitro and in vivo [40-43]. The validation of their target 

specificity, mechanism of action, and pharmaceutic properties have been extensively 

documented [40-43]. Here we treated Huh7 and LM3 cells with increasing 

concentrations of SMAP. SMAP-induced PP2A activation was demonstrated by parallel 

reduction of Akt, ERK and GSK3β phosphorylation levels which was accompanied by 

decreased CyclinD1 expression (S5A Fig). Moreover, SMAP treatment reduced cell 

viability in both cell lines in a dose-dependent manner with IC50 of approximately 9 

μM (Huh7) and 12 μM (LM3), which were similar to those reported in other tumor cell 

types (S5B Fig). SMAP treatment induced visible HCC cell death. These results 

indicate that PP2A activation with SMAP results in growth inhibition and cell death in 

HCC cell lines. 

To evaluate the utility of PP2A activation toward Aldob-mediated suppression of Akt 

activity, Huh7-Vector and Huh7-Aldob cells were treated with 10 μM SMAP for further 

functional studies. We found that Aldob overexpression and SMAP treatment alone 

both inhibited cell proliferation, and the combination of the two showed an additive 
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effect on repressing cell proliferation, as measured by cell viability and clonogenic 

assays (Fig 7A and B). Additionally, cell cycle analysis revealed that SMAP treatment 

resulted in a significant increase in the G1 phase with a coordinate loss of the S 

population, and exacerbated Aldob-induced G1-to-S phase cell cycle arrest (Fig 7C). 

Western blot analysis showed Aldob overexpression had no effect on ERK 

phosphorylation in the presence of either DMSO or SMAP, whereas Aldob-induced 

downregulation of Akt/GSK3β/CyclinD1 signaling was potentiated by SMAP-

mediated PP2A activation (Fig 7D). Notably, relative to Huh7-Aldob cells that contain 

diminished Akt activity, Huh7-Vector cells were more sensitive to SMAP treatment. 

Together, these results indicate that PP2A plays an essential role in Aldob-induced 

growth inhibition, and that small molecule mediated PP2A activation is beneficial to 

Aldob-mediated suppression of Akt signaling and HCC cell growth. 

We further investigated the efficacy of SMAP on HCC tumor progression in vivo. 

SMAP treatment alone resulted in dramatic inhibition of tumor growth, which is similar 

to Aldob overexpression-induced growth-inhibitory effects (Fig 7E-G). There was a 

moderate reduction in tumor burden of Huh7-Aldob tumors compared with Huh7-

Vector tumors with SMAP treatment (Fig 7E-G). It is noteworthy that there was no 

significant weight loss or behavioral abnormalities during the 3-week treatment, 

suggesting that SMAP is well-tolerated in this mouse model (S5C Fig). In addition, 

western blot analysis in SMAP-treated tumors detected the simultaneous decrease in 

Akt/GSK3β/CyclinD1 signaling and ERK phosphorylation levels, suggesting that 

SMAP induces PP2A-dependent inhibition of these signaling pathways resulting in 
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suppression of tumor growth (S5D Fig). IHC analysis validated lower protein levels of 

Ki67 in SMAP-treated tumors compared with control vehicle-treated tumors (S5E Fig). 

More importantly, upregulated Aldob-induced attenuation of Akt signaling and tumor 

growth was greatly enhanced in response to SMAP treatment (Fig 7E-G; S5D and E 

Fig). Collectively, these results support the potential therapeutic application of PP2A 

phosphatase reactivation and Akt kinase inhibition for the treatment of HCC with Aldob 

deficiency. 

 

Discussion 

Emerging studies have documented hepatic Aldob deficiency in HCC but the 

underlying mechanisms remain poorly defined. Our recent study uncovered a 

mechanism by which loss of Aldob led to a novel model of metabolic reprogramming 

through upregulation of glycolysis, PPP and TCA to promote HCC. This tumor 

promoting effect due to the loss of Aldob is achieved by releasing the inhibition on 

G6PD and PPP metabolism as a result of destabilizing Aldob/G6PD/p53 protein 

complex. However, the upstream signaling events are still unknown. In this study, we 

observe another non-enzymatic tumor-suppressive role of Aldob through a direct 

interaction with Akt in HCC, independent of Aldob enzymatic activity (Fig 8). Aldob 

inhibits Akt activity and downstream signaling events that leads to the impairment of 

cell cycle progression and metabolic flux to glycolysis and TCA cycle, thereby 

suppressing HCC cell proliferation and tumorigenesis. Furthermore, Aldob interacts 

with p-Akt to facilitate the recruitment of protein phosphatase PP2A and expedite 

PP2A-mediated dephosphorylation, resulting in attenuated Akt activity. On the other 
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hand, loss of Aldob or disruption of the Aldob/Akt interaction in Aldob mutation 

restores Akt activation, leading to cell cycle progression and upregulation of glucose 

metabolism though HK1 expression. Consistently, a reverse correlation of Aldob and 

p-Akt level is observed in human HCC tumor tissues and a combination of low Aldob 

expression with high p-Akt expression predicts the worst prognosis in HCC. 

Importantly, chemical inhibition of Akt kinase with MK2206 or reactivation of PP2A 

phosphatase activity with specific SMAP represses the tumorigenic effects resulting 

from the loss of Aldob in vitro and in vivo, further supporting the potential application 

of Akt inhibitors or PP2A activators for HCC treatment. 

Dysregulated PI3K/Akt pathway contributes to multiple malignancies and it is of 

great clinical significance to characterize the molecular mechanisms leading to the 

hyperactivation of Akt signaling in carcinogenesis. In addition to the hepatitis virus 

infection and genomic alterations in PI3K/Akt pathway, emerging studies have focused 

on the novel protein interactions with Akt pathway members involved in the regulation 

of Akt kinase activity [44]. Here, we found that Aldob directly interacted with Akt 

resulting in reduced Akt phosphorylation. Although the kinase activity of Akt is critical 

for its interaction with Aldob, the enzymatic activity of Aldob plays a less important 

role in this regard. Interestingly, among these seven single mutants of Aldob, the mutant 

R304A significantly destroyed this interaction with Akt, leading to the restoration of 

Akt phosphorylation and cell growth. The active site residue R304 plays a crucial role 

in aldolase enzymatic mechanism and inactivating mutant at R304 residue causes HFI 

[45]. Although there is currently no human data linking HFI to HCC, our results warrant 
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future study on incidence of HCC in HFI populations, especially those with this 

mutation. On the other hand, three Akt isoforms (Akt1-3) exhibit over 80% identity at 

amino acid sequence, but are not functionally redundant based on different phenotypes 

observed by genetic deletion of each isoform in mice [3]. Akt1 played a crucial role in 

cell survival [46], while Akt2 maintained glucose homeostasis [47]. We found ALDOB 

KO significantly increased Akt2 phosphorylation at S474 site, and Aldob interacts with 

Akt2 in HCC cells, suggesting Aldob plays a similar role on regulating both Akt1 and 

Akt2 activity. Ongoing studies will examine the role of Aldob and its modulation of 

Akt isoform-specific signaling networks and biological outcomes. 

Emerging studies have unveiled a pleotropic role of Aldolase in diverse physiological 

and pathological processes, in addition to the well-established role of glycolytic enzyme 

[12]. Our current work clearly demonstrates the great significance of Aldob-induced 

repression of Akt activity for the tumor-suppressive function of Aldob in HCC. 

Moreover, the inverse expression patterns of Aldob and p-Akt suggest that Aldob may 

be applied as a potential biomarker for HCC treatment with targeted Akt therapeutics. 

Our previous study identified a novel mechanism by which Aldob interacts with G6PD 

to reprogram metabolism in HCC. Here, we also highlight the role of Aldob in 

regulating glucose metabolism through inhibiting Akt activity. Extensive evidence 

indicates that activated Akt promotes glucose uptake and glycolysis through activating 

transcription factors and upregulating many glycolytic enzymes [18]. Akt increases the 

expression and activity of HK1 by activating HIF1α through stimulation of mTORC1 

[48, 49]. Indeed, our studies showed that loss of Aldob upregulates entire central carbon 
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metabolism, including glycolysis, TCA and PPP, which was accompanied by activated 

Akt and increased HK1 expression. Moreover, Aldob-induced inhibition of Akt activity 

not only reduced glucose metabolic flux to glycolysis and TCA cycle, but also induced 

cell cycle arrest through downregulating Akt/GSK3β/CyclinD1 signaling, thereby 

leading to the impairment of cell proliferation. Thus these findings fully demonstrate 

the important tumor-suppressive role of Aldob through modulating Akt activity and its 

downstream signaling events. 

Our current study has identified a close functional relationship among Aldob, Akt 

and PP2A, providing new mechanistic insights into the crucial upstream regulators 

involved in the Akt phosphorylation homeostasis mediated by the coordinate regulation 

by protein kinases and phosphatases [50]. As a tumor suppressor, PP2A negatively 

regulates several oncogenic signaling pathways and controls various cellular functions, 

such as cell growth, cell cycle and apoptosis [51]. PP2A-B55α has been shown to 

dephosphorylate Akt through a direct association and negatively regulate Akt-induced 

cell proliferation and survival [8]. Herein we demonstrated that Aldob was involved in 

PP2A-induced inhibition of Akt phosphorylation at both T308 and S473 sites. Indeed, 

we showed that downregulated Aldob attenuated PP2A interaction and 

dephosphorylation of Akt, which was consistent with the inverse relationship between 

Aldob and p-Akt expression in tumor tissues of human HCC and ALDOB KO mice. 

Furthermore, inhibition of PP2A restored Akt phosphorylation in Aldob-expressing 

cells, while PP2A reactivation using SMAP enhanced Aldob-induced inhibition of Akt 

phosphorylation. Moreover, alteration of Aldob expression had no effect on PP2AC 
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expression, and endogenous PP2AC was identified in Aldob immunocomplex. It is 

conceivable that Aldob interacts with p-Akt and functions as a scaffold protein to 

further recruit the serine/threonine phosphatase PP2A to its direct substrate Akt 

resulting in the inhibition of downstream Akt signaling. 

Targeting key components of PI3K/Akt pathway is being explored as a therapeutic 

approach for cancer treatment. Several Akt small molecular inhibitors have entered 

different stages of clinical trials [3]. MK2206 is a potent and orally bioavailable 

allosteric inhibitor of Akt that specifically targets Akt inactive conformation and blocks 

PDK1-mediated phosphorylation and activation [21]. To date, MK2206 has shown 

moderate anti-tumor efficacy in vitro and in early clinical studies as a monotherapy, and 

exerts significantly more promising tumor inhibitory activities in combination with 

other agents, such as HCC first-line treatment sorafenib [52, 53]. Our data demonstrated 

that MK2206 treatment potently inhibited Akt phosphorylation and tumorigenic effects 

resulted from low Aldob level. Furthermore, tumor cells with low Aldob level were 

more responsive to Akt inhibition than those with high Aldob expression in which Akt 

signaling at baseline was already reduced. Collectively, our work indicates that 

targeting hyperactive Akt due to the loss of Aldob in HCC may be a viable therapeutic 

strategy. 

In addition to direct inhibition of oncogenic kinases, stimulation of endogenous 

phosphatases to indirectly inactivate kinase signaling has been considered as a 

promising anticancer therapeutic approach. PP2A is functionally inactivated in many 

cancers, as a result of various mechanisms including somatic mutation, increased 
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expression of endogenous PP2A inhibitors and post-translational modifications of the 

catalytic subunit [39]. Aberrant transcripts of tumor suppressor gene PPP2R1B were 

detected in 29% of HCC tumors, which associated with the development of HCC [54]. 

Overall, the activation of PP2A has the potential to exert anti-tumor effect toward 

multiple oncogenic signaling proteins that drive cancer progression. FTY720 

(fingolimod) has been reported to indirectly activate PP2A through inhibiting the 

endogenous PP2A inhibitor SET and exhibits high anti-tumor efficacy against HCC [38, 

55]. In this study, we report that an orally bioavailable PP2A activator SMAP had anti-

HCC activity in vitro and in vivo through its ability to simultaneously inhibit PP2A 

substrates Akt and ERK activity resulting in cell cycle arrest and ultimately cell death. 

SMAP mediated PP2A activation potentiated Aldob-induced suppression of Akt 

signaling and tumor growth. Our findings provide evidence that the restoration of PP2A 

tumor suppressive phosphatase activity could represent a novel targeted therapeutic 

approach for HCC treatment. Further studies exploring the therapeutic effects of PP2A 

reactivation in Aldob-defective cancers are therefore of critical importance. 

In summary, our study uncovers the biological importance of Aldob-mediated Akt 

inhibition through the formation of Aldob/Akt/PP2A protein complex, independent of 

Aldob enzymatic activity. Our study suggests that targeting hyperactive Akt resulting 

from Aldob deficiency through directly inhibiting Akt kinase or reactivating PP2A 

phosphatase activity may serve as an anti-tumor treatment for HCC. 
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Methods 

Mouse Models 

For subcutaneous xenograft growth model, Huh7-Aldob or Vector cells (2 × 106) 

mixed in serum-free medium containing 50% Matrigel (BD Biosciences) were 

subcutaneously injected into the left and right flanks of 5-week-old male BALB/C nude 

mice. After 10 days, the mice were randomly assigned to control solvent and agent 

treatment groups (n=6 per group). MK2206 (40 mg/kg, once every other day) and 

SMAP (5 mg/kg, twice a day) were administered via oral gavage. Tumor growth and 

body weight were monitored every other day for 3 weeks. Tumor volume was estimated 

using the following formula: volume=0.52 × length × width2. Animals were observed 

for signs of toxicity (weight loss, abdominal stiffness, and ruffled fur). Tumors were 

harvested, photographed and weighted 2 hours after the final dose of treatment, 

following snap-frozen in liquid nitrogen for immunoblotting or fixation in 4% 

paraformaldehyde (PFA) for immunohistochemistry. IHC staining was performed to 

examine the protein expression of proliferation marker gene Ki67 in the tumor tissues. 

Mice were housed in pathogen-free animal care facilities in Shanghai Institutes for 

Biological Sciences (SIBS), Chinese Academy Science (CAS) and allowed access to 

water and chow diet ad libitum. All animal experimental procedures were conformed 

to SIBS Guide for the Care and Use of Laboratory Animals and were approved by the 

Institutional Animal Care and Use Committee of SIBS, CAS. 

 

Cell culture and HCC tissue samples 
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The human HCC cell lines Huh7 and HCC-LM3 were purchased from Cell Bank of 

CAS. Primary hepatocytes were isolated from the livers of male liver-specific ALDOB-

knockout and WT mice using collagenase perfusion as previously described [56]. HCC 

cell lines and primary hepatocytes were cultured in Dulbecco’s modified Eagle’s 

medium (DMEM, Hyclone) plus with 10% fetal bovine serum (FBS, Hyclone) and 1% 

penicillin-streptomycin (Gibco) in a 37°C incubator with 5% CO2 in air. PVTT cell line 

CSQT2 was gifts from Dr. Cheng Shuqun. 

Human HCC tissues were collected immediately after hepatectomy from the Eastern 

Hepatobiliary Surgery Hospital, Shanghai. Collection of patient specimens with 

informed consent to an established protocol and all experimental procedures were 

approved by the Research Ethics Committee of Eastern Hepatobiliary Surgery Hospital. 

The fresh specimens were snap-frozen in liquid nitrogen and stored at -80°C until 

analysis. 

 

Reagents 

MK2206 (Selleck Chemicals) was dissolved in DMSO (Sigma-Aldrich) and diluted 

in DMEM with a final concentration of 0.1 % DMSO for in vitro studies or in the 

vehicle solution containing Cremophor (Sigma-Aldrich), 95% ethanol and water in a 

ratio of 1:1:6 for in vivo studies. EGF (Sigma), insulin (Invitrogen) and okadaic acid 

(Cell Signaling Technology) were used at the indicated doses. The PP2A activator 

SMAP compound (provided by Goutham Narla, The University of Michigan, Ann 

Arbor, MI) was dissolved in DMSO and stored at room temperature and used for up to 
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1 month for in vitro studies. For in vivo studies, SMAP was prepared in a N, N-

Dimethylacetamide (DMA)/Kolliphor HS-15 (Solutol)/diH2O solution. 

 

Plasmids and viruses 

Aldob, Akt1 and Akt2 expression plasmids were constructed by cloning the open 

reading frame of each cDNA into the multiple cloning site of pCDNA3.0 vector, and 

their different Flag or Myc tag was constructed through design in one primer. The 

different gene fragments were amplified using their primers. The pcDNA3.0 vector and 

each PCR fragments were both digested with their restriction enzymes EcoRI and XhoI 

or BamHI and XhoI or EcoRI and XhoI, and then ligated with T4 ligase. Transformation 

was performed using DH5α competent cells. Single clones were selected and amplified 

to extract plasmids. All clones were sequenced to confirm the results. Flag-PP2A 

plasmids were obtained from Dr. Xie Dong (SIBS, CAS). Plasmid transfection and 

virus infection: Expression constructs were transfected into cells using Lipofectamine 

2000 Transfection Reagent (Invitrogen) following the manufacturer’s protocol. 

Lentivirus expression clone pLVX-IRES-GFP-puromycin-Aldob with/without Flag-tag 

was constructed with the Aldob fragment digested from pcDNA3.0-Aldob mentioned 

above via restriction enzyme EcoRI and XhoI. This fragment was inserted into pLVX-

IRES-GFP-Puro vector and sequenced to verify the results. Lentivirus was produced by 

co-transfection of 293T cells using Lipofectamine 2000 Transfection Reagent 

(Invitrogen) with 3 μg pCMV-dR8.91, 2 μg pCMV-VSV-G and the target gene 

expression vectors (such as 5 μg pLVX-Aldob-Flag-puro). Fresh medium was 
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transferred into the dish after transfection of 6 hours. After 48h, the virus was harvested 

from the medium filtered by 0.45 mm Steriflipfilter (Millipore). Virus infection was 

carried out by incubating cells with cell medium containing indicated virus and 5 μg/ml 

polybrene (Sigma) for 8-12 hours. Cells were allowed to recover in complete medium 

for 24h and then selected with antibiotic (such as puromycin) for 10-15 days until stable 

cell lines were screened and constructed. 

 

RNA-mediated interference (RNAi) 

siRNA-Aldob-2-F: 5’-ACCCUCUACCAGAAGGACAdTdT-3’, siRNA-Aldob-2-R: 

5’-UGUCCUUCUGGUAGAGGGUdTdT-3’, siRNA-Aldob-3-F: 5’-

GUAUGUUCACACGGGUUCUdTdT-3’, siRNA-Aldob-3-R: 5’-

AGAACCCGUGUGAACAUACdTdT-3’. siRNA-Akt1-F: 5’-

GCUACUUCCUCCUCAAGAAdTdT-3’, siRNA-Akt1-R: 5’-

UUCUUGAGGAGGAAGUAGCdTdT-3’. The siRNA was transfected into cells using 

Lipofectamine 2000 Transfection Reagent (Invitrogen) for at least 48 hours and then 

subjected to different assays. 

 

Western blotting and antibodies 

Cells or tissues were lysed in ice-cold lysis buffer (25 mM Tris pH 8.0, 150 mM 

NaCl, 1 mM CaCl2, 1% Triton X-100) with EDTA-free protease inhibitors (Bimake) 

and phosphatase inhibitors (Bimake) and determined the protein concentration though 

BCA protein assay kit (Beyotime Biotechnology). Equal amounts of total protein were 
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subjected to 10% sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis 

(PAGE) and then transferred to polyvinylidene fluoride (PVDF, Millipore) membranes 

and incubated with the indicated antibodies. Antibodies to Aldob (18065-1-AP), 

GAPDH (60004-1-Ig), Tubulin (11224-1-AP), p70S6K (14485-1-AP), PHLPP (22789-

1-AP), p21 (10355-1-AP), p27 (25614-1-AP), PDK1 (17086-1-AP), PP2AC (13482-1-

AP), GST-tag (66001-2-AP), Hexokinase1 (19662-1-AP) were purchased from 

Proteintech. Antibodies to pT308-Akt (13038), pS473-Akt (4060), Akt1 (2938), pS9-

GSK3β (5558), GSK3β (12456), pT389-S6K (9205), Myc-tag (2276), IgG (2729), 

pT202/Y204-ERK (4370), ERK (4695) were purchased from Cell Signaling 

Technology. Antibodies to Flag-tag (F3165) were purchased from Sigma. Antibodies 

to pT308-Akt (ab38449, for IHC use), CyclinD1 (ab16663), Ki67 (ab15580, for IHC 

use) were purchased from Abcam. After extensive rinse with TBST, immunoreactive 

bands were incubated with horseradish peroxidase (HRP)-conjugated secondary 

antibodies and visualized using a chemiluminescence (ECL) kit (Proteintech). 

 

Cell viability assay 

The viability assay was performed by seeding cells in a 96-well plate at a density of 

2,000 cells/well for 6 repeats. After 7 hours, cell media were replaced with fresh media 

with various concentrations of test agents or control DMSO and cells were proceeded 

to grow. CCK8 (OBIO Cell Counting Kit) then was added to separate plates at the 

indicated time according to the manufacturer's instruction. 
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Colony formation assay 

Colony formation assays were adapted from a protocol reported previously [33]. 

Cells of different groups were seeded (5000 cells/well) into six-well plates and cultured 

for 7-10 days. Medium were changed every other day. Colonies were washed with PBS, 

fixed with 10% acetic acid/10% methanol for 20 minutes, and then stained with 0.4% 

crystal violet in 20% ethanol for 20 minutes. After staining, the plates were washed and 

air-dried for colony visualization. 

 

Cell cycle analysis 

Cells of different groups were plated (2×105 cells/well) into six-well plates and 

subjected to indicated treatment. Resulting cells were detached with trypsin, washed 

with ice cold PBS, and fixed in 70% ethanol overnight. About 1×106 cells were detected 

using the cell cycle analysis kit (Beyotime Biotechnology, C1052). Then cells were 

incubated with propidium iodide (PI) and RNAase for 30 min at 37°C, followed by 

analysis via the flow cytometry (BD Bioscience). The results were presented as the 

proportion of cell population in each phase of the cell cycle which was determined using 

FlowJo 7.6 software (Treestar Inc., USA). 

 

Metabolic flux experiments using [U-13C6]-glucose and Gas chromatography/mass 

spectrometry 

  Cells of different groups were seeded at a density of approximately 2×106 cells per 

10 cm dish. After cells grew to ~60 % confluence, the unlabeled medium was replaced 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.09.141986doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.09.141986
http://creativecommons.org/licenses/by/4.0/


31 
 

with [U-13C6]-glucose medium which composed of low glucose DMEM (Gibco, 11054-

020: 1g/L unlabeled glucose, no glutamine) with supplement of 1g/L [U-13C6]-glucose 

(Cambridge Isotope Laboratory), 10% (v/v) fetal bovine serum, the 1mM pyruvate, the 

unlabeled 2mM L-glutamine, and 1% (v/v) penicillin-streptomycin with or without 

MK2206 treatment (5 μM). At this point, it was regarded as t = 0 h. The labeling time 

of [U-13C6]-glucose for 12 hours. [U-13C6]-glucose medium samples after cell culture 

were collected at 0 h and 12 h, and stored at -80°C immediately for later analysis. Then 

we quickly removed the medium completely and immediately put plates on dry ice and 

added 700 μl of 50% (vol/vol) methanol (precooled at -80°C) for 20 minutes. Next the 

cell lysate/methanol mixtures were totally scraped from the plates and transferred to 2 

ml tubes. We added 500μl chloroform into the tubes, then vortexed the tubes and 

centrifuged at 14,000 g for 15 minutes at 4 °C. The supernatants were transferred into 

new tubes and lyophilized in a vacuum concentrator. Then add 70μl O-

Isobutylhydroxylamine Hydrochloride (TCI, 20 mg/ml) to the dried pellet and incubate 

at 85°C in metal bath for 20 minutes. After cooling, add 30 μl N-tert-

Butyldimethylsilyl-N-Methyltrifluoroacetamide (Sigma) to incubate at 85°C for 1 

hours before centrifugation at 14,000 g for 15 minutes at 4°C. The supernatant was 

transferred to an autosampler vial for GC/MS analysis. 

  A Shimadzu QP-2010 Ultra GC-MS was programmed as described previously [57] 

with an injection temperature of 250°C. 1 μl of sample was injected with an injection 

split ratio of 1/10. GC oven temperature started at 110°C for 4 min, rising to 230°C at 

3°C/min and to 280°C at 20°C /min with a final holding at this temperature for 2 min. 
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GC flow rate with helium carrier gas was 50 cm/s. The GC column used was a 30 m x 

0.25 mm x 0.25 mm HP-5ms. GC-MS interface temperature was 300°C and (electron 

impact) ion source temperature was set at 200°C, with 70 V/150 μA ionization 

voltage/current. The mass spectrometer was set to scan m/z range 50-800, with 1 kV 

detector. GC/MS data were analyzed to determine isotope labeling and quantities of 

metabolites and implemented in MATLAB [58]. To determine 13C labeling, the mass 

distribution for known fragments of metabolites was extracted from the appropriate 

chromatographic peak. Labeling results are expressed as average fraction the particular 

compound that contains isotopic label from the particular precursor. 

 

Immunoprecipitation (IP) and GST pull-down assay 

1000 μg cell lysates were incubated with the indicated antibody (1-2μg) overnight at 

4°C with gentle rotation, followed by 6 hours incubation with Protein A/G Sepharose 

beads (Santa Cruz). Then beads were washed 4 times with IP lysis buffer (150mM Tris-

HCl, 400mM NaCl, 0.8%Triton X-100, pH 7.4) and boiled in sample buffer before 

being resolved by SDS-PAGE and immunoblotted with indicated antibodies. For the 

Flag or Myc-tag labeled IP experiments, cell lysates were incubated with antibody-Flag 

or antibody-Myc affinity gel (Bimake) overnight at 4°C. Affinity gel were collected 

after 300g centrifuging for 4 min at 4°C, and then washed 4 times. The subsequent 

operations were similar to western blot analysis. For GST pull-down assay, recombinant 

GST-Akt1 or GST proteins was incubated with His-Aldob proteins or cell lysates 

derived from cells transfected with indicated constructs in binding buffer (25 mM Tris-
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HCl, 200 mM NaCl, 1 mM EDTA, 0.5% NP-40, 10 μg/μl BSA, 1 mM DTT, pH 7.3). 

100μl prepared Glutathione Sepharose 4B (GE Healthcare) were added to the mixture 

and incubated overnight. After washed in ice-cold binding buffer for three times, bound 

proteins were released by boiling in sample buffer and resolved by SDS-PAGE 

electrophoresis. 

 

Expression and purification of recombinant proteins 

The full-length Aldob and Akt1 genes were inserted into the pET-30a (Novagen) and 

pGEX4T1 (GE Healthcare) expression plasmids, respectively. The E. coli BL21 (DE3) 

Codon-Plus strain (Novagen) transformed with the reconstructed expression plasmid 

was cultured at 37 °C in LB medium containing 0.05 mg/ml ampicillin until OD600 of 

medium reached 0.8, and addition of 0.1 mM IPTG induced the target protein 

expression at 16 °C for 24 hours. The cells were further harvested by centrifugation and 

lysed by sonication in the lysis buffer (20 mM Tris-HCl, 300 mM NaCl, and 1 mM 

PMSF). The recombinant proteins were purified using GSH Magnetic Beads for GST 

tag protein purification (Bimake, B23702) and Nickel Magnetic Beads for His tag 

protein purification (Bimake, B23602) according to the manufacturer’s protocol. The 

purified proteins were determined by SDS-PAGE with high purity (> 95%). 

 

In vitro Akt kinase assay 

The in vitro kinase assay (Abcam, ab65786) was performed according to the 

manufacturer’s instructions. Cell lysates were immunoprecipitated with either anti-
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Akt1 or anti-IgG antibody along with protein A/G beads overnight and the 

immunoprecipitates were incubated with substrate GSK3α Protein/ATP mixture in 

kinase reaction buffer for 30 min at 30 °C. The reactions were terminated by 6×SDS 

loading buffer and subjected to western blot analysis with antibody against pS21-

GSK3α. 

 

In vitro PP2A dephosphorylation assay 

The in vitro PP2A dephosphorylation assay was performed using phosphorylated 

Myc-Akt1 as the substrate. Myc-Akt1 transfected Huh7 cells were serum-starved for 

24 hours and then stimulated with 0.1μM insulin for 1 hour before harvesting. Equal 

amounts of cell lysates were incubated with antibody-Myc affinity gel overnight at 4°C. 

The immunoprecipitates were washed 3 times in IP lysis buffer, 3 times in PP2A 

phosphatase assay buffer (20 mM HEPES pH 7.2, 100 mM NaCl and 3 mM DTT) and 

finally resuspended in PP2A phosphatase assay buffer. Then immunoprecipitated 

phospho-Akt were reacted with recombinant active PP2A (BPS Bioscience, 30056) at 

30 °C for indicated time periods in the presence or absence of recombinant WT-Aldob 

or Aldob-R304A mutant. Dephosphorylation reactions were terminated by 6×SDS 

loading buffer and subjected to western blot analysis. 

 

Tissue microarray and Immunohistochemistry 

Immunohistochemistry was constructed on the tissue microarray (TMA) with a two-

step immunoperoxidase technique [59]. In short, tissues were fixed overnight in 4% 
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paraformaldehyde (PFA), then dehydrated in ethanol and embedded in paraffin. The 

paraffin-embedded tissue pieces were cut into 5-micron thick sections, which were 

stained with hematoxylin and eosin (H&E) and processed for IHC. For IHC, specimen 

sections were dewaxed, rehydrated in ethanol, and subjected to antigen extraction. 

Endogenous peroxidase activity was blocked with 0.3% hydrogen peroxide in methanol 

for 30 min. Sections were blocked by 2% BSA in PBS for 1 hour at 37 °C, and then 

incubated with the indicated primary antibody overnight at 4°C. After washing 3 times 

with PBS the next day, the samples were further incubated for 1 hour at 37 °C using the 

corresponding secondary antibodies. The slides were displayed by DAB staining. IHC 

slides and tissue microarrays were read using Vectra 2 (Perkin Elmer) to quantify 

protein expression in all samples. For tissue microarrays, protein expression intensity 

was stratified into negative, weak, moderate and strong. The scoring formula was (weak 

+ moderate + strong)/ (negative + weak + moderate + strong) × 100%. Representative 

images of different expression intensities of Aldob and p-Akt in HCC were shown in 

Fig 1B. For tissue IHC, IHC staining of tumor tissue was performed (IHC score = 

intensity × area). The intensity was graded as 0, negative; 1, weak; 2, moderate; and 3, 

strong. The staining areas of 0, 1-25%, 26-50%, 51-75% and 76-100% were 0, 1, 2, 3 

and 4, respectively. 

 

Statistical analysis 

All data are presented as the means ± standard errors of the mean from at least 3 

independent experiments. The survival curve was calculated according to the Kaplan-
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Meier method and differences were assessed by the Log-rank test. Differences between 

measurable variants of two groups were calculated by the unpaired Student’s t-test or 

2-way ANOVA using GraphPad Prism 5.0, and the value of p<0.05 was considered 

statistically significant. 

 

  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.09.141986doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.09.141986
http://creativecommons.org/licenses/by/4.0/


37 
 

Abbreviations 

HCC, Hepatocellular carcinoma; Aldob, Fructose-1, 6-bisphosphate aldolase B; p-

Akt, Phosphorylated Akt; PP2A, Protein phosphatase 2A; SMAP, Small molecule 

activator of PP2A; ERK, Extracellular signal-regulated kinase; PDK1, 

Phosphoinositide-dependent kinase 1; GSK-3, Glycogen synthase kinase-3; HK1， 

Hexokinase 1; EGF, Epidermal growth factor; TCA cycle, Tricarboxylic acid cycle; 

HFI, Hereditary fructose intolerance. 
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Fig 1. A negative correlation between Aldob and p-Akt expression in human HCC 

specimens. 

(A) Immunoblot (IB) analysis of whole cell lysates (WCL) derived from 10 pairs of 

human HCC tumors and matched adjacent nonmalignant tissues. (B) Representative 

Immunohistochemistry (IHC) staining images of Aldob and pT308-Akt from the same 

HCC patients on tissue microarray were shown (original magnification ×200). (C) The 

relative IHC score of Aldob and pT308-Akt from tissue microarray of 70 HCC patients 

was plotted and assessed by a linear regression analysis. (D and E) Overall survival of 

70 HCC patients grouped by high IHC score (≥50) or low IHC score (<50) of Aldob 

(D) or pT308-Akt (E) expression levels were conducted through the Kaplan-Meier 

analysis and Log-rank test. The number of patients at risk was listed below each curve. 

(F) Overall survival of 70 HCC patients grouped by different combination of Aldob 

and pT308-Akt levels were conducted through the Kaplan-Meier analysis and Log-rank 

test. The number of patients at risk was listed under each curve. 
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Fig 2. Aldob suppresses Akt phosphorylation and kinase activity. 

(A) IB analysis of WCL derived from conditional ALDOB KO and WT mouse primary 

hepatocytes. (B) IB analysis of WCL derived from liver tissues of ALDOB KO and WT 

mice after injection with DEN at post-natal day 14 to induce hepatocellular carcinoma 

for 10 months. (C) IB analysis of WCL derived from Huh7 and LM3 cells stably 

expressing Aldob via lentiviral infection (with Vector as a negative control). (D) IB 

analysis of WCL derived from Aldob-overexpressing Huh7 (Huh7-Aldob) cells 

transfected with indicated siRNAs (si-NC as a negative control). (E and F) IB analysis 

of WCL derived from Huh7-Aldob cells transfected with indicated siRNAs. Resulting 

cells were serum-starved for 24 hours and then stimulated with 0.1 μM insulin (E) or 

100 ng/ml EGF (F) at the indicated time before harvesting. (G) In vitro Akt1 kinase 

assay was conducted with recombinant GSK3α as a substrate and immunoprecipitated 

Akt1 from Huh7-Vector or Huh7-Aldob cells as the source of kinase. IgG was used as 

a negative control. 
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Fig 3. Aldob-mediated inhibition of Akt activity is required for Aldob-induced 

tumor-suppressive effects. 

(A) Huh7-Vector and Huh7-Aldob cells were treated with DMSO or MK2206 (2 μM) 

at the indicated time and cell viability was measured by CCK-8 assays. (B) Huh7-

Vector and Huh7-Aldob cells (5000 cells/well in 6-well plates) were cultured with or 

without MK2206 (2 μM) for 10 days before being fixed and stained. Representative 

graphs of cell colonies were shown. (C and D) Cells were treated with DMSO or 

MK2206 (2 μM) for 48 hours, and then monitored for cell cycle distribution by FACS 

(C) or subjected to IB analysis with the indicated antibodies (D). (E) Schematic 

presentation of 13C distribution in glycolysis and the first turn of the TCA cycle with 
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50% U-13C-glucose (labeled at all six carbons, red circles) and 50% 12C-glucose 

(unlabeled, black circles). G6P, glucose-6-phosphate; F1,6P, fructose-1,6-bisphosphate; 

G3P, glyceraldehyde-3-phosphate. (F and G) Fraction of the labeled metabolites of 

M+3 from 13C-glucose in glycolysis (F) and fraction of the labeled metabolites of M+2 

from 13C-glucose in TCA cycle (G) by DMSO or MK2206 (5 μM) treatment for 12 

hours in Huh7-Vector and Huh7-Aldob cells. (H-J) Huh7-Vector and Huh7-Aldob cells 

were injected subcutaneously into the flanks of nude mice, followed by treatment with 

Control solvent or MK2206 (n=6 mice). Representative tumor images (H), xenograft 

tumor weight (I) and tumor size (J) in each group were recorded. Data are presented as 

mean ± SEM. * p < 0.05; ** p < 0.01 (Student's t-test). 
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Fig 4. The direct interaction of Aldob with Akt is essential for Aldob to suppress 

Akt activity and HCC cell growth. 

(A) IB analysis of endogenous anti-Aldob and anti-Akt1 co-immunoprecipitations (co-

IP) and WCL derived from liver tissues of ALDOB KO and WT mice. IgG was used as 

a negative control. (B) IB analysis of anti-Akt1 and anti-Flag immunoprecipitation (IP) 

and WCL derived from Huh7 cells transfected with the indicated constructs and siRNAs. 

IgG was used as a negative control. (C) IB analysis of co-IP and WCL derived from 

Huh7 cells transfected with the indicated constructs. (D) GST pull-down analysis to 

demonstrate the direct interaction between recombinant proteins GST-Akt1 and His-

Aldob. Recombinant GST protein was used as a negative control. (E) IP analysis was 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.09.141986doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.09.141986
http://creativecommons.org/licenses/by/4.0/


53 
 

performed with WCL derived from Myc-Akt1 transfected Huh7 cells and recombinant 

protein WT-His-Aldob or their various His-Aldob mutants harboring a lysine or 

arginine to alanine mutation in the identified active site residues of Aldob. The Aldob 

enzyme activity in Aldob mutants relative to WT-His-Aldob were calculated (bottom). 

(F) IB analysis of WCL derived from Huh7 cells transfected with WT or R304A mutant 

form of Flag-Aldob constructs. (G-I) Huh7 cells transfected with the indicated 

constructs were used to determine their effects on cell proliferation (G), colony 

formation (H) and cell cycle distribution (I). Data are presented as mean ± SEM. * p < 

0.05; ** p < 0.01 (Student's t-test). 
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Fig 5. Aldob preferentially interacts with the phosphorylated species of Akt1.  

(A) IB analysis of anti-Flag IP and WCL derived from Huh7 cells transfected with the 

indicated constructs. T308A and S473A indicated that threonine at position 308 and 

serine at position 473 of Akt1 were replaced by alanine, respectively. (B and C) IB 

analysis of anti-Flag IP and WCL derived from Huh7 cells transfected with Flag-Aldob 

and Myc-Akt1. Resulting cells were serum-starved for 24 hours and then stimulated 

with 0.1 μM insulin (B) or 100 ng/ml EGF (C). At the indicated time points, WCL were 

harvested for Flag-IP and further for IB analysis (left). The relative intensity of Myc-

Akt1 immunoprecipitated by Flag-Aldob was quantified (right). (D) IB analysis of anti-

Flag IP and WCL derived from Flag-Aldob and Myc-Akt1 transfected Huh7 cells that 

were treated with DMSO or MK2206 (1 μM) for 24 hours before harvesting. 
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Fig 6. Aldob regulates Akt activity through protein phosphatase PP2A. 

(A and B) IB analysis of anti-Flag IP and WCL derived from Huh7 cells transfected 

with the indicated constructs. (C) GST pull-down assays were performed with WCL 

derived from Flag-PP2AC transfected Huh7 cells and recombinant proteins GST-Akt1 

and WT-Aldob or Aldob-R304A mutant. GST was used as the negative control. (D) In 

vitro PP2A dephosphorylation assays were performed with phosphorylated Myc-Akt1 

and active PP2A in the presence or absence of recombinant WT-Aldob or Aldob-R304A 

mutant (top). The relative signal intensities of pT308-Akt and pS473-Akt were 

quantified (bottom). (E) IB analysis of WCL derived from Huh7 cells transfected with 

the indicated constructs. Resulting cells were treated 4 hours with okadaic acid (OA) at 

100 nM. (F) IB analysis of endogenous anti-Aldob and anti-Akt1 IP and WCL derived 

from 2 pairs of human HCC samples. IgG was used as the negative control. 
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Fig 7. Activation of PP2A with SMAP potentiates Aldob-mediated tumor-

suppressive role.  

(A) Cell proliferation of Huh7-Vector and Huh7-Aldob cells in the presence of DMSO 

or SMAP (10 μM). (B) Representative graphs from colony formation assay of Huh7-

Vector and Huh7-Aldob cells after exposure to DMSO or SMAP (10 μM) for 14 days. 

(C) Huh7-Vector and Huh7-Aldob cells were treated with 10 μM SMAP for 24 hours 

and cell cycle distribution was monitored by FACS. (D) IB analysis of WCL derived 

from Huh7-Vector and Huh7-Aldob cells treated 20 hours with control DMSO or 

SMAP (10 μM). (E-G) Representative tumor images (E), xenograft tumor volume (F) 

and tumor weight (G) of Huh7-Vector and Huh7-Aldob xenograft tumors from control 

solvent and SMAP-treated nude mice (n=6 mice). Data are presented as mean ± SEM. 

* p < 0.05; ** p < 0.01 (Student's t-test). 
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Fig 8. A schematic model of Aldob-mediated negative regulation of Akt activation.  

In normal cells, Aldob interacts with Akt in an Akt kinase activity-dependent manner, 

which promotes phosphatase PP2A binding to p-Akt and results in p-Akt 

dephosphorylation. Aldob is involved in the intracellular homeostasis of Akt 

phosphorylation through modulating substrate/phosphatase interactions. In Aldob-

deficient cancer cells, downregulation of Aldob releases its negative regulation of Akt 

activity, leading to constitutive activation of oncogenic Akt signaling which facilitates 

cell cycle progression and increases metabolic flux to glycolysis and TCA cycle for 

cancer cell proliferation and tumorigenesis. Targeting hyperactive Akt through directly 

inhibiting Akt activity or reactivating PP2A phosphatase activity may be a viable 

therapeutic approach to treat Aldob-deficient human cancers. Bold arrows represent up-

regulation of indicated signaling events in response to the absence of Aldob. 
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Supporting information 

 

S1 Fig. Forced expression of Akt in Aldob-overexpressing cells eliminates Aldob-

mediated tumor-suppressive effects. 

(A) Cell viability assay of Huh7-Vector and Huh7-Aldob cells transfected with Myc-

Ctrl or Myc-Akt1 constructs. (B) Representative graphs from colony formation assay 

of Huh7-Vector and Huh7-Aldob cells after transfection with Myc-Ctrl or Myc-Akt1 

for 7 days. (C and D) Cells were transfected with Myc-Ctrl or Myc-Akt1 for 48 hours, 

and then monitored for cell cycle distribution (C) or subjected to IB analysis (D). (E) 
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Representative IHC images and quantification of Ki67 expression in Huh7-Vector and 

Huh7-Aldob xenograft tumors treated with control solvent or MK2206 (n=6). Scale 

bars, 50 μm. (F) IB analysis of WCL derived from Huh7-Vector and Huh7-Aldob 

tumors treated with control solvent or MK2206. (G) The body weights of mice in Fig 

3H were recorded. Data are presented as mean ± SEM. * p < 0.05; ** p < 0.01 (Student's 

t-test). 
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S2 Fig. Inhibition of Akt kinase activity is essential for Aldob-induced anti-tumor 

effects.  

(A-D) Aldob-overexpressing Huh7 cells transfected with indicated siRNAs were used 

to determine their effects with or without MK2206 treatment (2 μM) on cell 

proliferation (A), colony formation (B), cell cycle distribution (C) and cell cycle-related 

protein levels (D). (E and F) Fraction of the labeled metabolites of M+3 from 13C-

glucose in glycolysis by DMSO or MK2206 (5 μM) treatment for 12 hours in Huh7-
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Aldob cells transfected with indicated siRNAs. (G and H) Fraction of the labeled 

metabolites of M+2 from 13C-glucose in TCA cycle by DMSO or MK2206 (5 μM) 

treatment for 12 hours in Huh7-Aldob cells transfected with indicated siRNAs. Data 

are presented as mean ± SEM. * p < 0.05; ** p < 0.01 (Student's t-test). 
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S3 Fig. Aldob inhibits HCC cell growth through suppression of Akt signaling.  

(A-D) LM3 cells stably expressing Aldob via lentiviral infection (with Vector as a 

negative control) were used to examine their biological functions in the presence of 

either control DMSO or MK2206 (2 μM), including cell proliferation (A), colony 

formation (B), cell cycle distribution (C) and the protein levels of Akt pathway (D). (E) 

Co-IP analysis to demonstrate the interaction between exogenous Aldob and 

endogenous Akt1 in LM3-Aldob cells. Data are presented as mean ± SEM. * p < 0.05; 

** p < 0.01 (Student's t-test). 
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S4 Fig. Aldob directly interacts with Akt to inhibit Akt activity. 

(A) Co-IP assay to show that Akt2 interacted with Aldob in Huh7 cells at ectopic 

expression conditions. (B) IP analysis was performed with WCL derived from Myc-

Akt1 transfected Huh7 cells and various truncated mutants of recombinant His-Aldob 

proteins to illustrate that the C-terminal region (a.a. 241-364) of Aldob is responsible 

for Akt1-binding. 
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S5 Fig. PP2A activation with SMAP reduces Akt phosphorylation and suppresses 

HCC cell growth.  

(A) IB analysis of WCL derived from Huh7 and LM3 cells treated with SMAP for 24 

hours at the indicated concentrations. (B) Relative cell viability of Huh7 and LM3 cells 

treated with increasing concentrations of SMAP for 48 hours. (C) The body weights of 

mice in Fig 7E were recorded. (D) IB analysis of WCL derived from Huh7-Vector and 

Huh7-Aldob tumors treated with control solvent or SMAP. (E) Representative IHC 

images and quantification of Ki67 expression in Huh7-Vector and Huh7-Aldob 

xenografts treated with control solvent or SMAP (n=6). Scale bars, 50 μm. Data are 

presented as mean ± SEM. * p < 0.05; ** p < 0.01 (Student's t-test). 
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S1 Table. Association of clinicopathological characteristics with Aldob and p-Akt expression in HCC patients (n=70). 

AFP: Alpha-fetoprotein. ALT: Alanine aminotransferase. AST: Aspartate aminotransferase. PT: Prothrombin time. Aldob and p-Akt expression were defined as 

staining intensity. Protein expression intensity was classified into negative, weak, moderate, strong. The score calculation formula: (weak + moderate + strong)/ 

(negative + weak + moderate + strong) × 100%. Aldob and p-Akt expression score >50% are high, expression score <50% are low. * p <0.05 by χ2 test. 

 

Variable 

Aldob (total n=70)  pT308-Akt (total n=70)  

Low expression (n=34) High expression (n=36) p Low expression (n=38) High expression (n=32) p 

Background       

Male 32 (94.1%) 35 (97.2%) .522 37 (97.4%) 30 (93.8%) .456 

Age (y) 46.0 ± 8.4 47.0 ± 10.0 .652 46.0 ± 9.5 47.1 ± 9.0 .161 

HBsAg 33 (97.1%) 34 (94.4%) .589 37 (97.4%) 30 (93.8%) .456 

HBeAg 15 (44.1%) 11 (30.6%) .241 14 (36.8%) 12 (37.5%) .955 

Anti-HBcAg 33 (97.1%) 35 (97.2%) .967 36 (94.7%) 32 (100.0%) .188 

HBV-DNA (× 104/mL) 15.5 (0.0, 32000.0) 12.5 (0.0, 2500.0) .199 14.0 (0.0, 3200.0) 11.5 (0.0, 1400.0) .478 

Liver cirrhosis 34 (100.0%) 35 (97.2%) .328 37 (97.4%) 32 (100.0%) .355 

AFP (ng/mL) 1067.4 (1.8, 1210.0) 54.2 (2.0, 1210.0) .000* 230.8 (1.8, 1210.0) 292.7 (2.7, 1210.0) .580 

Liver function       

ALT (IU/L) 42.5 (18.0, 145.0) 41.0 (17.0, 320.0) .370 42.5 (19.0, 320.0) 39.5 (17.0, 83.0) .203 

AST (IU/L) 42.5 (19.0, 160.0) 35.5 (20.0, 172.0) .452 39.5 (19.0, 172.0) 40.5 (20.0, 120.0) .326 

Total bilirubin (μmol/L) 13.4 (5.3, 626.5) 12.2 (5.4, 384.1) .961 12.3 (5.3, 626.5) 14.6 (6.4, 384.1) .651 

Albumin (g/L) 41.3 (34.6, 49.3) 43.0 (37.1, 53.4) .036* 41.2 (34.6, 53.4) 42.8 (34.9, 49.8) .356 

PT (s) 12.1 (10.8, 15.3) 12.1 (10.4, 15.3) .156 12.3 (11.0, 15.3) 11.8 (10.4, 13.3) .001* 

Tumor Factors       

Tumor size (cm) 7.5 (1.0, 17.0) 6.0 (2.0, 13.0) .166 6.0 (1.0, 17.0) 7.5 (2.0, 15.0) .507 

No. tumor 29 (85.3%) 32 (88.9%) .579 37 (94.7%) 25 (78.1%) .039* 

Macro-vascular invasion 4 (11.8%) 6 (16.7%) .558 5 (13.2%) 5 (15.6%) .769 

Pathologic factors       

Tumor capsule 7 (20.6%) 12 (61.1%) .001* 20 (52.6%) 9 (28.1%) .038* 

Micro-vascular invasion 18 (52.9%) 12 (33.3%) .098 17 (44.7%) 13 (40.6%) .729 

Differentiation (III) 29 (85.3%) 24 (66.7%) .069 28 (73.7%) 25 (78.1%) .666 

Recurrence (month) 6.7 (1.0, 35.0) 15.8 (1.0, 35.6) .038* 15.1 (1.0, 35.6) 5.7 (1.0, 35.2) .236 

Overall survival (month) 20.8 (1.3, 35.6) 26.7 (5.1, 36.3) .016* 25.7 (5.1, 36.3) 19.8 (1.3, 35.2) .029* 
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