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Understanding a complex microbial ecosystem such as the human gut microbiome requires infor-
mation about both microbial species and the metabolites they produce and secrete. These metabo-
lites are exchanged via a large network of cross-feeding interactions, and are crucial for predicting
the functional state of the microbiome. However, till date, we only have information for a part of this
network, limited by experimental throughput. Here, we propose an ecology-based computational
method, GutCP, using which we predict hundreds of new experimentally untested cross-feeding in-
teractions in the human gut microbiome. GutCP utilizes a mechanistic model of the gut microbiome
with the explicit exchange of metabolites and their effects on the growth of microbial species. To
build GutCP, we combined metagenomic and metabolomic measurements from the gut microbiome
with optimization techniques from machine learning. Close to 65% of the cross-feeding interactions
predicted by GutCP are supported by evidence from genome annotation; we provide these predic-
tions for experimentally testing. Our method has the potential to greatly improve existing models
of the human gut microbiome, as well as our ability to predict the metabolic profile of the gut.

The gut microbiome plays an important role in human
health, and the ability to manipulate it holds immense
potential to prevent and treat multiple diseases1–8. The
microbiome comprises not only of hundreds of microbial
species, but also hundreds of metabolites that they con-
sume and secrete: a phenomenon called cross-feeding9,10.
These metabolites — through which gut microbes in-
teract with each other — mediate inter-species interac-
tions and can even directly impact the host11–14. Indeed,
metabolite levels in the gut are often more predictive of
host health than species levels11,15,16. Therefore, devel-
oping a complete understanding of both the human gut
microbiome together with the metabolome is necessary
to positively control and manipulate human health.

A promising framework to realize such an understand-
ing is a fully mechanistic model of the microbiome17–20,
which can connect the levels of microbial species and
metabolites with each other quantitatively. An essen-
tial first step in building this model is establishing
which metabolic interactions are relevant in the hu-
man gut microbiome18,20–22. Indeed, inferring cross-
feeding interactions is an active and important field
of microbiome research, and employs both direct9,23–25

and indirect11,26–29 inference methods. Direct meth-
ods, which comprise experimental verification of the
metabolic activity of gut microbes, are slow, require
painstaking effort, and thus miss many relevant interac-
tions (i.e., they are incomplete). Indirect methods, which
chiefly comprise inferring the metabolic activity of gut
microbes from their genome sequences, are noisy, lack
curation and vastly overestimate relevant cross-feeding
interactions (i.e., they are “beyond complete”)30–32. We
thus need new methods that represent the middle ground

between direct and indirect methods. Specifically, we
need methods that can use the directly-inferred but in-
complete interactions as a “bootstrap”, allowing one to
filter out the indirectly-inferred but noisy ones. We be-
lieve that ecological consumer-resource models provide
the means to perform this bootstrapping and predict new
and ecologically sound cross-feeding interactions. More-
over, we believe that these methods can benefit from ad-
vances in machine learning33,34, which is effective at iden-
tifying patterns in known data and using them to make
new predictions.

Here, we propose GutCP, short for Gut Cross-feeding
Predictor: a new, general, and ecology-guided method
to infer and predict cross-feeding interactions in the hu-
man gut microbiome. GutCP combines machine learn-
ing techniques33,34 with an ecological model of the micro-
biome. The ecological model is effective at bootstrapping
previously-known direct interactions and estimating the
metabolic environment of the gut in agreement with ex-
perimental measurements20. GutCP uses these estimates
as a leverage to predict new cross-feeding interactions.
The machine learning techniques that GutCP employs
help optimize and curate the process of inferring new
interactions. We find that close to 65% of the interac-
tions we predict are supported by the available genomic
evidence. Our predictions can be easily tested by sim-
ple experiments, and have the potential to enable a fully
mechanistic understanding of the human gut microbiome
going beyond the analysis of correlations between species
and metabolites.
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FIG. 1. Overview of the GutCP algorithm. a, Schematic of the original set of known cross-feeding interactions (top) and
bar plot of the prediction error for each metabolite and microbe (bottom). The cross-feeding interactions are represented as a
network, whose nodes are either metabolites (cyan circles) or microbial species (orange ellipses), and directed links represent
abilities of different species to consume (red arrows) and produce (blue arrows) individual metabolites. b, GutCP adds a new
consumption link (red) and production link (blue) as added links reduce the prediction errors for metabolites and microbes.

RESULTS

Overview of the GutCP algorithm. Our approach
uses the idea that we can leverage cross-feeding interac-
tions — which comprise knowing the metabolites that
each microbial species is capable of consuming and pro-
ducing — to mechanistically connect the levels of mi-
crobes and metabolites in the human gut. Several dif-
ferent mechanistic models in past studies have shown
that this is indeed possible18,20,29,35,36. While GutCP
is generalizable and can be used with any of these mod-
els, in this manuscript, we use a previously published
consumer-resource model20. We use this model because
of its context and performance: it is built specifically for
the human gut, and is best able to connect the experi-
mentally measured species composition of the gut micro-
biome with its resulting metabolic environment, or fecal
metabolome. To predict the metabolome from the micro-
biome, it relies on a manually-curated set of known cross-
feeding interactions9. It then uses these known interac-
tions to follow the step-wise flow of metabolites through
the gut. At each step (ecologically, at each trophic level),
the metabolites available to the gut are utilized by mi-
crobial species that are capable of consuming them, and
a fraction of these metabolites are secreted as metabolic
byproducts. These byproducts are then available for con-
sumption by another set of species in the next trophic
level. After several such steps, the metabolites that are
left unconsumed constitute the fecal metabolome.

We hypothesized that adding new, yet-undiscovered
cross-feeding interactions would improve our ability to

connect the levels of microbes and metabolites with our
mechanistic and causal model. Specifically, we predict
that the set of undiscovered links resulting in the most
accurate and optimal connection would be the most likely
candidates for new cross-feeding interactions. Inferring
such an optimal set of new cross-feeding interactions
is the main logic driving GutCP. In what follows, we
sometimes refer to cross-feeding interactions as “links” in
an overall cross-feeding network of the gut microbiome,
whose nodes are microbes and metabolites (Fig. 1a;
metabolites in blue, microbes in orange); the links them-
selves are directed edges connecting the nodes. Links can
be of two types: consumption links (from nutrients to
microbes) and production links (from microbes to their
metabolic byproducts).

The salient aspects of our method are outlined in Fig.
1. Briefly, we start with the known set of cross-feeding
interactions which were originally used by the model;
these links are known from direct experiments, and rep-
resent a ground truth dataset9. These are shown in Fig.
1a through the pink and blue arrows connecting nutri-
ents 1 through 6 with microbes a through c. For each
sample, using only the species abundance from the mi-
crobiome, we use the model to quantitatively estimate
the microbiome’s species and metabolomic composition.
For each metabolite and microbial species, there can
be two kinds of prediction errors, or biases: individual
(sample-specific difference between predicted and mea-
sured levels) and systematic (average difference across
all samples). We focused on the “systematic bias” for
each metabolite and microbial species: the average de-
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viation of the predicted levels from the measured levels
across all samples in our dataset (Fig. 1a, bottom). The
systematic bias for each metabolite and microbe tells us
whether our model generally tends to predicts their level
to be greater than observed (over-predicted), less than
observed (under-predicted), or neither (well-predicted).
We assume that metabolites and microbes with a large
systematic bias are most likely to harbor missing inter-
actions. We prioritize adding links to them in proportion
to their systematic biases.

After measuring the systematic bias for each metabo-
lite and microbe, GutCP proceeds in discrete steps (Fig.
1a–b). At each step, we attempt to add a new link to
the current cross-feeding network. We accept this link
— keeping it in the current network — if it leads to an
overall improvement in the agreement between the pre-
dicted and measured levels of microbes and metabolites.
We repeat the process of adding new links — accepting or
rejecting them — until the improvements in the levels of
metabolites and microbes became insignificant. Overall,
GutCP can add several links to improve the agreement
between the predicted and measured levels of microbes
and metabolites (in Fig. 1a-b, bottom, adding the extra
red and blue link at the top results in improved predic-
tions for metabolite 1, metabolite 3, and microbe b). Fig.
2a shows how the cross-feeding network improves over a
typical GutCP run via the red trajectory, starting from
the original network (Fig. 2a, top left) to the a final net-
work state (Fig. 2a, bottom right). Trajectories from 100
other runs are shown in grey. GutCP repeatably reduces
both the error of the metabolome predictions (y-axis;

measured as log10( pred−meas
measurement )) and improves the corre-

lation between the predicted and measured metabolomes
(x-axis).

Cross-validating the newly predicted interactions.
To test if the cross-feeding interactions predicted by
GutCP are generalizable to unknown datasets, we per-
formed 4-fold cross-validation. As a proof-of-concept,

metabolome log # of pred

pred − exp error metabolites

original set 0.61 0.89 17
training set 0.72 ± 0.03 0.54 ± 0.02 30 ± 3

test set 0.68 ± 0.04 0.59 ± 0.04 30 ± 3

TABLE I. Cross-validating the newly predicted inter-
actions. Table showing the performance of the ecological
cross-feeding model with the original set of interactions, and
with the additional interactions predicted by GutCP (both
the training and test set performances; see main text). Per-
formance is measured using three metrics: (1) the corre-
lation between the predicted and experimentally measured
metabolome, (2) the log error (see main text), and (3) the
number of metabolites in the measured metabolome predicted
by our ecological consumer-resource model. Values indicate
mean for (1) and (2), and median for (3); errors, where shown,
indicate standard deviation.

FIG. 2. Improvement in predictions using GutCP. a,
Improvement in log error (log10( pred−meas

measurement
)) and correlation

between the prediction and measured fecal metabolome dur-
ing 100 typical runs of the GutCP algorithm. The red point
at the top left indicates the performance of the original cross-
feeding network of Ref.9, and the pink points at the bottom
right, that of improved networks predicted using GutCP. A
trajectory example, highlighting how performance improves
over a GutCP run, is shown in red, and others are shown
in grey. b, Rarefaction curve showing the number of unique
cross-feeding interactions discovered by GutCP over 100 runs
of the algorithm. c, Prevalence of links, i.e., the number of
GutCP runs in which they repeatedly appeared (red dots; to-
tal 100 runs) and for comparison, a corresponding binomial
distribution with the same mean (black dotted line).

we used a sample dataset of the gut microbiome and
metabolome sampled from 41 human individuals, com-
prising 221 metabolites and 72 microbial species. We
split our sample dataset of 41 individuals into 4 groups,
each with 10 individuals (with one exception having 11
individuals). We then ran GutCP to predict cross-feeding
interactions four times, each time by using 3 groups to
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train the method and find new links (forming the training
set), and 1 group to test the model’s performance using
the newly predicted links (forming the test set). Finally,
we averaged the model’s performance on both the train-
ing and test sets to get an estimate of the model’s train-
ing and test performance, respectively. This is a standard
procedure in machine learning to minimize over-fitting.

We found that both the training and test set perfor-
mances after using the links predicted by GutCP were
significantly better than the baseline given by the orig-
inal cross-feeding network (Table 1). Specifically, both
measures of model performance, namely the logarithmic
error and the average correlation, improved by 64% and
20%, respectively, after adding GutCP’s predicted inter-
actions. Additionally, the test set performance was com-
parable to the training set performance (6% difference;
Table 1). This suggests that the cross-feeding interac-
tions inferred by GutCP are not likely to be a result of
over-fitting.

Building a consensus-based atlas of predicted cross-
feeding interactions. Having confirmed that GutCP is
unlikely to over-fit data, we pooled the entire sample
dataset of 41 individuals and ran 100 independent in-
stances of our prediction algorithm on it; we verified that
incorporating more instances did not qualitatively affect
our results (Fig. 2b shows a rarefaction curve, which
highlights the number of new links discovered by GutCP
as we perform more runs the algorithm). Each run of
the algorithm resulted in an average of 140 newly pre-
dicted cross-feeding interactions. Then, based on con-
sensus from many runs, we assigned a confidence level
to each predicted interaction, namely what fraction of
GutCP runs it was discovered in. By calculating a null
distribution (Fig. 3c, black), which predicts the fraction
of GutCP runs where a random link would be discovered
by chance, we assigned a P value to each link, and set a
threshold at P = 10−3 (Fig. 3c, red; see Methods for de-
tails). Doing so finally resulted in a complete consensus-
based atlas of 293 predicted cross-feeding interactions,
which we have provided as a resource for experimental
verification in supplementary table 1. Fig. 3a shows a
condensed version of these interactions obtained from the
simulation with the best performance (the trajectory ex-
ample in Fig. 2a with the lowest log error and highest
correlation coefficient) in the form of a matrix; specif-
ically, newly added interactions are in dark colors, and
old interactions in faded colors. Fig. S3 shows a complete
version of this matrix. Note that some of the predicted in-
teractions in Fig. 3a are unrealistic, e.g., the production
of certain sugars like D-Fructose and D-Sorbitol. Such
interactions are unlikely to be predicted in repeated sim-
ulations, and thus will not be part of the final consensus
set. This illustrates the power of pooling results from
several simulations to arrive at a set of highly probable
predictions.

A network visualization of the complete consensus-
based atlas of 293 predicted cross-feeding interactions is

shown in Fig. 3b. Fig. 3b also shows that the net-
work of new interactions have 2 clear type of bacteria:
on the left are “producers” and on the rights are “con-
sumers”. Bacteroides, Ruminococcus and Bifidobacteria
are known byproduct producers in the gut microbiome,
and as expected, GutCP predicted more production links
for species in these genera14,37–39. Consumers, on the
other hand (right of Fig. 3b), typically occupy the lower
trophic levels, and our model originally under-predicted
their abundances. Reasonably, GutCP added several new
consumption links to them, allowing these species in-
creased growth and accurately-predicted abundances. Fi-
nally, some metabolites, like amino acids (e.g., L-Alanine,
L-Tyrosine, and L-Asparagine), short chain fatty acids
(e.g., propanoate, valerate, and butyrate) were predicted
by GutCP to be mostly produced, not consumed, consis-
tent with the literature39,40.

Large-scale effects and patterns observed in the hu-
man gut microbiome. Equipped with our set of pre-
dicted cross-feeding interactions, we examined the ex-
tent to which they affected and improved our model’s
predictions of the microbe and metabolite levels in the
human gut microbiome. We found this improvement in-
deed significant. For a representative example, see Fig.
4a–d. Here, each panel compares the levels of microbes
(Fig. 4a–b) or metabolites (Fig. 4c–d) predicted by the
model (x-axis) with the experimentally measured levels
(y-axis); the closer a point is to the marked line (indicat-
ing an exactly correct prediction), the better our predic-
tive power. Even by visual inspection, one can see that
the newly predicted interactions bring the points much
closer to the line of correct predictions.

By adding new cross-feeding interactions, GutCP not
only improves our ability to predict the metabolome, but
also nearly doubles the number of metabolites whose lev-
els we could predict (roughly 30 metabolites, in con-
trast with 17 with the original interactions; see Table
1). GutCP allows microbes to produce new metabolites
that were missing from the original set of cross-feeding
interactions. These new metabolites were indeed part
of the experimentally measured metabolomes for these
samples, and we found that we could predict their levels
with comparable accuracy (compare Fig. 4d with Fig.
4c). Similarly, GutCP increased the number of microbial
species whose levels we could predict. This was espe-
cially true of those microbial species, which could not
grow given the original interactions (left-most points in
Fig. 4a). By inferring the appropriate consumption links
for these species, GutCP could also predict their levels
correctly (in Fig. 4b, the left-most points moved close to
the line of exact predictions).

Because our model mechanistically connects the abun-
dances of microbes and metabolites, we next sought to
understand how GutCP enabled such an improvement in
the model’s performance. We did this by comparing the
change in the prediction error (or systematic bias) of each
metabolite (Fig. 4e, white background; blue boxes indi-
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FIG. 3. New cross-feeding interactions predicted by GutCP. a, Concise matrix representation of the improved cross-
feeding network of the gut microbiome predicted by GutCP (the trajectory example in Fig. 2a with the best performance). The
rows are metabolites, and columns, microbial species. Faded cells represent the original, known set of cross-feeding interactions,
both production (light blue), consumption (light red) and bidirectional links (grey). The new cross-feeding interactions predicted
by GutCP are shown in dark colors: production links in dark blue, consumption links in dark red, and bidirectional links in
black. b, Network of 293 new links predicted by GutCP (P value < 10−3) during 100 independent simulations. Blue nodes
represent metabolites, orange are bacteria as in Fig. 1. The size of each node represents its degree. The color of the links
is the same as in (a), while the color intensity and link thickness are proportional to the link’s confidence, or P value. For
bidirectional links, we represent the direction as that of the link with the smaller P value.

cate the original predictive error, and red boxes indicate
the predictive error after adding GutCP’s predictions)
with the links that were added for each metabolite (Fig.
3).

We found that the newly predicted interactions had
both direct and indirect effects on metabolite levels, and
these were crucial for accurate prediction. By direct ef-
fects, we mean the following: if a systematically over-
predicted (or under-predicted) metabolite was fixed by
GutCP by inferring that a new microbe could consume
(or produce) it, this new consumption (or production)
link had a direct role in that metabolite’s accurate pre-
diction. For instance, we noticed that originally, sper-
midine was over-predicted (Fig. 4e, spermidine in blue);
GutCP inferred a new consumption interaction (by Ru-
minococcus obeum; Fig. 3), and this corrected the sper-
midine level in the metabolome (Fig. 4e, spermidine in
red), leading to a direct accurate prediction. Similarly,
the amino acid lysine was under-predicted, which was
fixed due to GutCP inferring a new production link (by

Blautia hansenii ; Fig. 3). Sometimes, a metabolite’s
under- or over-prediction was fixed as a result of GutCP
inferring multiple consumption or production links by
several different microbial species in tandem (such as
for putrescine, for which GutCP inferred 3 consumption
links; Fig. 3). With only a subset of the inferred links,
the levels of such metabolites still remained under- or
over-predicted. Strikingly, we also observed several indi-
rect effects of GutCP’s predictions. By indirect effects,
we mean that some under- or over-predicted metabolite
levels were corrected, even though GutCP inferred no
new link to consume or produce it. Instead, the lev-
els were corrected due to the cascading nature of cross-
feeding, where the production or consumption of other
metabolites by the microbiome could affect the growth of
microbes consuming or producing a particular metabo-
lite, thereby indirectly affecting its levels. For example,
GutCP inferred no new consumption or production links
for 5-Aminovalerate (Fig. 3), but adding other links
(such as the consumption of putrescine by Clostridium
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FIG. 4. The effects of GutCP’s predicted interactions on the gut microbiome and metabolome. (a–d) Each
panel compares the levels of microbial species (a and c; blue) or metabolites (b and d; orange) predicted by our ecological
consumer-resource model (x-axis) with the experimentally measured levels (y-axis); the closer a point is to the marked line
(indicating an exactly correct prediction), the better our predictive power. The predictions using the original, known set of
cross-feeding interactions are on the left, and using the additional cross-feeding interactions predicted by GutCP are on the
right. e, Box plot showing the improvement in prediction error of each metabolite in the fecal metabolome. Predictions errors
using the original cross-feeding network are in blue, and those with added interactions predicted by GutCP are in red. Central
bars indicate median, boxes and whiskers indicate quartiles, and diamonds indicate outliers beyond the 1.5 inter-quartile range.
Metabolites for which GutCP improved predictions highly are shown in solid bold colors for illustration; those with faded colors
represent modest improvements. The shaded grey part of the plot shows new metabolites whose levels GutCP helped predict,
but the original cross-feeding network could not.

difficile) that simultaneously boosts the growth of mi-
crobes that produce it, helped solve its original under-
prediction. Note that interactions such as these can only
be inferred by causal and mechanistic models; this is be-
cause they alone can find such emergent, indirect effects
of the microbiome on the metabolome.

Validating the predicted interactions using evidence
from genome sequences. The full set of the interac-
tions we predicted here (293) is quite large, which is why
we provide them as a resource to guide experimental ef-
forts in building a more complete list of cross-feeding
interactions. While the experimental verification of our
predictions is outside the scope of this study, we provide
evidence suggesting that our predicted interactions are
indeed consistent with the evidence from genome-scale
metabolic networks28,29,41, which annotates metabolic
capabilities directly from genome sequences, but vastly
overestimates the number of cross-feeding interactions.
To validate the interactions predicted by our algorithm,
we calculated the fraction of predicted interactions that
were also predicted by sequence based methods (see
Methods for details). As a control, we asked: if our pre-
dicted interactions were essentially random, what frac-
tion of GutCP’s predictions would still be present in the
genome-based predictions? We found that 65% of our
predicted interactions were also predicted by genome-

based predictions, much higher than expected by chance
(controls had ∼ 20%; binomial test, P value 2 × 10−8).
This strongly suggests that GutCP’s predicted interac-
tions not only have ecological and biological relevance,
but are also consistent with genome annotation results.

DISCUSSION

Inferring ecological interactions is crucial to build-
ing a mechanistic understanding of microbial commu-
nities microbiomes42. To date, studies that have at-
tempted this have focused on inferring species-species
interactions43–45. Although knowledge of species-species
interactions can be used to predict the possibility of
coexistence between microbial species, the interactions
themselves are dynamic and depend on environmental
conditions46,47. This makes them difficult not only to
verify, but also to make subsequent predictions with.
Here, we have taken an alternative, but more power-
ful and mechanistic approach: that of inferring species-
metabolite interactions (or cross-feeding interactions),
which (1) subsume inter-species interactions, (2) no
longer depend on environmental conditions, and (3) are
simpler to experimentally verify. The new cross-feeding
interactions predicted in this paper are a direct reflection
of the metabolic capabilities of different microbial species
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and are thus easier to test through experiments. Our ap-
proach is grounded in a mechanistic model of the gut
microbiome20, which allows reliable causal inference be-
tween the metagenome and metabolome, compared with
alternatives that depend merely on correlations between
microbes and metabolites11,48–50.

Using our algorithm, GutCP, we have provided here
an atlas of 293 high-consensus cross-feeding interactions
between 72 prominent gut microbial species and 221 gut
metabolites. Given the general and broad applicability of
GutCP, we anticipate that the access to a larger number
of experimental measurements of the gut metagenome
and metabolome will help complete the inference of all
relevant ecological metabolite-driven interactions in the
microbiome. This is because GutCP helps to narrow
down and pinpoint those interactions that are most likely
to be present, and this is crucial because the number
of possible cross-feeding interactions in the gut is ex-
tremely large (∼ 30, 000)29,41; sampling all possible inter-
actions requires extremely high-throughput experimental
tests, far beyond the scope of what is currently possible.
Further, genome-based metabolic network reconstruction
methods are noisy, and tend to predict more than 10,000
total interactions29,41, tens of times more than the ecolog-
ically relevant number of interactions in the gut9. With
the proof-of-concept dataset that we used here, GutCP
was able to narrow down this list from 30,000 to about
300, resulting in a 100-fold reduction of the required ex-
perimental throughput. We found that 65% of our pre-
dicted interactions were supported by the available ge-
nomic evidence. While this is still a large number of
experimental tests to perform, the complete table of pre-
dictions should serve as a resource guiding future exper-
imentally tractable ecological inference in the gut micro-
biome.

Even though at first glance, GutCP appears similar
to gap-filling during flux-balance analysis (FBA)28,29,41,
there are fundamental differences between these two
methods, and both solve very different problems using
very different datasets. Gap-filling infers intra-cellular
metabolic reactions required for growth of a single mi-
crobial species in a particular medium; for this, it uses
microbial growth data in specific media. In contrast,
our algorithm infers extra-cellular, cross-feeding interac-
tions required to better predict the levels of several mi-
crobial species and metabolites simultaneously; for this,
it uses a small set of simultaneous measurements of gut
metagenomes and metabolomes. One can think of our
method as a community-level gap-filling: where each
microbial species is effectively a net chemical reaction,
and new cross-feeding interactions add new links between
species.

GutCP also stands in contrast with previous
correlation-based studies to infer microbe-microbe51–55

and microbe-metabolite associations11,48–50. While these
approaches are model-free and easy to compute, they lack
any mechanistic understanding of the microbiome, and
can thus cannot distinguish between direct and indirect

effects of metabolites on microbes. Because of its ex-
plicit mechanistic and ecology-guided approach, GutCP
can more naturally tell which microbe-metabolite inter-
actions indicate a direct versus an indirect association
(see the examples in the Results section). Collectively,
this work advances the field of integrative multi-omics, by
suggesting a new way to integrate two -omics measure-
ments (metagenomics and metabolomics) through causa-
tion, not merely correlation.

METHODS

Datasets. Throughout this study, we used a previously published
dataset of simultaneous gut metagenome and fecal metabolome
measurements from 41 human individuals56; this dataset was used
as a proof-of-concept, and was identical to the dataset used to
calibrate the ecological consumer-resource model of the gut micro-
biome in this study (see Wang et al20 for the complete description of
the model and how we processed the dataset). Briefly, the dataset
measured 16S rRNA OTU abundances for gut metagenome mea-
surements, and CE-TOF mass spectrometry for quantitative fecal
metabolome profile measurements. For the original, known set of
cross-feeding interactions, we used a previously published database
of experimentally verified and manually curated cross-feeding inter-
actions, created specially for human gut microbiome studies9. We
mapped the species in this database to the species in our experi-
mental dataset as described previously in Wang et al20. To com-
pare our predicted interactions with genome-scale metabolic net-
works, we obtained semi-automatically reconstructed genome-scale
metabolic models from Garza et al29; this dataset had over 1,500
genome-scale metabolic models, but we only used those models that
mapped to the 72 species and 221 metabolites in our dataset.

GutCP algorithm. GutCP uses both a previously published eco-
logical consumer-resource model and machine learning optimiza-
tion techniques. The ecological model we used in this manuscript
was a previously published model that we developed, namely a
trophic model of the human gut microbiome20. Our trophic model
follows the discrete and stepwise flow of metabolite consump-
tion and subsequent byproduct generation by microbial species in
the gut. By knowing which species consume and produce which
metabolites, this model can predict the fecal metabolome with rel-
atively high accuracy. Originally, we used the set of consumption
and production abilities of each microbial species from a manually
curated database, as described above. GutCP assumes that we can
discover, infer and predict new cross-feeding interactions in the gut
that are not present in the manually-curated database by identify-
ing that set of new interactions that further improve our estimate
of the fecal metabolome. GutCP proceeds in discrete time steps,
where each step resembles a Markov Chain Monte Carlo (MCMC)
optimization method33, but with a few key differences. GutCP
consists of five major steps, detailed as follows.

Step 1: Setup, and measuring systematic biases. We start
with an initial cross-feeding network, derived from the manually-
curated database of interactions in the gut microbiome. We use our
consumer-resource model with this original network on our dataset,
and generate a set of metabolome estimates. We then calculate a
systematic bias, bi, for each metabolite and microbe predicted by
the model, namely the difference between the predicted and exper-
imentally measured levels, averaged over all samples in the dataset,
as follows:

bi =
1

Ns

Ns∑
α=1

(log10(pα,i)− log10(mα,i)), (1)

where pα,i and mα,i represent the predicted levels and experimen-
tally measured levels, respectively, for sample α and microbe or
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metabolite, i. Ns = 41 is the number of samples in the dataset.
We measure bias in logarithmic units to estimate the average or-
der of magnitude of the bias. A large, positive bias indicates a
systematic over-prediction, and a large, negative bias, a systematic
under-prediction.

Step 2: Calculating priors and proposing a new link. GutCP
then uses the initial systematic bias measurements to calculate a
likelihood of missing links for a particular metabolite or microbial
species. It assigns this likelihood by considering the magnitude
and sign of the systematic bias for each microbe and metabolite.
Specifically, it assigns the probability Pcon

i,j , that species i consumes

metabolite j, if species i is under-predicted and/or if metabolite j
is over-predicted, as follows:

Pcon
i,j ∝ e−3·(bi−bj) + κ, (2)

where bi and bj are the systematic biases of species si and metabo-
lite j measured using equation (1), and κ = 0.1 is an arbitrarily
chosen constant to ensure the addition of indirect cross-feeding in-
teractions that do not depend on the levels of i and j specifically.
Similarly, GutCP assigns the probability Ppro

i,j , that species i pro-
duces metabolite j, if metabolite j is under-predicted, as follows:

Ppro
i,j ∝ e

−3·bj + κ, (3)

where the symbols have the same meaning as in equations (1) and
(2). All associated prior probabilities on new links, Pcon and Ppro,
are normalized to sum up to 1. GutCP then proposes the addi-
tion of a new link to the current cross-feeding network (originally,
the given network) by choosing one link randomly using this prior
probability distribution.

Step 3: Evaluating objective function with proposed link. GutCP
re-calculates the systematic bias for each metabolite and microbe
predicted by our consumer-resource model, this time using the
cross-feeding network with the newly proposed link. It then in-
corporates it into an objective function, E, defined as follows:

E =
1

Ns

1

M

NS∑
α=1

M∑
i=1

|log10(pα,i)− log10(mα,i)|

+ λreg · Nadded − λreward · M,

(4)

where M is the number of metabolites predicted by the model
that overlap with the experimentally measured metabolomes, and
Nadded is the total number of links added by GutCP. λreg is a
hyper-parameter that penalizes the addition of new links by a fixed
amount, and λreward is a hyper-parameter that encourages the al-
gorithm to predict new metabolite levels that overlap with the ex-
perimentally measured metabolites. Specifically, we calculate E
both before and after the addition of the newly proposed link, and
measure the difference between them, ∆E.

Step 4: Accepting or rejecting the newly proposed link. GutCP
accepts the newly proposed link with a probability proportional to
the reduction in the value of the objective function, ∆E. Essen-
tially, GutCP accepts the link if E reduces with a high probability,
and accepts it if it increases with only a small probability; this is
a common choice in such optimization algorithms, and in this case
helps GutCP find links that combine with others later to together
improve predictions as a pair. The probability of accepting a newly

proposed link is Paccept ∝ e(−
∆E
kT

) where 1
kT

= 5000 is a calibrated
effective energy, representing the effect of a randomly chosen link
on the objective function.

Step 5: Stopping criteria. We then repeat steps 2 to 4 multiple
times iteratively. GutCP stops when the change in the objective
function E due to carefully chosen links starts becoming compa-
rable to changes due to a randomly added link. It does this by
comparing the overall change in E over the past 500 iterations. If

this change is comparable to the change over 500 randomly chosen
steps, GutCP stops.

Calibration of hyper-parameters. To optimize the perfor-
mance of GutCP’s link discovery procedure, we calibrated the

two hyper-parameters in the objective function in equation (4),
namely λreg and λreward. For this, we chose a large range of these
hyper-parameters, between 10−4 and 10−2 for λreg, and 10−4 and
10−1 for λreward, each in multiples of 10. For each pair of hyper-
parameter values in this range, we ran GutCP and assessed its
average performance at the end of 100 runs, where we used the
same three measures of performance as throughout the text: (1)
the correlation between the predicted and experimentally measured
metabolome, (2) the log error (see main text), and (3) the num-
ber of metabolites in the measured metabolome predicted by our
ecological consumer-resource model (Fig. S4 and S5). We chose
those values of the hyper-parameters that simultaneously achieved
the best combination of performances on all three measures. We
finally chose the values λreg = 10−3 and λreward = 10−3 and used
them for the results shown in the rest of this manuscript.

Obtaining the consensus-based atlas of predicted cross-
feeding interactions. To calculate a consensus-based set of cross-
feeding predictions, we performed 100 independent runs of GutCP.
For every link predicted over all the 100 runs, we measured its
prevalence, that is, the fraction of runs in which GutCP discov-
ered the link. To determine which links were inferred by GutCP
more often than expected purely by chance, we also calculated a
null distribution, which was equivalent to a binomial distribution;
in the null, the probability of a link being discovered by chance
was the average number of links discovered in any individual run
(∼ 140), divided by the total number of discoverable links. We
used the null distribution to assign a P value to each discovered
link, and assigned those links with P < 10−3 as part of our con-
sensus based set of cross-feeding predictions (supplementary table
1). Increasing or decreasing the P value threshold within the order
of magnitude did not change the number of consensus predictions
by more than5%.

Validating the predicted interactions using genome-scale
metabolic models. To validate the set of interactions predicted
by GutCP, we used genome-scale metabolic models, which make
predictions about metabolic reactions from genome sequences, but
are known to overestimate the number of metabolic reactions be-
tween species and metabolites in the environment. We used the
dataset from Garza et al29, which contained over 1,500 genome-
scale metabolic models (GSMMs). We extracted only those mod-
els which were relevant to the 72 microbial species in our dataset.
From each GSMM, we specifically extracted those reactions that
were marked as extracellular, since those represented the consump-
tion and production links that we are interested in. During extrac-
tion, we chose only those reactions which involved metabolites for
which we had experimental measurements in our dataset. Doing
this gave us a full list of all genome-based cross-feeding interactions
relevant to the species and metabolites of interest. We then mea-
sured the fraction of cross-feeding interactions predicted by GutCP
that were presented in this list of GSMM-based predictions.

Statistics. To calculate correlation coefficients throughout the
study, we used Pearson’s correlation coefficient. Wherever we used
P values, we explained in the Methods how we calculated them,
since for all such measurements in the study, we calculated the as-
sociated null distributions from scratch. All statistical tests were
performed using standard numerical and scientific computing li-
braries in the Python programming language (version 3.5.2).

Code availability. The code for both our simulations and sta-
tistical analysis, and for the GutCP algorithm, can be downloaded
from: https://github.com/maslov-group/ML_human_gut.
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Supplementary Figures
Ecology-guided prediction of cross-feeding interactions

in the human gut microbiome

FIG. S1. No correlation between the prior metabolite systematic bias and the number links added related to the
metabolite. Each point represents a metabolite. Results are shown for one run of GutCP. The Pearson correlation coefficient
between the two quantities is 0.15, and the P value is 0.24, which is not significant.

FIG. S2. No correlation between the prior metabolite probability and the error reduction induced by the added
links related to the metabolite. Each point represents a metabolite. Results are shown for one run of GutCP. The Pearson
correlation coefficient between the two quantities is 0.03, and the P value is 0.74, which is not significant.
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FIG. S3. A full cross-feeding network, similar to figure 3a, for all metabolites and microbes.
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FIG. S4. The effect of the hyper-parameter for the number of links λreg on model performance. Results are shown
for one run of GutCP. The other hyper-parameter for rewarding the number of overlapped metabolites λreward is fixed as 10−3

(see Methods).
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FIG. S5. The effect of the hyper-parameter for rewarding the number of overlapped metabolites λreward on
model performance. Results are shown for one run of GutCP. The other hyper-parameter for the number of links λreg is
fixed as 10−3 (see Methods).
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