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Abstract 19 

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis 20 

that is distinctly characterized by granuloma formation within infected tissues.  21 

Granulomas are dynamic and organized immune cell aggregates that limit dissemination, 22 

but can also hinder bacterial clearance.  Consequently, outcome in TB is influenced by 23 

how granuloma structure and composition shift the balance between these two functions.  24 

To date, our understanding of what factors drive granuloma function in humans is limited.  25 

With this in mind, we used Multiplexed Ion Beam Imaging by Time-of-Flight (MIBI-TOF) 26 

to profile 37 proteins in tissues from thirteen patients with active TB disease from the U.S. 27 

and South Africa. With this dataset, we constructed a comprehensive tissue atlas where 28 

the lineage, functional state, and spatial distribution of 19 unique cell subsets were 29 

mapped onto eight phenotypically-distinct granuloma microenvironments. This work 30 

revealed an immunosuppressed microenvironment specific to TB granulomas with 31 

spatially coordinated co-expression of IDO1 and PD-L1 by myeloid cells and proliferating 32 

regulatory T cells.  Interestingly, this microenvironment lacked markers consistent with T-33 

cell activation, supporting a myeloid-mediated mechanism of immune suppression. We 34 

observed similar trends in gene expression of immunoregulatory proteins in a 35 

confirmatory transcriptomic analysis of peripheral blood collected from over 1500 36 
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individuals with latent or active TB infection and healthy controls across 29 cohorts 37 

spanning 14 countries.  Notably, PD-L1 gene expression was found to correlate with TB 38 

progression and treatment response, supporting its potential use as a blood-based 39 

biomarker. Taken together, this study serves as a framework for leveraging independent 40 

cohorts and complementary methodologies to understand how local and systemic 41 

immune responses are linked in human health and disease. 42 

 43 

Introduction 44 

 Mycobacterium tuberculosis (Mtb) is the leading cause of mortality from infectious 45 

disease in the world, accounting for nearly 1.5 million deaths each year1. Relative to other 46 

communicable diseases, the reduction in the incidence of TB infection over the last 20 47 

years has been modest.  This is largely due to the lack of a highly efficacious vaccine, 48 

lengthy and toxic antimicrobial regimens, and emergence of multidrug resistance.  Along 49 

these lines, previous efforts to develop new host-directed therapies have been hindered 50 

by an incomplete understanding of how TB interacts with the human immune system 51 

during infection. 52 

Infection is initiated when bacteria are engulfed by alveolar macrophages or other 53 

resident phagocytes after being inhaled into the lungs2,3. This triggers an immune 54 

response that ultimately converges on formation of a granuloma, a dynamic and spatially-55 

organized tissue structure comprised of macrophages, granulocytes, lymphocytes, and 56 

fibroblasts.  A prototypical non-necrotic granuloma consists of a myeloid-predominant 57 

central core region that is enriched with infected macrophages and encircled by 58 

lymphocytes. From the perspective of facilitating an effective host response, granulomas 59 

play seemingly contradictory roles.  On the one hand, consolidation of infected cells within 60 

the myeloid core limits dissemination by partitioning them away from uninvolved lung 61 

parenchyma.  On the other, tolerogenic pathways that are upregulated within this region 62 

limit bacterial clearance4–6.   63 

Depending on the histological subtype and bacterial burden, granuloma 64 

composition can be highly variable7. This variability can manifest within a single individual, 65 

where infection can result in formation of multiple granulomas with distinct histologic and 66 
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immunological features that each progress independently of one another over time8.  67 

Controlled infections in non-human primates (NHP) have revealed that a single individual 68 

can possess well over ten granulomas and that the inflammatory profile, size, and 69 

bacterial ecology of these lesions can vary dramatically9–11.  Thus, the trajectory of each 70 

granuloma can vary across a spectrum between complete bacterial clearance to 71 

uncontrolled dissemination.  This discordance suggests that local host-bacterial dynamics 72 

within the tissue microenvironment play a central role in determining granuloma fate.  73 

Along these lines, a growing number of studies suggest that granuloma structure and 74 

immune cell function are interconnected12,13.  For example, previous work has suggested 75 

that impaired adaptive immunity might be the consequence of T cells being largely 76 

excluded from the myeloid-dominated central core region where infected macrophages 77 

tend to localize14,15.    78 

Taken together, these findings suggest that TB disease progression is heavily 79 

impacted by focal, spatially-encoded regulatory mechanisms within the granuloma 80 

microenvironment. Consequently, understanding how these mechanisms promote 81 

bacterial clearance or persistence is critical for designing effective therapies that promote 82 

long term immunity. With this in mind, we used Multiplexed Ion Beam Imaging by Time-83 

of-Flight (MIBI-TOF) to simultaneously image 37 proteins at subcellular resolution in solid 84 

tissue from individuals with active TB infection16.  We compared granuloma composition 85 

with respect to 19 unique cell subsets to delineate different subtypes of granulomas that 86 

were enriched for classical monocytes, myeloid-derived suppressor cell-like (MDSC) 87 

macrophages, or tertiary lymphoid structures (TLS).  We then utilized an adaptation of 88 

Latent Dirichlet Allocation (spatial-LDA) to identify spatially-coordinated immune 89 

responses within eight recurrent cellular microenvironments. These analyses revealed a 90 

microenvironment characterized by expression of regulatory proteins, IDO1 and PD-L1, 91 

and proliferative regulatory T cells. Paradoxically, these cells were not accompanied by 92 

significant numbers of PD-1+ lymphocytes or any other evidence suggesting T cell 93 

exhaustion.  94 

To determine if these features were associated with drug treatment or severity of 95 

infection, we leveraged publicly available gene expression data of peripheral blood from 96 
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patients with TB. In line with the granuloma imaging data, we found increased expression 97 

of IDO1 and CD274 (PD-L1) and diminished expression of PDCD1 (PD-1) and LAG3 in 98 

individuals with active TB.  Moreover, CD274 (PD-L1) gene expression was found to 99 

associate with progression from latent to active disease and with therapeutic response, 100 

suggesting it could be used as a novel prognostic biomarker.  Taken together, this work 101 

provides compelling evidence for a myeloid-mediated mechanism of immune suppression 102 

driven locally within the granuloma that promotes bacterial persistence and subverts T-103 

cell activation.   104 

 105 

Results 106 

Multiplexed imaging of human tuberculosis granulomas reveals structured immune cell 107 

composition 108 

To assess granuloma composition and architecture in TB, we curated a cohort of 109 

actively infected human tissues. Archival formalin-fixed paraffin-embedded (FFPE) 110 

specimens from patients treated in the United States or South Africa were procured from 111 

Stanford Health Care or University of KwaZulu-Natal, Inkosi Albert Luthuli Central 112 

Hospital, respectively (Extended Data Table 1).  The South African samples were 113 

pulmonary tissues from patients that underwent therapeutic resection for advanced TB (n 114 

= 6).  While TB disease typically manifests in the lung, infection can disseminate to extra-115 

pulmonary sites as well17,18.  To characterize TB infection at an earlier stage and assess 116 

how granuloma composition varies with infection site, samples from US patients 117 

consisted of diagnostic biopsies from lung (n = 2), pleural cavity (n = 3), lymph node (n = 118 

1), and endometrium (n = 1) (Fig. 1a). 119 

 Tissue sections for each specimen were reviewed by an anatomic pathologist and 120 

screened to include the presence of solid, non-necrotic granulomas or active 121 

granulomatous inflammation, while excluding excessively necrotic or fibrotic regions 122 

(Extended Data Fig. 1a).  MIBI-TOF was subsequently used to image two 500 µm2 fields 123 

of view (FOVs) per tissue stained with a 37-plex panel of metal-labeled antibodies (Fig. 124 

1b, Extended Data Fig. 1b-c, Extended Data Table 2)16. The antibody panel included 125 

markers to comprehensively phenotype most major immune and non-immune cell 126 
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lineages, including lymphocytes, macrophages, granulocytes, stroma, and epithelium. 127 

The panel also included antibodies for 12 functional markers with an emphasis on those 128 

with well-documented immunoregulatory pathways, including PD-1, Lag3, PD-L1, and 129 

IDO1.  130 

 To extract single cell phenotypes, multiplexed imaging data were processed with 131 

a low-level pipeline prior to single-cell segmentation (Fig. 1a, Extended Data Fig. 1d)19–132 
21. Each FOV contained an average of ~1400 single cells (sd = 312) (Extended Data Fig. 133 

2d).  Hierarchical application of the FlowSOM algorithm (Extended Data Fig. 2a, b) was 134 

employed to phenotype 19 unique cell subsets (Fig. 1c)22 using cell area normalized 135 

values of protein expression for each segmented cell event. For each image, FlowSOM 136 

clusters and segmentation masks were combined to generate cell phenotype maps 137 

(CPM) where each cell is labeled by its phenotype (Fig. 1d, Extended Data Fig. 2c).  138 

Consistent with previous work, granuloma composition was predominated in most 139 

lesions by T cells and myeloid cells, (average myeloid: lymphoid ratio = 1.4, sd = 1.0)23. 140 

Myelomonocytic cells were comprised of multiple subsets of macrophages, dendritic cells, 141 

and monocytes that were each distinguished by varying degrees of co-expression of 142 

CD11c, CD11b, CD209, CD68, CD14, CD16, and CD206 (Fig. 1e).  Granulocytes were 143 

comprised largely of neutrophils (mean = 1.2%, sd = 1.7) and mast cells (0.6% ± 0.8)24–144 
26. We also identified gd T cells (0.1% ± 0.22), CD209+ dendritic cells (0.2% ± 0.5), and 145 

regulatory T cells (0.4% ± 0.6), highlighting the capability of our approach to enumerate 146 

low abundance immune cell populations that have been suggested to play a key role in 147 

granuloma pathology. In line with reports of increased vascularization in active disease, 148 

non-immune cells were predominated by endothelial cells (5.7% ± 3.1) while fibroblasts 149 

(3.3% ± 5.1) and epithelial cells (2.7% ± 4.0) varied significantly between lesions 150 

(Extended Data Fig. 2e, f)27,28. Altogether, we assigned 94% (n = 33,194 single cells) of 151 

cells to 19 subsets that in aggregate ranged in frequency from 0.1-15% across our 152 

dataset.  153 
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Figure 1. Multiplexed imaging of human tuberculosis granulomas reveals structured immune cell composition. 
(a) Conceptual overview of MIBI-TOF analysis of human TB granulomas. (b) Representative images from a pulmonary 
TB section. (c) Cell lineage assignments based on normalized expression of lineage markers (heatmap columns). Rows 
are ordered by absolute abundance shown on the bar plot (left), while columns are hierarchically clustered (Euclidean 
distance, average linkage). (d) Cell identity overlaid onto the segmentation mask for a representative pulmonary TB 
section (left). Two insets (bottom) are shown. (e) The relative abundance of immune cell types across all TB FOVs with 
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 154 

To assess whether granulomas can be grouped into subtypes based exclusively 155 

on immune cell subset frequencies, we clustered FOVs using Pearson correlation based 156 

on their immune cell proportions (Extended Data Fig. 2g).  We found that using three 157 

clusters explained 72% of the variance in our dataset (Fig. 1e, Extended Data Fig. 2h). 158 

Cluster 1 (Fig. 1e, f) was characterized by CD11c+ CD11b+ macrophages, intermediate 159 

monocytes, and occasional CD163+ macrophages. Chi-square analysis of cell type co-160 

occurrence showed significant associations of CD163+ macrophages with intermediate 161 

monocytes (adj. p = 0.0090), regulatory T cells (Tregs) (adj. p = 0.003), and fibroblasts 162 

(adj. p = 0.02), suggesting coordinated cellular presence in this cluster (Extended Data 163 

Fig. 2i). Cluster 2 was enriched for B cells (Fig. 1e).  Lastly, a subset of granulomas 164 

(cluster 3) was enriched for classical monocytes (Fig. 1e, f) and higher numbers of CD8+ 165 

T cells, resulting in a skewed CD4+ to CD8+ T cell ratio relative to clusters 1 and 2. Since 166 

most samples in cluster 3 were surgical lobectomies from patients in South Africa, this 167 

profile could be related to disease severity, comorbidity, or mandatory pre-surgical 168 

antimicrobial therapy. Given this result, we analyzed therapeutic resections with respect 169 

to HIV status (Extended Data Fig. 3). While we observed a slight difference in the CD4+ 170 

to CD8+ T cell ratio (approximately two-fold decrease in HIV+ specimens, p = 0.026), we 171 

found no material differences in immune cell frequencies that define these clusters. Taken 172 

together, this comprehensive cell census reveals distinct types of granulomas that are 173 

defined by immune cell frequency and associate with TB disease status. 174 

 175 
Spatial analysis of granulomas identifies organized protein expression patterns and 176 

conserved cellular microenvironments 177 

In order to identify recurrent patterns of protein co-expression in TB granulomas, 178 

we conducted a spatial enrichment analysis that quantified the degree of co-occurrence 179 

between pairs of proteins relative to a null distribution (Extended Data Fig. 4a)19.  Pairwise 180 

cell types ordered by decreasing median abundance and bars ordered by the hierarchical relationship of pairwise 
Pearson correlation coefficients (distance = 1 – correlation, complete linkage). Consensus clusters are annotated above 
bar plot (cluster 1 = blue, cluster 2 = green, cluster 3 = purple). (f) Frequency of CD14+ monocytes and 11b/c+ 206+ 
macrophages of total immune cells colored by cluster. Line represents the median. (g) The CD4 T: CD8 T cell ratio 
represented as a log2 fold-change for each TB FOV (top) colored by cluster. (h) Frequency of CD4+ and CD8+ T cells 
of total immune cells colored by cluster. Line represents the median. All p-values determined with a Wilcoxon Rank 
Sum Test where: ns p > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001. 
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enrichment scores for each protein pair were then used to construct an interaction 181 

network that was subsequently analyzed using a community detection algorithm29 (Fig. 182 

2a). This analysis resulted in three spatial modules consistent with canonical granuloma 183 

structures, including the myeloid core, lymphocytic cuff, and stromal compartment. 184 

Intriguingly, these modules also revealed more granular, previously unknown features 185 

linking cell function to spatial organization, such as the association of the lymphocytic cuff 186 

with H3K9Ac and the myeloid core with IDO1 and PD-L1 (Fig. 2a). 187 

These findings motivated us to examine how the local cellular neighborhood 188 

relates to single cell function and granuloma structure. Therefore, we employed spatial 189 

Latent Dirichlet Allocation (spatial-LDA)30 to discover and assign cellular 190 

microenvironments (MEs) to each cell in a CPM, where an ME is defined by a set of cell 191 

types found to be spatially co-occurring across the cohort. Using this approach, we 192 

identified eight MEs for summarizing the local frequency of cell subsets within a 50 µm 193 

radius of a target cell (Fig. 2b). We then labeled each cell with its highest probability ME 194 

to generate a maximum probability ME map (MaxPM, Fig. 2c, Extended Data Fig. 4b).   195 

Through this approach, granuloma composition and structure can be summarized with 196 

two complementary and simplified spatial representations: a CPM and MaxPM where 197 

cells are labeled either by cell type or by ME, respectively (Fig. 2c).  198 

This allowed us to annotate well known features of granuloma histology in an 199 

unbiased fashion, while also revealing previously unrecognized cellular niches (Fig. 2d, 200 

e).  For example, the large majority of granuloma macrophages and monocytes were 201 

assigned to one of three myeloid MEs (MEMcore1, MEIntMono, MEMcore2).  While MEMcore1 was 202 

found to some degree across all specimen types, MEIntMono and MEMcore2 were significantly 203 

enriched in either extra-pulmonary diagnostic biopsies or therapeutic resections, 204 

respectively (Fig. 2f, Extended Data Fig. 4d, e).  MEMcore1 exhibited the strongest 205 

preference for the histologically defined granuloma core region (median frequency in core 206 

= 99.1%, Extended Data Fig. 4c) and was predominated by CD11c+ CD11b+ 207 

macrophages (Fig. 2d, e).  MEMcore2 exhibited myeloid core preference to a lesser extent 208 

and was enriched for CD14+ classical monocytes (median frequency in core = 60.9%, 209 
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Extended Data Fig. 4c).  Lastly, MEIntMono exhibited low myeloid core preference and was 210 

enriched for CD14+ CD16+ intermediate monocytes (Fig. 2d, e).   211 

MELcuff aligned with the second histologically defined microenvironment in the 212 

granuloma, the lymphocytic cuff, and was comprised predominantly of CD4+ and CD8+ T 213 

cells (Fig. 2d, e). METLS is a second lymphoid ME that is B cell predominated with sparse 214 

numbers of follicular helper T cells (CD4+	 PD-1+), consistent with tertiary lymphoid 215 

structures (TLS, confirmed by H&E in serial sections, Fig. 2e)31–33. This ME was highly 216 

abundant in FOVs that were B cell predominated from cell frequency cluster 2 (Fig. 2f, 217 

Fig. 1e). 218 

As previously demonstrated, some granulomas exhibited a fibrotic wound healing 219 

response consisting of fibroblasts and CD163+ M2-like macrophages (Fig. 1e). These 220 

cells were found to co-localize within MEFib, where CD36, a fibroblast marker, and 221 

collagen-1, a marker for fibrosis are expressed (Fig. 2d, e)34.  The last two MEs 222 

represented less characterized cellular environments in TB infection.  MEVasc was 223 

predominated by blood vessels and mast cells while MEEpi was comprised of parenchymal 224 

epithelial cells and CD206+ alveolar-like macrophages (Fig. 2d, e).  Given that they are 225 

known to participate in angiogenesis, tissue repair, and immune cell recruitment35, 226 

perivascular localization of mast cells in the granuloma could suggest their involvement 227 

in some of these processes.  On the other hand, since MEVasc was found to be lower in 228 

extra-pulmonary biopsies (Fig. 2f, Extended Data Fig. 4e), this may reflect organ-specific 229 

differences in vascularity and abundance of tissue resident mast cells.  230 

We next sought to compare sample composition with respect to ME frequency. 231 

Using a correlation-based approach, we found that five ME frequency clusters accounted 232 

for 89% of variance (Fig. 2f, Extended Data Fig. 4f).  Notably, two of these clusters were 233 

comprised of samples from more than one cell frequency cluster (as defined in Fig. 1e). 234 

These clusters, along with a Principle Component Analysis (PCA) of all samples based 235 

on mean ME probability, further supported tissue site and clinical cohort-associated ME 236 

profiles (Fig. 2f, Extended Data Fig. 4g). Altogether, this suggests that MEs capture 237 

recurrent spatial features of granulomas that are not discernible by bulk cell composition 238 

alone.  239 
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Figure 2. Spatial analysis of granulomas identifies organized protein expression patterns and conserved 
cellular microenvironments. (a) Positive spatial enrichments (average z-score > 0) between protein pairs as a 
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weighted, undirected network (edge weight is proportional to average z-score) with three communities (myeloid core = 
green, lymphocytic cuff = blue, non-immune/other = pink). (b) Conceptual overview of spatial-LDA. (c) Cell probability 
map (left), max probability map (right), and microenvironment (ME) probability for 8 MEs (middle, scaled 0 -1) for a 
pulmonary TB section. (d) Heatmap of ME preferences for all subsets (standardized mean ME loading) with hierarchical 
clustering (Euclidean distance, complete linkage) and mean normalized expression of functional markers (probability 
weighted mean) with columns hierarchically clustered (Euclidean distance, complete linkage). (e) Biological 
classification of microenvironments. (f) Frequency of all MEs per FOV. Heatmap columns are hierarchically clustered 
(Pearson correlation, complete linkage). Paired ROIs from the same patient annotated with a black bar. ME and cell 
composition clusters annotated below dendrogram. Cell cluster annotation is based on clusters in Fig. 1e. 
 240 

Granuloma myeloid cells are characterized by spatially coordinated expression of IDO1 241 

and PD-L1 242 

Our microenvironment and spatial protein network modeling revealed that myeloid-243 

rich regions in the granuloma are characterized by expression of two proteins, IDO1 and 244 

PD-L1 (Fig. 2a, d). Given the tolerogenic role of these proteins36–41, we sought to identify 245 

myeloid cell subsets that could promote bacterial persistence through upregulation of 246 

these pathways.  We identified nine unique macrophage, monocyte, and dendritic cell 247 

populations (Extended Data Fig. 2b, Fig. 3a).  PD-L1 and IDO1 were correlated (Pearson 248 

R = 0.64, p < 2.2 x 10-16) and expressed to varying degrees across most of these 249 

populations and all FOVs (Fig. 3b-e, Extended Data Fig. 5a, c). Bright co-expression of 250 

both proteins was observed in CD11b+ CD11c+ macrophages, consistent with an MDSC-251 

like phenotype42 (Fig. 3d). This was also found in CD209+ DCs and CD16+ CD14+ 252 

intermediate monocytes, where it was associated with HLA-DR downregulation (Fig. 3a-253 

d). While the frequency of IDO1+ cells did not vary significantly between tissue or 254 

specimen type (Extended Data Fig. 5b), PD-L1+ cells were significantly higher in 255 

diagnostic biopsies relative to therapeutic resections, with a notable enrichment in 256 

extrapulmonary tissues (Extended Data Fig. 5b).  Notably, neutrophils were also found to 257 

express IDO1 or PD-L1 (Extended Data Fig. 5d).  Given that they have been shown to 258 

secrete anti-inflammatory cytokines in TB granulomas43, these findings are consistent 259 

with a regulatory effector function. Lastly, nearly 100% of multinucleated giant cells 260 

expressed IDO1 and ~75% express PD-L1 (Fig. 3f).  261 
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Figure 3. TB granuloma myeloid cells are characterized by spatially coordinated expression of IDO1 and PD-
L1. (a) UMAP visualization of all myeloid populations across all TB FOVs colored by subset (left) and normalized 
expression of phenotypic markers used to delineate subsets. (b) IDO1 and PD-L1 normalized expression overlaid on 
the UMAP. (c) Representative images of a pulmonary (left) and pleural (right) sample showing expression of IDO1 
(magenta) and PD-L1 (cyan). (d) Normalized expression of IDO1 (top) and PD-L1 (bottom) for major myeloid subsets 
ordered by decreasing median expression value. Dashed line indicates the cutoff for positivity for IDO1 (cutoff = 0.26) 
and PD-L1 (cutoff = 0.25). (e) PD-L1 and IDO1 expression values across all myeloid cells as a biaxial scatter plot. Plot 
displays Pearson’s r and p-value determined by t-test. (f) Giant cells identified from a MIBI-scanned pulmonary TB 
sample (CD45 = green, Vimentin = blue, CD31 = red). Representative giant cells displayed in zoomed insets (lower 
left) with hematoxylin and eosin staining or IDO1 (magenta) and PD-L1 (cyan) expression. Bar plot displays the 
percentage of IDO1+ and PD-L1+ giant cells (n = 33, normalized expression > 0). (g) MEMcore1 and MEIntMono max 
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 262 

To determine how PD-L1 and IDO1 expression is associated with a cell’s location 263 

in the granuloma, we calculated the frequency of PD-L1+ and IDO1+ cells for each cell 264 

subset in each ME (Fig. 3i, Extended Data Fig. 5e).  We found that the majority of cells 265 

displayed preferential, ME-specific expression patterns. For example, the frequency of 266 

PD-L1 expressing CD163+ macrophages was highest in the MEMcore1 (100%) and MELcuff 267 

(100%), while IDO1 expressing CD11b+ CD11c+ macrophages were most enriched in 268 

MEFib (75.6%) and MEIntMono (83.3%) (Fig. 3i). Altogether, PD-L1 and IDO1 expression 269 

defines a newly identified, spatially-coordinated immunoregulatory feature of TB 270 

granulomas that supports the possibility of highly localized, myeloid-mediated immune 271 

suppression in the granuloma. 272 

 273 

Granuloma lymphocytes are enriched in distinct cellular microenvironments and display 274 

a paradoxical absence of exhaustion markers   275 

 We next wanted to assess if the spatial coordination observed in tolerogenic 276 

myeloid cells extended to tolerogenic lymphocytes, like regulatory T cells (Tregs), which 277 

comprised 1.3% of all lymphocytes (Fig. 4a). Tregs (CD3+ CD4+ Foxp3+) were 278 

preferentially enriched in MEMcore1 relative to MELcuff (Fig. 4b, p = 0.0012), which stood in 279 

contrast to all other lymphocyte subsets, including Foxp3-	CD4+ T cells.  Furthermore, the 280 

frequency of proliferating Tregs exceeded that of all other major lymphocyte subsets (Fig. 281 

4c, p < 0.001). These results suggest that Tregs and MDSC-like cells preferentially 282 

colocalize within MEMcore1 to potentiate an immunomodulatory niche that could ultimately 283 

deter bacterial clearance  (Fig. 4d)44–50.  284 

 Anti-inflammatory pathways like those found in MEMcore1 are often induced as a 285 

form of negative feedback that moderates the cytotoxic effects of unchecked immune 286 

activation51.  In line with this, high expression of PD-L1 and IDO1 by granuloma myeloid 287 

probability maps and representative images of a pulmonary (top) and pleural (bottom) TB sample showing expression 
of IDO1 (magenta) and PD-L1 (cyan). (h) The frequency of IDO1+ and PD-L1+ myeloid cells for all myeloid cells in 
aggregate and broken down by microenvironment. (i) The frequency of PD-L1+ CD163+ macrophages (left) across MEs 
with a representative MaxPM. Insets are colored by ME (top), cell type (blue, middle), and CD163 (yellow) and PD-L1 
(cyan) with the segmentation boundaries overlaid (white). The frequency of IDO1+ CD11b+ CD11c+ macrophages (right) 
across MEs with a representative MaxPM. Insets are colored by ME (top), cell type (green, middle), and IDO1 (magenta) 
with the segmentation boundaries overlaid (white). 
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cells would be expected to be accompanied by evidence of T cell activation in the form of 288 

checkpoint marker expression (e.g. PD-1, Lag3)52.  For example, in previous work 289 

examining infiltrated triple negative breast cancer (TNBC) tumors, we found the median 290 

ratio of PD-1+: PD-L1+ immune cells to be near unity (Fig. 4f) and the prevalence of Lag3 291 

or PD-1 positive lymphocytes to be 13.9% and 5.5% on average, respectively (Fig. 4e).  292 

In contrast, PD-L1+ granuloma myeloid cells far outnumbered PD-1+ lymphocytes 293 

(log2[PD-1+: PD-L1+] = -5.73 ± 3.4, Fig. 4f). Furthermore, the small numbers of PD-1+ 294 

lymphocytes in our dataset were almost entirely restricted to METLS, consistent with T 295 

follicular helper cells rather than an activated or exhausted phenotype (Extended Data 296 

Fig. 5f). These findings are consistent with reports from the cynomolgus macaque model 297 

that also found low levels of PD-1, Lag3, and CTLA414, suggesting that PD-L1 expression 298 

by myeloid granuloma cells occurs independently of local cytokine release by activated T 299 

cells.  300 

 301 

 
 
Figure 4. Granuloma lymphocytes are enriched in distinct cellular microenvironments and display a 
paradoxical absence of exhaustion markers. (a) Frequency of lymphocyte subsets in all TB FOVs pooled together 
(left) and representative images of each subset (right). (b) The frequency of CD4+ and CD8+ T cells relative to the 
frequency of total immune cells in four MEs of interest (top). The frequency of Tregs relative to the frequency of total 
CD4+ T cells (lower, left). (c) Frequency of Ki-67+ cells broken down by lymphocyte subset. (d) Representative image 
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from a pleural TB FOV, colored by ME assignment (left). Zoomed inset displays Treg assignment (upper-right, purple 
= Treg, grey = non-Treg) and expression of Ki-67 (magenta), CD3 (cyan), and Foxp3 (white) (lower-right). (e) Percent 
of lymphocytes positive for PD-1 (left) and Lag3 (right) in all TB FOVs and TNBC. Bar represents the mean and standard 
error. (f) The ratio of PD-1+: PD-L1+ immune cells represented as a log2 fold-change in all TB FOVs and TNBC. All 
boxplots represent the median and interquartile range. All p-values determined with a Wilcoxon Rank Sum Test where: 
ns p > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 
 302 

TB and sarcoidosis granulomas have both common and diverging features of immune 303 

regulation 304 

In addition to being the histological hallmark of TB, granulomatous inflammation 305 

can occur in response to a foreign body or in autoimmune disorders, such as 306 

sarcoidosis53. Interestingly, several gene expression studies that have attempted to 307 

develop blood-based biomarkers for latent and active infection have struggled to 308 

differentiate between TB and sarcoidosis54,55.  In order to determine to what extent the 309 

features identified here overlap with other granulomatous diseases, we compared the TB 310 

sample cohort to ten sarcoidosis cases (Extended Date Fig. 6a-b). TB lesions were more 311 

variable in composition (p = 0.037, Extended Date Fig. 6d) and had significantly higher 312 

frequencies of CD8+ T cells, neutrophils, intermediate monocytes, and giant cells (Fig. 313 

5a, Extended Data Fig. 6b-c).  Sarcoid granulomas were heavily CD4+ T cell-skewed, 314 

even relative to the CD4-skewed TB granulomas in our dataset, consistent with reports 315 

of the pathology being driven primarily by Th17 and Th1 T cells (Fig. 5b)56–58.  316 

 Like TB, sarcoid lesions were PD-1 and Lag3 depleted (Fig. 5c) despite high levels 317 

of PD-L1+ myeloid cells (Fig. 5d, Extended Data Fig. 6e). However, unlike TB, IDO1 318 

expression in sarcoid samples was almost entirely absent (Fig. 5d). Since we used a 319 

conservative threshold for IDO1 and PD-L1 positivity, our analysis biased toward the 320 

moderate to bright-expressing cells present in TB granulomas and control tissues. 321 

Therefore, to more comprehensively evaluate the disease specificity of PD-L1 and IDO1, 322 

we performed immunohistochemistry (IHC) for both proteins on a tissue microarray of 323 

granulomas from sarcoidosis (n = 9), foreign body uptake (n = 4), endometriosis (n = 4), 324 

and xanthomatosis (n = 3) (Extended Data Fig. 6f). We identified weak expression of 325 

IDO1 in several sarcoidosis lesions along with bright expression of PD-L1 as observed 326 

by MIBI-TOF (Extended Data Fig. 6f). However, IDO1+ and PD-L1+ cells were nearly 327 

absent in all xanthomas and endometrial lesions and rare in foreign body granulomas. 328 
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Notably, we observed similarly high levels of IDO1 and PD-L1 in a pulmonary 329 

Mycobacterium avium granuloma (Extended Data Fig. 6g). This supports that while PD-330 

L1 expression could be a broader feature of certain granulomatous conditions, bright co-331 

expression of IDO1 and PD-L1 may be specific to mycobacterial granulomas.  332 

 333 

 
Figure 5. TB and sarcoidosis granulomas have both common and diverging features of immune regulation. (a) 
Frequency of cell subsets (of total cells) in TB versus sarcoidosis that are significantly different. (b) Comparison of the 
CD4+ T: CD8+ T cell ratio in TB versus sarcoidosis. Representative image of an axillary sarcoidosis FOV showing 
expression of CD8 (magenta), CD4 (cyan), and CD3 (white) (left) and colored by cell type (right, blue = CD4+ T cell, 
green = CD8+ T cell) (c) Percent of lymphocytes positive for PD-1 (left) and Lag3 (right) in all sarcoidosis FOVs, TB 
FOVs and TNBC. Bar represents the mean and standard error. (d) Percent of total cells positive for IDO1 or PD-L1 in 
TB and sarcoidosis. Representative image of a sarcoidosis FOV showing expression of PD-L1 (cyan) and HH3 (white). 
All boxplots represent the median and interquartile range. All p-values determined with a Wilcoxon Rank Sum Test 
where: ns p > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 
 334 

Immunoregulatory features of granulomas are reflected in the peripheral blood of TB 335 

patients where they correlate to clinical progression and treatment status 336 

The presence of immunosuppressive features in TB granulomas observed in our 337 

MIBI-TOF study has important implications for the treatment of TB infection. However, 338 

the invasive nature of procuring solid tissue limited the cohort size and scope by biasing 339 

towards advanced infections. Moreover, the single time point per patient in our tissue 340 
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dataset precludes temporal analysis that would correlate disease severity with granuloma 341 

immunosuppressive features. Given the clinical feasibility of venous phlebotomy and 342 

large number of publicly available blood transcriptomic datasets, we sought to correlate 343 

these features in blood from TB patients. Therefore, we used MetaIntegrator to perform 344 

several multi-cohort analyses using peripheral blood transcriptome profiles from healthy 345 

subjects and patients with latent or active TB infection59,60.   346 

 347 

 
 
Figure 6. Immunoregulatory features of granulomas are reflected in the peripheral blood of TB patients where 
they correlate to clinical progression and treatment status (a) Conceptual overview of the meta-analysis of patients 
with active TB (n = 647) versus healthy controls (n = 197). (b) Forest plots of gene expression differences in active TB 
versus healthy individuals. Cohort identifiers are shown on the y-axis. Boxes represent the standardized mean 
difference in gene expression (effect size). The size of the box is proportional to the sample size of that cohort. 
Whiskers represent the 95% confidence interval and diamonds (black) represent the overall difference in gene 
expression between two groups by integrating the standardized mean differences across all cohorts. The width of the 
diamond corresponds to its 95% confidence interval. The adj. p values (q values, FDR 5%) for the summary effect 
sizes are shown above each plot. (c) Conceptual overview of gene expression analysis across clinical infection stage. 
(d) Heatmap of summary gene expression (mean effect size) values in latent TB (n = 173) versus healthy controls (n 
= 197), latent TB (n = 372) versus active TB (n = 479), and active TB (n = 168) versus end-of-treatment (n = 160). 
Clinical stage is displayed on rows and genes are displayed across columns hierarchically clustered (Euclidean 
distance, complete linkage). Genes upregulated in active TB versus latent TB are shown in the solid black box, while 
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downregulated genes are in the dashed black box. (e) Conceptual overview of the Catalysis Treatment Response 
Cohort (CTRC). (f) Correlation between PD-L1 gene expression and total glycolytic activity index (TGAI) represented 
as log2-transformed values. Linear fit (blue) with 95% confidence interval (grey) displayed. A Pearson correlation of 
0.39 (p = 4 x 10-4, t-test) is displayed below the linear fit. (g) PD-L1 gene expression across treatment time broken 
down by cure status (blue = definite cure and yellow = no cure). Line represents mean expression in each time point, 
connected across time points. P-value determined with Student’s T-test for PD-L1 expression at d0 versus wk24 in the 
definite cure (DC, n = 71) and not-cured (NC, n = 7) groups. (h) Conceptual overview of the Adolescent Cohort Study 
(ACS). (i) PD-L1 gene expression in the ACS cohort across time prior to and after diagnosis of active TB stratified by 
progressors (red, n = 34) and non-progressors (blue, n = 109). Grey silhouette represents the 95% confidence interval. 
P-values determined by Welch two sample t-test. 

 348 

We first determined if immune regulatory features identified in granulomas could 349 

be detected in blood by comparing publicly available gene expression data of patients 350 

with active TB (n = 647) to healthy controls (n = 197) from 13 independent cohorts (Fig. 351 

6a).  In line with PD-L1 and IDO1 expression in tissue data, significant and consistent 352 

upregulation of IDO1 and CD274 (PD-L1) was found in patients with active TB infection 353 

(effect size = 0.77 and 1.28, adj. p = 0.0009 and 0.006, respectively) (Fig. 6b). 354 

Additionally, checkpoint depletion in lymphoid cells was corroborated as well, with 355 

reduced expression of PDCD1 (PD-1) and LAG3 observed in the blood of active TB 356 

patients (effect size = -0.41 and -0.39, adj. p = 0.09 and 0.05 respectively).  357 

Next, we analyzed transcriptomic data from 1,549 patients across 24 cohorts in order 358 

to determine if these features were specific to active infections. In line with the solid tissue 359 

analysis, differential expression of genes associated with regulatory myeloid cells (e.g. 360 

PDL1, PDL2, CD11b, CD11c, CD163) or T-cell immune checkpoint (e.g. PD1, CTLA4) 361 

delineated active from latent infections (Fig. 6d). Moreover, the majority of these genes 362 

returned to baseline levels seen in healthy controls after completing antimicrobial therapy 363 

(Fig. 6d, Extended Data Fig. 6h). Taken together, these results suggest a shift toward 364 

myeloid-mediated immune suppression that is specifically manifested during active TB 365 

infection.  366 

Because PD-L1 gene expression exhibited the largest effect size relative to healthy 367 

controls, we next analyzed the Catalysis Treatment Response Cohort (CTRC) to 368 

determine if PD-L1 could be used as a biomarker for estimating disease burden and 369 

predicting clearance of infection (Fig 6e).  Patients enrolled in this study provided venous 370 

blood and underwent PET/CT imaging61,62. Expression of PD-L1 at diagnosis was found 371 

to be directly correlated with total glycolytic activity index (TGAI), a radiographic metric 372 
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for quantifying lung inflammation (Fig. 6f, Pearson r = 0.39 p = 4x10-4). 24 weeks after 373 

treatment, patients were clinically classified into four groups: definite cure, probable cure, 374 

possible cure, and not cured.  Relative to the time of diagnosis, the reduction in PD-L1 375 

expression in definitely cured patients (n = 71) were 2 times greater on average than in 376 

uncured patients (n = 7, Fig. 6g). A nearly identical trend was observed for PD-L2 as well 377 

(PDCDLG2, Extended Data Fig. 6i). 378 

Lastly, we analyzed the Adolescent Cohort Study (ACS) to determine if PD-L1 could 379 

be used for predicting progression to active disease.  Latently infected individuals enrolled 380 

in this study underwent regular blood collection and were clinically monitored for 381 

symptoms of active infection (Fig. 6h)63,64.  PD-L1 transcript levels were significantly 382 

elevated in progressors (n = 34) relative to non-progressors (n = 109) 8.5 months prior to 383 

progression (p = 0.03) with the peak occurring at time of diagnosis (p = 0.0009) (Fig. 6i). 384 

Taken together, these results raise the intriguing possibility for using PD-L1 expression 385 

in peripheral blood as a predictive biomarker for early intervention in latently infected 386 

individuals. 387 

 388 

Discussion 389 

After nearly 140 years of research into the pathophysiology of human TB infection, 390 

central questions remain unresolved, in large part because granuloma formation and 391 

progression are very difficult to emulate in tractable animal models. One of the most 392 

critical questions that remains unanswered is which immune mechanisms drive 393 

progression from latent infection to symptomatic active TB disease, the source of 11 394 

million new cases and 1.5 million fatalities each year1. Furthermore, individual granuloma 395 

fate can vary significantly between lesions within individuals, raising questions about the 396 

local immune dynamics that influence a granuloma’s capacity to control infection while 397 

mitigating tissue damage. With this in mind we used MIBI-TOF to identify recurrent 398 

features of immune regulation in archival tissue from patients with active TB infection. 399 

This spatial cell atlas allowed us to relate granuloma structure and composition. We 400 

identified 19 unique cell subsets that preferentially organize into eight reoccurring cellular 401 

microenvironments. TB granulomas appear to follow a consistent structural outline 402 
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characterized by spatially coordinated expression of PD-L1 and IDO1, myeloid core-403 

infiltrating Tregs, and a striking absence of T cell activation as measured through PD-1 404 

and Lag3.  Some of these features, such as high expression of PD-L1 and presence of 405 

MDSC-like macrophages, were present in non-infectious granulomas as well pointing to 406 

certain universal immune programs associated with the granulomatous immune 407 

response. However, even compared to sarcoidosis, foreign body uptake, xanthomatosis, 408 

and endometrial lesions, spatially coordinated expression of IDO1 and PD-L1 was unique 409 

to mycobacterial granulomas.   410 

Previous studies in the cynomolgus macaque model of TB have demonstrated that 411 

granulomas from a single individual can have disparate outcomes with respect to bacterial 412 

burden and inflammatory trajectory10,11. The variation we see in our imaging dataset 413 

suggests these local outcomes may be driven in part by unique cellular infiltrate and 414 

structure within each granuloma. We observed that certain features, such as a high 415 

frequency of CD8+ T cells, corresponded with reduced levels of more differentiated 416 

macrophage phenotypes, a profile consistently present in therapeutic resections where 417 

PD-L1 expression was also diminished. Since CD8+ T  cells have been shown to be 418 

critical for clearance of TB infection65,66, understanding the immunological environments 419 

that promote CD8+ T cell activity could reveal novel insights into immune features critical 420 

for bacterial clearance. 421 

By leveraging 29 publicly-available gene expression studies of over 1500 TB 422 

patients and healthy controls, we were able to identify these immunoregulatory signatures 423 

in peripheral blood and correlate them with disease burden and clinical outcome. Genes 424 

found in solid tissue to be overexpressed at the protein level by immunosuppressive 425 

myeloid cells (PD-L1, IDO1, CD163) were upregulated in blood.  Similarly, genes 426 

associated with T-cell activation were downregulated, consistent with the rare incidence 427 

of PD-1 or Lag3 expression in tissue. Importantly, the magnitude of these trends was 428 

distinctly higher in patients with active disease relative to those with latent or treated 429 

infections.  The highest effect size of genes measured in our analysis was observed for 430 

PD-L1. PD-L1 was found to correlate with pulmonary disease burden and appears to be 431 

a prognostic biomarker of progression from latent to active TB disease. Taken together, 432 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.140426doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.08.140426
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

21 

the work presented here reveals new aspects of immune regulation in TB infection that 433 

have important implications for understanding disease pathogenesis and improving 434 

clinical management.  435 

The high levels of PD-L1 and IDO1 observed in the near absence of PD-1 offers 436 

clues into how the immunosuppressive niche during human infection is initiated and 437 

maintained. These findings are consistent with a TGFb or IL-10 driven process where 438 

production of these cytokines can suppress inflammation, promote immunosuppression, 439 

and induce peripheral regulatory T cell differentiation and proliferation67–70. This is 440 

supported by recent work in mice where focal secretion of TGF-b within the myeloid core 441 

was suggested to preferentially suppress neighboring T cells and in non-human primates 442 

where granuloma formation was associated with IL-10 secretion 71,72.  443 

Both IDO1 and PD-L1 have been shown to dampen anti-tumor immune responses 444 

in cancer, which has prompted the development of host-directed immunotherapies73.  Our 445 

findings suggest that similar approaches could be used to block PD-L1 mediated immune 446 

suppression to promote bacterial clearance. However, evidence of T-cell activation or 447 

exhaustion is not present in our dataset or in the cynomolgus macaque model. This 448 

suggests that unlike checkpoint blockade in the setting of cancer, the efficacy of PD-L1 449 

or PD-1 blockade could differ significantly. Recent reports of TB reactivation following PD-450 

1 blockade illustrate the seemingly paradoxical effects that can occur with host directed 451 

therapies and emphasize the need to comprehensively map the temporal and spatial 452 

dynamics of these pathways74–76. In line with this, a critical next step will be to extend this 453 

work to relate these features to bacterial burden, inflammatory dynamics, and granuloma 454 

age in a primate model that accurately recapitulates human TB pathology.  455 

To the best of our knowledge, this is the most comprehensive systems analysis of 456 

TB to date.  We identified dynamics of cellular composition and immunoregulatory 457 

pathways in TB granulomas that are reflected in the peripheral immune response to TB. 458 

These results have implications both for developing host-directed immunotherapies and 459 

for identifying patients at risk of progression to active disease or treatment failure. 460 

Expression of proteins such as IDO1 and PD-L1 aligns with immune evasion mechanisms 461 

observed in tumor-immune microenvironment. The interface of granuloma and tumor 462 
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immunobiology offers vast opportunities to explore how tactics of immune evasion in 463 

tumors may contribute to bacterial persistence in granulomas.  Future multiplexed 464 

imaging studies of granulomas from controlled TB exposures will offer novel insights on 465 

how these local regulatory dynamics influence granuloma fate, and ultimately, infection 466 

outcome. 467 

 468 
Data and Code Availability 469 

All custom code used to analyze data can be accessed at the following link: 470 

https://github.com/efrancis28/TBMIBI. All processed images and annotated single cell 471 

data will be made available on Mendeley Data.   472 

 473 

Methods 474 

 475 

Human Samples 476 

Human samples were acquired in accordance with IRB protocol # 46646. 477 

 478 

Tuberculosis Granuloma Cohort 479 

Formalin-fixed Paraffin-embedded (FFPE) Mtb infected tissues were acquired from 480 

Stanford Health Care’s tissue repository from seven patients undergoing a pre-treatment 481 

diagnostic biopsy. Tissues were screened to include those that were positive for Acid-482 

Fast Bacillus (AFB+) and Mtb DNA by polymerase chain reaction (PCR). Archival surgical 483 

resection tissues were acquired from University of KwaZulu-Natal, Inkosi Albert Luthuli 484 

Central Hospital from six patients with Mtb infection who underwent therapeutic resection 485 

of infected tissue due to infection severity or treatment failure. This specimen group 486 

contained HIV+ patients on antiretroviral therapy (n = 3), HIV- patients (n = 2), and one 487 

patient with no HIV infection reported. All clinical details for specimens can be found in 488 

Extended Data Table 1. 5 µm serial sections of each specimen were stained with 489 

hematoxylin and eosin (H&E) and inspected by an anatomic pathologist to screen for the 490 

presence of granulomatous inflammation. Regions with histologically solid granulomas or 491 

cellular granulomatous inflammation were included. Regions with excessive fibrosis or 492 
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necrosis were excluded. Two 500 µm2 fields of view (FOV) were chosen from each tissue 493 

block for imaging. 494 

 495 

Non-tuberculous Granulomas and Controls Tissues 496 

Regions of granulomatous inflammation from FFPE sarcoidosis and foreign body 497 

reactions from Stanford Health Care were chosen by an anatomic pathologist. 0.5 mm 498 

cores were selected and constructed into a tissue microarray (TMA). A pulmonary 499 

Mycobacterium avium case was acquired from Stanford Health Care through selection 500 

criteria of positive Acid-Fast Bacillus (AFB+) staining and PCR positivity for M. avium 501 

Complex (MAC). A 5 µm serial section of this specimen was stained with hematoxylin and 502 

eosin (H&E) and inspected by an anatomic pathologist to screen for the presence of 503 

granulomatous inflammation. Control tissues of FFPE tonsil, spleen, and placenta were 504 

acquired from Stanford Health Care. Small regions of each tissue were selected and 505 

placed in a TMA.  506 

 507 

Antibody Preparation 508 

Antibodies were conjugated to isotopic metal reporters as described previously19. 509 

Following conjugation antibodies were diluted in Candor PBS Antibody Stabilization 510 

solution (Candor Bioscience). Antibodies were either stored at 4oC or lyophilized in 100 511 

mM D-(+)-Trehalose dehydrate (Sigma Aldrich) with ultrapure distilled H2O for storage at 512 

-20oC. Prior to staining, lyophilized antibodies were reconstituted in a buffer of Tris 513 

(Thermo Fisher Scientific), sodium azide (Sigma Aldrich), ultrapure water (Thermo Fisher 514 

Scientific), and antibody stabilizer (Candor Bioscienc) to a concentration of 0.05 mg/mL. 515 

Information on the antibodies, metal reporters, and staining concentrations is located in 516 

Extended Data Table 1.  517 

 518 

Tissue Staining 519 

Tissues were sectioned (5 µm section thickness) from tissue blocks on gold and tantalum-520 

sputtered microscope slides. Slides were baked at 70 OC overnight followed by 521 

deparaffinization and rehydration with washes in xylene (3x), 100% ethanol (2x), 95% 522 
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ethanol (2x), 80% ethanol (1x), 70% ethanol (1x), and ddH2O with a Leica ST4020 Linear 523 

Stainer (Leica Biosystems). Tissues next underwent antigen retrieval by submerging 524 

sides in 3-in-1 Target Retrieval Solution (pH 9, DAKO Agilent) and incubating at 97 oC for 525 

40 minutes in a Lab Vision PT Module (Thermo Fisher Scientific). After cooling to room 526 

temperature slides were washed in 1x PBS IHC Washer Buffer with Tween 20 (Cell 527 

Marque) with 0.1% (w/v) bovine serum albumin (Thermo Fisher). Next, all tissues 528 

underwent two rounds of blocking, the first to block endogenous biotin and avidin with an 529 

Avidin/Biotin Blocking Kit (Biolegend). Tissues were then washed with wash buffer and 530 

blocked for 1 hour at room temperature with 1x TBS IHC Wash Buffer with Tween 20 with 531 

3% (v/v) normal donkey serum (Sigma-Aldrich), 0.1% (v/v) cold fish skin gelatin (Sigma 532 

Aldrich), 0.1% (v/v) Triton X-100, and 0.05% (v/v) Sodium Azide. The first antibody 533 

cocktail was prepared in 1x TBS IHC Wash Buffer with Tween 20 with 3% (v/v) normal 534 

donkey serum (Sigma-Aldrich) and filtered through a 0.1 µm centrifugal filter (Millipore) 535 

prior to incubation with tissue overnight at 4 OC in a humidity chamber. Following the 536 

overnight incubation slides were washed twice for 5 minutes in wash buffer. The second 537 

day antibody cocktail was prepared as described and incubated with the tissues for 1 538 

hour at 4 oC in a humidity chamber. Following staining, slides were washed twice for 5 539 

minutes in wash buffer and fixed in a solution of 2% glutaraldehyde (Electron Microscopy 540 

Sciences) solution in low-barium PBS for 5 minutes. Slides were washed in PBS (1x), 0.1 541 

M Tris at pH 8.5 (3x), ddH2O (2x), and then dehydrated by washing in 70% ethanol (1x), 542 

80% ethanol (1x), 95% ethanol (2x), and 100% ethanol (2x). Slides were dried under 543 

vacuum prior to imaging.  544 

 545 

MIBI-TOF Imaging 546 

Imaging was performed using a MIBI-TOF instrument with a Hyperion ion source. Xe+ 547 

primary ions were used to sequentially sputter pixels for a given FOV. The following 548 

imaging parameters were used:  549 

 550 

• Acquisition setting: 80 kHz 551 
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• Field size: 500 µm2 (TB, M. avium and controls) or 450 µm2 (sarcoidosis) at 1024 552 

x 1024 pixels 553 

• Dwell time: 4 ms 554 

• Median gun current on tissue: 1.45 nA Xe+ 555 

• Ion dose: 3.38 nAmp hours / mm2 for 500 µm2 FOVs and 3.75 nAmp hours / mm2 556 

for 450 µm2  557 

 558 

Low-level Image Processing 559 

Multiplexed image sets were extracted, slide background-subtracted, denoised, and 560 

aggregate filtered as previously described19. All parameters for these steps can be found 561 

in Extended Data Table 1. In addition to these processing steps, image compensation 562 

was performed to account for signal spillover due to adducts and oxides for the following 563 

interferences: Collagen-1 to IDO1 and Lag3, H3K9Ac to panCK and MPO, Chym/Tryp to 564 

MPO, Ki67 to CD209, CD20 to CD16, CD16 to IFNg, CD11c to IDO1, and HLA-DR-DQ-565 

DP to CD11b. 566 

 567 

Single Cell Segmentation 568 

Nuclear segmentation was performed using an adapted version of the DeepCell19–21 CNN 569 

architecture. Training data was generated from MIBI-TOF images of human melanoma 570 

that were stained with HH3 to identify nuclei and Na+K+ATPase to identify the cell 571 

membrane. Color overlays of these two channels were used to manually segment nuclei 572 

in ImageJ. This generated training data with labels for the nuclear interior, nuclear border, 573 

and non-nuclear background. Training data was generated for 5 images to train the 574 

network architecture. Images were divided into overlapping crops of 64x64 pixels. Each 575 

crop was randomly flipped, rotated, and sheared during training to further augment the 576 

available data. Stochastic gradient descent was used to train the network, combined with 577 

early stopping to prevent over-fitting. Following training all MIBI-TOF images from our 578 

cohorts were provided as input to the network to predict the class of each pixel: nuclear 579 

interior, nuclear border, or non-nuclear background. The nuclear interior probability map 580 

for each image was thresholded and segmented as described previously19 followed by a 581 
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3-pixel radial expansion around each nucleus to define the cell object boundaries. A 582 

correction was applied to FOVs that contained multinucleated giant cells (MGNs). First 583 

each MGN was identified using a combination of HH3, CD45, and Vimentin and manually 584 

segmented in ImageJ to produce a binary mask of each MGN. All pixels within the binary 585 

mask were reassigned to belong to the MGN cell object(s).  586 

 587 

Single Cell Phenotyping and Composition 588 

Single cell data was extracted for all cell objects and area-normalized. Cells with a sum 589 

of less than 0.1 area-normalized counts across all lineage channels were excluded from 590 

analysis. Single cell data was linearly scaled with a scaling factor of 100 and asinh-591 

transformed with a co-factor of 5. All mass channels were scaled to 99.9th percentile. In 592 

order to assign each cell to a lineage, the FlowSOM clustering algorithm was used in 593 

iterative rounds with the Bioconductor “FlowSOM” package in R22. The first clustering 594 

round separated cells into four major lineages using the “Metaclustering_consensus” 595 

function: immune, epithelial, fibroblast, and endothelial. Immune cells were then clustered 596 

again to delineate B cells, CD4+ T cells, CD8+ T cells, Tregs, neutrophils, mast cells, and 597 

mononuclear phagocytes (macrophages, monocytes, and dendritic cells). Immune cells 598 

with an expression profile not consistent with any of those subsets were annotated as 599 

‘other immune.’ Lastly, the mononuclear phagocytes were clustered to 25 metaclusters 600 

which were merged into 7 groups. Giant cells were manually identified. gd T cells were 601 

annotated as T cells with CD3 signal greater than or equal to the mean expression of 602 

CD4+ T cells and TCR-d signal > 0.5 normalized expression. CD163 macrophages were 603 

identified as those with CD163 signal > 0.5 normalized expression. The relative 604 

abundance of all major lineages was determined out of total cells per FOV and the relative 605 

frequency of immune cell subsets was determined out of total immune cells per FOV.  606 

 607 

Immune Cell Composition Clustering and Cell Type Association Analysis 608 

The Pearson correlation coefficient was calculated between all pairs of TB FOVs based 609 

on the relative frequency of all immune cell subsets. The coefficients were used to 610 

hierarchically cluster the FOVs using complete linkage and a distance metric of 1-611 
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correlation coefficient. To identify consensus clusters the percent variance explained was 612 

measured across a range of 1-10 clusters. The elbow point of this plot was used to 613 

determine the optimal number of clusters. A randomized dataset was produced to 614 

compare to the observed clustering by randomizing the frequency values across immune 615 

cell subsets within each FOV. This dataset was also clustered using the Pearson 616 

correlation coefficient and compared with the observed result. To assess the significance 617 

of co-occurrence of cell types, a chi-square test was run between all cell type pairs using 618 

the counts of each cell type across all TB FOVs. The resulting p-values were adjusted 619 

using a false discovery rate (FDR) of 5%.  620 

 621 

Protein Enrichment Analysis  622 

A spatial enrichment approached was used as previously described19 to identify patterns 623 

of protein enrichment or exclusion across all protein pairs. HH3, Na+K+ATPase, and HLA 624 

Class 1 were excluded from the analysis. For each pair of markers, X and Y, the number 625 

of times cells positive for protein X was within a ~50 um radius of cells positive for protein 626 

Y was counted. Thresholds for positivity were customized to each marker individually 627 

using a silhouette scanning approach from the MetaCyto software in R77. A null 628 

distribution was produced by performing 1000 bootstrap permutations where the locations 629 

of cells positive for protein Y were randomized. A z-score was calculated comparing the 630 

number of true cooccurrences of cells positive for protein X and Y relative to the null 631 

distribution. For each pair of proteins X and Y the average z-score was calculated across 632 

all TB FOVs. Next, all positive enrichments between protein pairs (average Z score > 0, 633 

excluded self-self protein enrichment scores) were used to produce a weighted, 634 

undirected network where the nodes are the individual markers and the edge weights are 635 

proportional to the average z-score (higher z-score à shorter edge length). The leading 636 

eigenvector algorithm for community detection was used to identify protein enrichment 637 

communities in this network78.  638 

 639 

Spatial Latent Dirichlet Allocation  640 
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Spatial-LDA is an adaptation of Latent Dirichlet Allocation (LDA), a machine learning 641 

approach used to model topics in text documents, where topics consist of words with a 642 

high probability of cooccurrence, allowing mapping of topics to abstract definitions (ex. 643 

[‘dog’, ‘frog’, ‘horse] à ‘animals’). Spatial-LDA builds on this paradigm by representing 644 

CPMs as documents and cell types as words. Spatial-LDA was conducted to identify 645 

topics (here referred to as microenvironments) across all TB FOVs. Cell types with fewer 646 

than 100 cells across the entire cohort were excluded from analysis (gd T cells and 647 

CD209+ DC). Furthermore, multinucleated giant cells were excluded due to their cell size. 648 

Spatial-LDA was implemented as described30 with d  =  1000, a spatial radius r  =  50 µm 649 

to complement the protein enrichment analysis, and a microenvironment (ME) number of 650 

n  =  8. The ME number was determined empirically. For each FOV a maximum probability 651 

map (MaxPM) was produced by classifying each cell to the microenvironment with the 652 

highest probability and coloring that cell by its microenvironment and probability. The cell 653 

type preferences for each ME were determined by assessing the mean probability for all 654 

cell types across all MEs. The mean expression for each functional marker across MEs 655 

was determined by weighting protein expression by ME probability and calculating the 656 

mean of weighted expression values across markers and MEs. The mean probability for 657 

all MEs was determined for all FOVs (average of single cell values) and used to conduct 658 

a Principal Component Analysis (PCA). The clustering approach described for immune 659 

cell frequency clusters (above) was applied to ME frequencies across FOVs to identify 660 

the optimal number of ME clusters to capture the maximal variance in our dataset. 661 

 662 

Identification of the Myeloid Core 663 

In order to assess which microenvironments represented the histologically defined 664 

myeloid core, binary masks of the myeloid core were generated for 18/26 FOVs. The 665 

masks were generated by first combining the signal of CD11c, CD11b, CD14, CD206, 666 

CD68, and PD-L1. The combined images were imported into ImageJ and hand-annotated 667 

using ROI annotation tools. The annotated ROI was exported as a binary mask. This 668 

mask was further processed in Matlab to close any holes, exclude objects smaller than 669 

1000 pixels, and dilate the mask to smooth edges. Next cells were assigned to belonging 670 
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to the myeloid core if they had complete overlap with the binary mask. Cells on the mask 671 

boundary or outside of the mask were designated as ‘non-myeloid core.’ The proportion 672 

of cells in the myeloid core was assessed across each ME for the 18 FOVs and a MEs 673 

with a median frequency in the myeloid core > 50% were designated as myeloid core 674 

MEs. 675 

 676 

Myeloid Cell UMAP Visualization 677 

UMAP embeddings were determined for all non-granulocytic myeloid cells using the R 678 

implementation79 with the following parameters: n_neighbors  =  15, min_dist  =  0.1 and 679 

the following markers: CD45, CD68, CD206, CD11c, CD11b, CD14, CD16, CD209, and 680 

CD163. 681 

 682 

Immunoregulatory Protein Analysis 683 

Positivity thresholds for IDO1, PD-L1, PD-1, and Lag3 were automatically determined as 684 

described above. Immune control tissues tonsil, spleen, and placenta were used to 685 

validate antibody performance. Correlation between IDO1 and PD-L1 was determined 686 

across the entire cohort and subsets of specimens using Pearson correlation analysis. 687 

The frequency of cells positive for IDO1 and PD-L1 were enumerated across all subsets. 688 

To assess PD-L1 and IDO1 positivity with respect to ME and cell subset, the total number 689 

of cells across all myeloid subsets per ME was pooled across all FOVs. The quantity of 690 

cells for each subset positive for IDO1 or PD-L1 was determined per ME. Any ME with < 691 

1% of the total for a subset was excluded from analysis. PD-1 and Lag3 expression were 692 

analyzed on lymphocytes or total immune cells. PD-1 and Lag3 were also analyzed on 693 

immune cells from a human Triple Negative Breast Cancer (TNBC) cohort that was 694 

previously published by our group19. Positivity for PD-1 and Lag3 for TNBC immune cells 695 

was determined as described in the originally published study.  696 

 697 

Cell Composition Analysis of Sarcoidosis and Tuberculosis  698 

Single cells from sarcoidosis FOVs were segmented as described above. Single cell data 699 

was extracted, transformed, and normalized along with TB single cell data. Single cells 700 
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were included in the described FlowSOM clustering procedure. To compare the cellular 701 

diversity of TB with sarcoidosis the Shannon Diversity Index was calculated using the 702 

counts of all cell subsets per TB or sarcoidosis FOV.  703 

 704 

Immunohistochemistry of PD-L1 and IDO1 705 

Immunohistochemistry (IHC) for PD-L1 and IDO1 was performed using the antibody 706 

reagents in Extended Data Table 1 at a concentration of 1 µg/mL. The IHC protocol 707 

mirrors the MIBI-TOF protocol with the addition of blocking endogenous peroxidase 708 

activity with 3% H2O2 (Sigma Aldrich) in ddH2O after epitope retrieval. On the second day 709 

of staining, instead of proceeding with the MIBI-TOF protocol, tissues were washed twice 710 

for 5 minutes in wash buffer and stained using the ImmPRESS universal (Anti-711 

Mouse/Anti-Rabbit) kit (Vector labs).  712 

 713 

Whole Blood Transcriptomic Analysis 714 

Publicly available gene expression data sets (Extended Data Table 2) were collected, 715 

annotated, and used for meta-analysis conducted using MetaIntegrator59. Gene 716 

expression matrices were prepared for each dataset to determine effect sizes for genes 717 

of all proteins included in the MIBI-TOF analysis and an additional set of genes with 718 

similar biological function, such as ICOS and CTLA4. Summary effect sizes were 719 

calculated to assess gene expression differences across clinical groups (healthy, active 720 

TB, latent TB, end of treatment, TB progression, and during treatment). For the Catalysis 721 

Treatment Response Cohort (CTRC) gene expression measurements at diagnosis of TB 722 

were correlated with matched Total Glycolytic Activity Index (TGAI), a readout of PET-CT 723 

activity. A linear regression was fit between CD274 gene expression and TGAI and the 724 

correlation was assessed with Pearson correlation analysis. To assess CD274 and 725 

PDCDLG2 gene expression over treatment, expression values were normalized to the 726 

measurement taken at diagnosis (d0). Gene expression data in the Adolescent Cohort 727 

Study (ACS) were separated by progression status. Local regression (LOESS) was used 728 

to fit the gene expression data over time in each group. The significance of separation 729 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.140426doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.08.140426
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

31 

between progressors and non-progressors was determined in two different time intervals 730 

using a Student’s t-test.  731 

 732 

Software 733 

Image processing was conducted with Matlab 2016a and Matlab 2019b. Statistical 734 

analysis was conducted in Matlab 2016a, Matlab 2019b, and R. Data visualization and 735 

plots were generated in R. Representative images were processed in Adobe Photoshop 736 

and figures were prepared in Adobe Illustrator. Schematic visualizations were produced 737 

with Biorender. 738 
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