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Abstract 

Fibroblasts are functionally heterogeneous cells, capable of promoting and suppressing 

tumour progression. Across cancer types, the extent and cause of this phenotypic diversity 

remains unknown. We used single-cell RNA sequencing and multiplexed 

immunohistochemistry to examine fibroblast heterogeneity in human lung and non-small cell 

lung cancer (NSCLC) samples. This identified seven fibroblast subpopulations: including 

inflammatory fibroblasts and myofibroblasts (representing terminal differentiation states), 

quiescent fibroblasts, proto-myofibroblasts (x2) and proto-inflammatory fibroblasts (x2). 

Fibroblast subpopulations were variably distributed throughout tissues but accumulated at 

discrete niches associated with differentiation status. Bioinformatics analyses suggested TGF-

β1 and IL-1 as key regulators of myofibroblastic and inflammatory differentiation respectively. 

However, in vitro analyses showed that whilst TGF-β1 stimulation in combination with 

increased tissue tension could induce myofibroblast marker expression, it failed to fully re-

capitulate ex-vivo phenotypes. Similarly, IL-1β treatment only induced upregulation of a subset 

of inflammatory fibroblast marker genes. In silico modelling of ligand-receptor signalling 

identified additional pathways and cell interactions likely to be involved in fibroblast activation, 

which can be examined using publicly available R shiny applications (at the following links: 

myofibroblast activation and  inflammatory fibroblast activation). This highlighted a 

potential role for IL-11 and IL-6 (among other ligands) in myofibroblast and inflammatory 

fibroblast activation respectively. This analysis provides valuable insight into fibroblast 

subtypes and differentiation mechanisms in NSCLC. 
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Main text 

Fibroblasts are abundant but poorly characterised cells that play pivotal roles in wound 

healing1, extracellular matrix (ECM) remodelling2 and inflammation3. In cancer, fibroblasts are 

the most common type of stromal cell and promote multiple hallmarks of malignancy4-6. These 

cells have been a putative therapeutic target in cancer for over a decade, but clinically effective 

strategies are yet to be identified. This is likely due to incomplete understanding of fibroblast 

heterogeneity and their precise role in tumour progression, which is exemplified by reports of 

both tumour-promoting and suppressive effects7. The diverse roles attributed to fibroblasts 

may be regulated by distinct subpopulations, such as those previously described in the 

dermis8, fibrotic lesions9 and in multiple solid cancers10-12. Cancer associated fibroblast (CAF) 

subpopulations are known to include myofibroblastic and inflammatory phenotypes3, 11. 

However, the extent of phenotypic diversity and the underlying molecular mechanisms 

regulating this heterogeneity remain unclear. Recent technical advances, such as single-cell 

RNA sequencing (scRNA-seq), have improved our understanding of the tumour 

microenvironment’s multicellular complexity10, 13, providing a platform to investigate 

unanswered questions in fibroblast and cancer biology.  

We performed scRNA-seq on human lung tissue samples (n=18; 6 tumour-adjacent normal, 

7 squamous cell carcinomas [LUSC], and 5 adenocarcinomas [LUAD]), using a previously-

described protocol to enrich for fibroblasts14. Clustering and differential gene expression 

analyses identified distinct cell populations, representing mesenchymal, lymphocyte, myeloid 

and epithelial lineages (Fig. 1a-b and Extended Data Fig. 1). Within the mesenchymal 

lineage, we identified endothelial cells (marked by VWF and other canonical marker 

expression) and stromal cells (marked by expression of known fibroblast marker genes, e.g. 

DCN, COL1A2 and COL3A1; Fig. 1b and Extended Data Fig. 1e).  

To investigate fibroblast heterogeneity in NSCLC we performed a meta-analysis (see online 

methods), combining our stromal population (n=921) with transcriptomically similar cells from 
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a publicly available NSCLC scRNA-seq data resource, generated by Lambrechts et al.13 

(n=1226; total n=2147). Unsupervised clustering identified nine subpopulations (Fig. 1c-e and 

Extended Data Fig. 2a-b), representing three stromal cell groups: fibroblasts (NF1-3), 

predominantly isolated from tumour-adjacent normal tissue (74-77%); CAFs (CAF1-4), 

predominantly isolated from tumour samples (98-100%); and two non-fibroblastic populations 

(pericytes [PCs], identified by upregulation of RGS515; and smooth muscle cells [SMCs], 

identified by MYH11 upregulation; Extended Data Fig. 2c).  

Many studies have attempted to identify a specific marker for CAFs, but this remains elusive. 

α-smooth muscle actin (coded for by ACTA2) is a commonly used CAF and myofibroblast 

marker16. However, when identifying myofibroblasts from scRNA-seq data, ACTA2 is not a 

suitable (single) marker as it is highly expressed by pericytes and smooth muscle cells17. This 

has led to the misclassification of myofibroblasts in previous studies10, 13, 18. Instead, combined 

expression of ACTA2 and ECM genes (e.g. COL1A1) is required for accurate myofibroblast 

classification from scRNA-seq data (Extended Data Fig. 2c). 

To examine fibroblast phenotypes further we used multiple bioinformatics approaches. Cluster 

marker genes common to both datasets were identified (consensus markers; Supplementary 

Table 1) and examined for enrichment with genes from biological process gene ontology (GO) 

terms (Fig. 2a and Supplementary Table 2). Overlap between our scRNA-seq clusters and 

previously described fibroblast phenotypes was assessed by examining the differential 

expression of gene sets identified in previous studies (Fig. 2b and Supplementary Table 3). 

Diffusion map19 dimensionality reduction and the Slingshot20 algorithm was used to examine 

the continuum of consensus marker expression between fibroblasts and identify trajectory 

inferred cell-state transitions respectively (Fig. 2c-d). This enabled further identification (in 

addition to cluster markers) of genes associated with fibroblast heterogeneity, by modelling 

expression levels across multiple cells as a product of trajectory inferred “pseudotime”. 

Correlation network analysis of genes differentially expressed in pseudotime, along each 
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trajectory, was then used to identify pseudotime gene expression modules (Fig. 2e-f and 

Supplementary Tables 4&5).  

Similar to scRNA-seq analysis of human head and neck squamous cell carcinoma10 and 

pancreatic adenocarcinoma11, 12 we identified a myofibroblastic-CAF subpopulation (CAF4) 

with upregulated expression of previously described CAF markers (e.g. ACTA2, POSTN and 

FAP). Multiple studies have documented common features between fibroblast activation in 

cancer and during wound healing or fibrosis21. Consistent with this, we found that 

myofibroblastic-CAF significantly upregulated a gene signature associated with end-stage 

idiopathic pulmonary fibrosis22 (IPF; Fig. 2b and Supplementary Table 3). 

Trajectory inference identified two intermediate states in myofibroblast differentiation (CAF2 

and CAF3; Fig. 2c-d). These subpopulations upregulated previously described CAF markers 

(e.g. CXCL12, IGF1 and COL1A1 -CAF2; POSTN, FAP and COL1A1 -CAF3; Supplementary 

Table 1), without increased ACTA2 expression, suggesting they represent “proto-

myofibroblast” phenotypes23 (Extended Data Fig. 2c and Supplementary Table 1). The 

dynamic transition to a fully differentiated myofibroblast phenotype was captured by a 

pseudotime gene expression module (“Transition B”), which was significantly upregulated by 

both proto-myofibroblast populations (CAF2 and CAF3; Fig. 2e-f). This module and the CAF2 

markers included multiple ribosomal genes (Fig. 2a and Supplementary Tables 1&5), which 

may reflect development of rough endoplasmic reticulum: a prominent ultrastructural feature 

of myofibroblasts24. In addition, CAF3 markers were enriched for genes involved in catabolic 

processes, including multiple matrix metalloproteases (MMPs; e.g. MMP1, MMP11, MMP3, 

MMP14; Fig. 2a and Extended Data Fig. 2d). CAF3 may therefore represent a novel 

“catabolic” CAF subpopulation with matrix remodelling functions. Pseudotime gene 

expression analysis identified genes increasingly expressed as cells differentiate from CAF2-

CAF3-CAF4 (Fig. 2d-f). This “Myofibroblast” module was enriched for genes upregulated by 

fibroblasts treated with TGF-β; genes involved in ECM-receptor interactions and focal 
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adhesion pathways; and multiple targets of the miR-29 family of micro RNAs (Fig. 2e-f; 

Supplementary Table 5). 

Inflammatory CAFs (iCAFs) have been shown to represent a subpopulation distinct from 

myofibroblasts in pancreatic cancer11, 12. We identified a similar inflammatory subpopulation, 

predominantly found in tumour-adjacent normal tissues (NF3; Fig. 2b). Trajectory inference 

showed inflammatory fibroblasts and myofibroblasts represent terminal differentiation states 

in a fibroblast phenotype continuum (Fig. 2c&d). 

Similar to myofibroblast differentiation, trajectory inference identified two subpopulations as 

likely precursors to inflammatory fibroblasts (NF2 and CAF1; Fig. 2c-d). These were termed 

“proto-inflammatory fibroblasts”, for consistency with proto-myofibroblasts. Both proto-

inflammatory populations up-regulated previously described iCAF marker genes (e.g. 

IGFBP6, MFAP5 and GSN -NF2; SGK1, APOE and CXCL2 -CAF1; C3 and PLA2G2A -NF2 

and CAF1).  As these proto-inflammatory populations were largely restricted to either tumour-

adjacent normal samples (NF2) or tumour samples (CAF1) it is possible that distinct 

processes can regulate inflammatory phenotypes in fibroblasts. Notably, the CAF1 

subpopulation also upregulated genes involved in stress response signalling (e.g. HIF1A, 

MT1X and MT1E), consistent with previous studies showing that cellular stress can induce an 

inflammatory fibroblast phenotype25, 26. Pseudotime gene expression analysis identified genes 

increasingly expressed as cells differentiate into inflammatory fibroblasts. This “inflammatory” 

module was enriched for genes upregulated by fibroblasts treated with IL-1β; genes involved 

in TNF and IL-17 signalling pathways; transcription factors RELA and STAT3; and miR-98-5p 

(Supplementary Table 5).  

To validate scRNA-seq findings we examined the spatial distribution of stromal subpopulations 

within the NSCLC microenvironment, using histo-cytometry analysis of multiplexed 

immunohistochemistry whole slide imaging (Fig. 3a). Pan-cytokeratin was used as an 

epithelial (and stromal cell exclusion) marker. ACTA2, POSTN and SERPINE1 were selected 
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as stromal cell markers, based on their variable expression between stromal subpopulations 

(Extended Data Fig. 3a).  

To detect stromal cells, we developed a machine learning (random forest) classifier (see 

online methods). Optimisation showed this classifier could detect manually annotated stromal 

cells based on marker expression and nuclear morphology with 84.4% accuracy (area under 

the ROC curve = 0.92; Fig. 3b-d and Extended Data Fig. 3b). This identified 1.9x106 stromal 

cells in the histo-cytometry dataset, which were then classified into the relevant 

subpopulations using a classifier trained on scRNA-seq data (Fig. 3e and Extended Data Fig. 

3a). 

To examine stromal cell distribution throughout whole slide images, the DBSCAN27 algorithm 

was used to identify spatially discrete regions of high stromal cell density (“hotspots”) in each 

tissue section (Fig. 3f). Clustering of stromal cell hotspots showed that fibroblast activation 

status was associated with spatially discrete niches, consistent with the scRNA-seq 

pseudotime gene expression modules (Fig. 3g-h and Extended Data Fig. 3c). This identified 

three types of fibroblast niche: homeostatic, where quiescent (NF1), proto-inflammatory (NF2) 

or proto-myofibroblasts (CAF2) were found; inflammatory, with high levels of inflammatory 

(NF3) and stress-response proto-inflammatory (CAF1) fibroblasts; and myofibroblastic, with 

increased accumulation of myofibroblasts (CAF4) and catabolic proto-myofibroblasts (CAF3; 

Fig. 3i and Extended Data Fig. 3c). Regions with high levels of pericyte/pericyte-derived 

CAFs or SMCs were typically associated with the presence of large vessels (Extended Data 

Fig. 3d).  

As inflammatory and myofibroblastic CAFs have previously described roles in tumour 

progression3, 21 and represent terminal differentiation states, we sought to identify the 

molecular mechanisms responsible for their divergent activation. NicheNet28 and enrichr29 

were used to identify ligands previously described to regulate the expression of markers or 

pseudotime module genes for myofibroblasts or inflammatory fibroblasts.  Consistent with 

previous studies21, 30, this highlighted TGF-β1 and IL-1β as likely regulators of myofibroblast 
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and inflammatory phenotypes respectively (Fig.4 a-b and Extended Data Fig. 4a-b). In our 

scRNA-seq data TGFB1 was variably expressed by different cell types; whereas IL1B was 

predominantly expressed by myeloid cells suggesting a potential paracrine signalling 

mechanism (Extended Data Fig. 4c). To test the effect of these cytokines on fibroblast 

differentiation, primary human fibroblasts isolated from tumour-adjacent lung tissue were 

cultured on collagen-coated plates with physiological lung tissue stiffness (2 kPa elastic 

modulus31) and treated with IL-1β (10 ng/ml for 72 hours) or TGF-β1 (2 ng/ml for 72 hours), 

reproducing conditions used for manipulating fibroblast phenotypes in previous studies21, 32. 

As expected, TGF-β1 treatment significantly increased expression of markers from all 

subpopulations on the myofibroblast activation trajectory (CAF2, CAF3 and CAF4; Fig. 4c). 

To determine whether these changes in gene expression induced in vitro were physiologically 

relevant, we compared marker gene expression levels to ex vivo phenotypes (Fig. 4d-e). In 

vitro control fibroblasts were found to most closely resemble proto-myofibroblasts (CAF2; Fig. 

4e). TGF-β1 treatment had minimal impact on the differentiation status of these cells, when 

compared to ex vivo fibroblasts (Fig. 4d-e), with only 26% of myofibroblast (CAF4) marker 

genes and 17% of the myofibroblast pseudotime module significantly upregulated (Extended 

Data Fig. 4f and Supplementary Table 6).  

Tissue tension impacts myofibroblast differentiation in response to TGF-β133 and the 

myofibroblast pseudotime module was enriched for pathways involved in cell-substrate 

interactions (Supplementary Table 5). Therefore, we hypothesised that increasing substrate 

stiffness would enhance the effect of TGF-β1 treatment. This was confirmed by comparing 

primary fibroblasts grown on either a substrate with physiological stiffness (2 kPa) or tissue 

culture plastic (TCP, ~2 GPa). Increased substrate stiffness alone induced comparable 

upregulation of myofibroblast marker genes to TGF-β1 treatment (Extended Data Fig. 4d-e). 

The combination of TCP and TGF-β1 treatment caused the largest increase in myofibroblast 

gene expression. However, this still failed to fully induce the level of myofibroblast 

differentiation observed ex-vivo (upregulating 39% of CAF4 marker genes and 29% of the 
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myofibroblast pseudotime module; Fig. 4d-e, Extended Data Fig. 4f and Supplementary 

Table 6). 

Similar to TGF-β1 treatment, IL-1β caused a significant increase in the expression of a subset 

of genes up-regulated by ex vivo inflammatory fibroblasts (upregulating 14% of NF3 markers 

and 13% of the inflammatory pseudotime module; Fig. 4c-e and Extended Data Fig. 4g). 

Notably, IL-1β also significantly increased the expression of stress-response (CAF1) and 

catabolic (CAF3) marker genes (28% and 47% respectively; Fig. 4c). 

To align these findings with previous studies, we curated lists of IL-1β or TGF-β1 dependent 

inflammatory fibroblast or myofibroblast genes by combining our findings with publicly 

available data (Supplementary Table 6). This showed that, across multiple studies, TGF-β1 

has been found to upregulate 59% of myofibroblast genes (markers and pseudotime module) 

and IL-1β 32% of Inflammatory fibroblast genes (Extended Data Fig. 4f-g). Together, these 

data indicate myofibroblast and inflammatory fibroblast activation in NSCLC is only partially 

TGF-β1- or IL-1β-dependent.  

To identify additional stimuli regulating fibroblast differentiation in vivo, we analysed the 

expression of ligand-receptor pairs in our scRNA-seq dataset. To compare fibroblast 

phenotypes between samples, the median position of fibroblasts in the diffusion map 

dimensionality reduction was used (Fig. 5a). We then examined which cells were responsible 

for expressing ligands recognised by fibroblast receptors. This showed that in myofibroblast 

or proto-myofibroblast rich samples, fibroblasts themselves were the primary ligand source -

suggesting autocrine signalling is likely critical to regulating these phenotypes (Fig. 5b). In 

contrast, epithelial, myeloid cells and fibroblasts all contributed similarly to ligand expression 

in inflammatory or proto-inflammatory rich samples (Fig. 5b).  

To examine the potential role of specific ligands in fibroblast activation, we tested the 

predictive value of each ligand’s average expression (per sample) on the sample’s position in 

pseudotime, using generalised linear modelling (GLM; Fig. 5c). Ligands identified as 
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significant (p<0.05) in this modelling were then examined for previously reported regulatory 

potential over IL-1β- or TGF-β1-independent inflammatory or myofibroblast genes 

respectively, using the NicheNet database28 (Supplementary Table 8; further analysis of 

ligands with p<0.01 is shown in Fig. 5c-i).  This identified multiple ligands with potential to 

regulate TGF-β1- or IL-1β-independent features of myofibroblast and inflammatory fibroblast 

activation respectively (including IL11, SPP1, AGRN – myofibroblast; IL6, ICAM5, ICAM4 – 

inflammatory; Fig. 5c-i). The results from this analysis for all ligands with p<0.05, including 

inferred downstream signalling pathways, can be examined interactively using R shiny apps 

available at the following links: myofibroblast activation and  inflammatory fibroblast activation 

(examples shown in Extended Data Fig. 5). 

In summary, we have characterised fibroblast heterogeneity in human NSCLC and tumour-

adjacent tissues. We identified seven subpopulations, with varying abundance between 

NSCLC subtypes. These were shown to accumulate at spatially discrete signalling niches, 

within tumours, which may be associated with functional synergy. We also elucidated 

mechanisms regulating myofibroblast and inflammatory fibroblast activation in the NSCLC 

tumour microenvironment, by combining in vitro and in silico modelling. Fully differentiated 

myofibroblasts, which are well described to impact patient survival across solid cancers21, 

were more common in LUAD than LUSC. Notably, we found myofibroblasts and catabolic 

proto-myofibroblasts occupy similar spatial niches and therefore may play complimentary 

roles in ECM deposition and degradation. Consequently, their relative contribution to a niche 

may differentially impact tumour cell invasion34. Our analysis suggests TGF-β1 triggers 

myofibroblast differentiation, but additional stimuli are required to complete the process. This 

is consistent with previous studies showing that TGF-β1 is not required to maintain 

myofibroblast activation5. The ligands we identified as associated with myofibroblast activation 

are likely to represent these additional stimuli (Fig. 5d, f&h). For example, IL-11 inhibition can 

revert myofibroblast phenotypes in murine models of IPF35. Inflammatory fibroblasts are also 

a prominent feature of the NSCLC tumour microenvironment. In addition to the previously 
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described role for IL-1 in inflammatory fibroblast activation30, we showed that IL-1β induced 

expression of markers for all subpopulations predominantly isolated from LUSC samples 

(NF3, CAF1 and CAF3). LUSC have higher levels of necrosis and macrophage infiltration than 

LUAD36. Consistent with this as we found myeloid cells to be the primary source of IL1B, 

suggesting paracrine signalling interactions may play an important role in regulating fibroblast 

heterogeneity between NSCLC subtypes. However, similar to myofibroblast differentiation, 

complete inflammatory fibroblast activation requires stimuli in addition to IL-1β. Notably, we 

identified a potential role for IL6 in this process (Fig. 5e, g&i) and showed that IL6 expression 

is increased in fibroblasts following IL-1β treatment (Extended Data Fig. 4d). Therefore, it is 

possible that autocrine IL-6 signalling fully activates inflammatory fibroblasts, following initial 

stimulation by myeloid-cell derived IL-1β (Extended Data Fig. 4c). These findings provide 

novel insights into the signalling mechanisms that regulate fibroblast heterogeneity in human 

NSCLC. These are important considerations for future functional analyses and may allow 

more precise therapeutic strategies for fibroblast targeting to be developed. 
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Methods 

Sample acquisition and processing  

Lung samples were received from the TargetLung study (REC number 14/SC/0186; Table S8) 

as described previously14 and transported (within 1 hour) to the laboratory on ice in serum-

free Dulbecco’s Modified Eagle Medium (DMEM; Sigma-Aldrich). 

Tissue disaggregation was performed as previously described14. Briefly, samples were 

washed, incised and incubated with Collagenase P (3 U/ml; Sigma) at 37 °C with agitation 

(200 rpm) for 60 minutes. The resulting suspension was strained; incubated with red cell lysis 

buffer (BioLegend); and re-suspended in PBS supplemented with 9% Optiprep (Sigma) and 

0.1% bovine serum albumin (BSA). Single-cell transcriptome encapsulation was performed 

using a custom microfluidic platform (Drop-seq) as described previously14, 37. 

Single-cell RNA-seq data processing and analysis 

“Target Lung” Dataset (TLDS) processing all cells 

ScRNA-seq data processing and analysis was performed using the Seurat package in R 

(version 2.3.4)38, unless otherwise stated. Initial quality control was carried out to remove low 

quality events. First, we used a random forest classifier to exclude empty droplets as described 

previously14, 39. We then identified outliers for the fraction of reads mapping to mitochondrial 

genes (> 2 median absolute deviations; MADs) to exclude apoptotic cells.  

Initial clustering was performed using a subset of genes selected based on variance and 

average non-zero expression excluding extreme outliers. Raw counts data was transformed 

(log((counts+1)/10000)) and scaled (regressing out nUMI) before performing PCA. Clusters 

were identified with the FindClusters function, using principal components identified as 

significant with JackStraw analysis (p<1e-5) and a resolution of 0.2. Cluster markers were 

identified using the FindAllMarkers function (ROC classifier) and cell types were assigned 

based on canonical marker expression or by significant enrichment (adj. p<0.0001) in 
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previously described cell type markers from the Immunological Genome40 and LungGENS41 

projects, assessed using the ToppFun gene set enrichment tool42.  

This clustering identified a large cluster of cells comprised of lymphocytes. However, due to 

the relatively low nGene associated with lymphocytes (described previously13) and therefore 

high susceptibility to false negatives in marker detection (due to drop-out), this cluster had 

very few genes identified as markers. Therefore, it was unclear whether the lymphocytes were 

separated from low-quality droplets. To identify lymphocytes within this cluster the 

AddModuleScore function was used to calculate the average expression of previously 

described T-cell markers (TRBC2, CD3D, CD3E, CD3G, CD2, IL7R, CD8A) and NK cell 

markers (FGFBP2, SPON2, KLRF1, NKG7, PRF1, KLRD1). This cluster was then filtered 

further to remove cells negative for both gene signatures. This filtered dataset was then re-

clustered as described above. 

“Lambrechts” Dataset processing all cells 

The “Lambrechts” scRNA-seq dataset13 was downloaded as the “all cells” .loom file from 

https://gbiomed.kuleuven.be/scRNAseq-NSCLC. The empty droplet classifier (described 

above) was applied to this data set, filtering out 4768 cells, leaving a filtered dataset consisting 

of 47930 cells. The BuildRFClassifier function was then used to build a random forest classifier 

for detecting fibroblasts in the Target Lung dataset from the variable genes used for cell 

clustering. This classifier was then used to detect fibroblasts within the Thienpont dataset for 

further analysis (described below). 

Fibroblast clustering Meta-analysis 

Variable genes were identified as described above for each fibroblast dataset (Target Lung 

and Thienpont). The genes identified as variable in both datasets were then combined using 

canonical correlation analysis (CCA) implemented in Seurat. Clustering was performed using 

canonical vectors (selected based on shared correlation values >0.1 using the 

MetageneBicorPlot function) and a resolution of 1. Consensus cluster markers were identified 

using the FindAllMarkers function (as described below). Initial clustering yielded a small 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 8, 2020. ; https://doi.org/10.1101/2020.06.08.134270doi: bioRxiv preprint 

https://gbiomed.kuleuven.be/scRNAseq-NSCLC
https://doi.org/10.1101/2020.06.08.134270


17 
 

cluster likely to represent cells that had been incorrectly clustered/classified as they were 

marked by expression of immune cell markers (e.g. IL7R, CD3D, LYZ and PTPRC). This 

cluster was therefore excluded, and the remaining cells were then re-clustered as described 

above using consensus cluster and node markers for CCA. 

We then examined the connectivity, within the SNN graph used for clustering, between cells 

assigned to each cluster. Mixture model analysis (mixtools package in R43) of intra-cluster 

connectivity values was then performed, identifying a bimodal distribution representing highly 

connected “Hub cells” and less connected cells (likely between differentiation states). Cells 

with a probability <0.75 of association with the second (more connected) component were 

removed from the respective cluster.  

Fibroblast Subpopulation Consensus Marker identification 

Marker genes were identified for each dataset separately, using the FindAllMarkers function 

(MAST test, with default settings treating nUMI and ambient RNA content as latent variables). 

“Meta” logFC and adj. p values were then calculated as the minimum absolute log(fold change) 

or maximum adj. p value across the two datasets and genes were considered consensus 

markers where the meta-adj. p < 0.05 and meta-logFC > 0.25.  

Trajectory inference 

Consensus Marker genes were used for trajectory inference. To mitigate batch effects and 

technical confounders the dataset (TLDS or Lambrechts) and nUMI were “regressed out” 

using the ScaleData function in Seurat. Diffusion map dimensionality reduction was then 

performed on the scaled data, using the destiny R package. Trajectory inference and 

pseudotime ordering was carried out using the Slingshot package in R20. Inferred lineages 

were variable, dependent on the diffusion map components analysed. Therefore, we 

considered all lineages identified from analysing the first three diffusion map components as 

potential cell-state transitions (Fig.2 c-d).  
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To validate these findings  we also performed trajectory inference using the DDRtree 

dimensionality reduction and minimum spanning tree cell ordering algorithm implemented in 

the Monocle R package (v2.8.0)44. This identified lineages consistent with those identified from 

analysis of the first two components in the diffusion map approach (Extended Data Fig.2e). 

Pseudotime gene expression analysis was performed for each of the trajectories identified. 

Each dataset was tested separately, using a generalised additive model (GAM; Loess) to 

determine the significance of pseudotime as an explanatory variable for each gene’s 

expression. The maximum (least significant) value from analysing the two datasets was used 

a as a meta-p value, which was then adjusted to account for multiple hypothesis testing using 

the FDR correction. 

Genes differentially expressed in pseudotime (meta-adj. p < 0.05) were examined further to 

identify pseudotime gene expression modules. Fitted values from the GAM model generated 

for each gene and each trajectory were used to perform gene correlation network analysis, 

using the WGCNA package in R45. The topological overlap (TO) between genes was 

calculated from a signed-hybrid adjacency matrix. Gene modules were identified using a 

dynamic tree cutting algorithm applied to a 1-TO distance matrix. Hub Genes were identified 

as those with greatest intra-modular connectivity. 

Gene set enrichment analysis 

The enrichr R package29 was used for assessing consensus marker genes and pseudotime 

gene expression modules for gene set enrichment. 

Ligand-receptor interaction analysis 

Genes with potential activity as receptor ligands were identified using the NicheNet 

database28. Receptors were considered to be expressed by fibroblasts if they were detected 

in at least 5% of fibroblasts (as measured by scRNA-seq). Sample phenotypes (either position 

in diffusion map 3-dimensional space or trajectory inferred pseudotime) were calculated using 

the median value for all fibroblasts isolated from each sample (samples with less than 20 
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fibroblasts were excluded from this analysis). Cell-type specific contributions to ligand 

expression were calculated as the proportion of counts for each sample (or sample group) 

detected from individual cell types. Average expression (AE) values for ligands per sample 

were calculated using the AverageExpression function in Seurat. These values were then 

transformed to log(AE+1) and used as predictor variables for trajectory inferred pseudotime 

in GLM modelling.  

Signalling pathways were inferred for each ligand’s potential role in target gene regulation 

using the NicheNet database28 and enrichr gene set enrichment analyses. First, transcription 

factor databases (“ENCODE_TF_ChIP-seq_2015” and “ARCHS4_TFs_Coexp”) were 

examined for enrichment in target genes (myofibroblast or inflammatory genes) using 

enrichr29. Transcription factors with significant (adj.p < 0.05) enrichment in either of these 

databases were classed as “Target enriched TFs” (TE-TFs). To minimise overlap in pathway 

inference between myofibroblast and inflammatory fibroblast activation, where TE-TFs were 

significant for both sets of target genes the odds ratio was used to determine which pathway 

it was most likely associated with. The NicheNet ligand_tf_matrix was then used to determine 

whether these TE-TFs act downstream of the ligand under investigation (“active TE-TFs”). To 

simplify pathway inference the active TE-TFs were restricted to the top 5, ranked by their score 

in the ligand_tf_matrix.  The NicheNet weighted ligand-signaling network was then filtered to 

only contain the ligand under investigation and genes detected in at least 5% of fibroblasts 

(by scRNA-seq). The shortest possible paths from ligand to active TE-TFs in this filtered 

network were then calculated using the shortest_paths function in the igraph R package46 

(weighted by 1/weight). 

Multiplex Immunohistochemistry (MxIHC) 

Staining 

Immunohistochemical staining of sections from ten TargetLung patients was performed, using 

a previously-described multiplexed protocol47. Four micrometre sections of formalin-fixed 

paraffin-embedded sections were mounted on Superfrost slides (ThermoFisher) and baked 
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for 60 minutes at 60 °C. Deparaffinisation, rehydration, antigen retrieval and 

imunihistochemical staining were performed using the PT Link Autostainer (Dako) pre-defined 

program. Antigen retrieval for all antibodies was performed using the EnVision FLEX Target 

Retrieval Solution, High pH (Dako).  

Sections were incubated with primary antibody (anti-pan-cytokeratin, clone AE1/AE3, Dako, 

pre-diluted; anti-POSTN, polyclonal, Abcam, ab14041, 1:1000; anti-SERPINE1, polyclonal, 

SIGMA, HPA050039, 1:50; anti-ACTA2, clone 1A4, Dako, pre-diluted) for 20 minutes (except 

for pan-cytokeratin, which was incubated for 30 minutes). Endogenous peroxidase activity 

was blocked using the Envision FLEX Peroxidase-Blocking reagent (Dako). EnVision FLEX 

HRP detection reagent (Dako) for secondary amplification and enzymatic conjugation. 

Chromogenic visualisation was performed using haematoxylin counterstaining and 2x5-

minute washes in either diaminobenzidine (DAB, for pan-cytokeratin staining) Following 

staining for cytokeratin, sections were sequentially stained for fibroblast markers and 

visualised using 3-amino-9-athylcarbazole (AEC). Antigen retrieval was performed between 

each staining iteration to remove the previous round’s antibodies, along with removal of the 

labile AEC staining using organic solvents (50% ethanol, 2 minutes; 100% ethanol, 2 minutes; 

100% xylene, 2 minutes; 100% ethanol, 2 minutes; 50% ethanol, 2 minutes).  

Digital pathology processing and image analysis 

Stained slides were scanned at 20x with the ZEISS Axio Scan.Z1, using ZEN 2 software 

(ZEISS). Image processing was carried out using custom macro scripts in the Fiji software 

package48. Images from each staining iteration were registered using the Linear Stack 

Alignment with SIFT plugin49. Then converted to “pseudo-immunofluorescence” (pIF) multi-

layered TIFF images with the colour deconvolution plugin50, using the “H-AEC” vector matrix 

followed by subtracting channel 3 (“green”) from channel 2 (“red”) to distinguish between 

brown (Dab) staining and red (AEC) staining. Cells were then segmented based on 

haematoxylin (nuclear) staining and cytoplasmic regions were simulated as ellipses grown 

from the segmented nuclei. The mean staining intensity and fraction of cellular area positive 
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for each stain was then calculated per cell. This, plus XY coordinates for each cell were 

exported for histo-cytometry analysis, using the spatstat package in R51.  

Fibroblast identification and subpopulation classification 

Stromal cells were identified using a random forest classifier. To optimise this classifier a 

subset of the histo-cytometry dataset was generated to include 2000 cells from 3 samples, 

which equally covered the quantiles of stromal marker expression (ensuring both stromal and 

non-stromal cells were equally represented). The coordinates associated with these cells were 

then used to manually annotate these cells as fibroblasts or stromal cells and non-fibroblasts 

(Extended Data Fig. 3b). The manually annotated dataset was then split into training 

(n=1500) and test (n=500) sets. Random forest models were trained to detect annotated 

stromal cells based on either nuclear morphology, marker expression, or both in combination 

(Fig. 3b). In the test dataset, the latter approach yielded the highest accuracy (AUC = 0.92; 

overall accuracy = 84.4%). This classifier was then applied to the entire histo-cytometry 

dataset, identifying 1.9x106 stromal cells.  

A random forest classifier was also used to assign stromal cells identified by histo-cytometry 

to the relevant subpopulation. To train this classifier, imputation was performed on the “Hub 

cells” dataset for ACTA2, SERPINE1 and POSTN using the Seurat AddSmoothedScore 

function. Imputed expression values were then scaled and randomly split into training (66% of 

cells) and test (33% of cells) sets. A random forest classifier was then trained and tested on 

these 2 datasets respectively, demonstrating 97.3% accuracy in the test set.  

Histo-cytometry estimates of cellular expression levels were calculated as Intensity scaled 

pixel counts. The positive pixels per 1000 pixels (PPC) and integrated density was calculated 

for each segmented cell. To determine pixel intensity independent of the fraction of cellular 

area with positive staining the Integrated density measurements were normalised for PPC 

(using a linear model) and scaled from 1-2, such that 1 indicates minimum intensity and 2 

indicates maximum intensity. Intensity scaled pixel counts were generated as the product of 

this scaled intensity measurement and PPC per cell.  Log2(Intensity scaled pixel counts + 1) 
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were used to estimate the expression of each protein per cell. These expression values were 

then scaled to have the same range as scRNA-Seq measurements for each gene. The random 

forest classifier was applied to this scaled data, calculating the probability of each cell being a 

specific fibroblast subpopulation. In cases where the classifier failed to accurately identify the 

appropriate subpopulation (probability < 0.5) these cells were designated as undetermined. 

After applying this filter, 71.8% of stromal cells were assigned to one of the nine 

subpopulations.   

Spatial Analysis 

Tissue regions (Tumour, margin/edge, adjacent normal and vessels) were annotated by a 

consultant pathologist (GJT). Subpopulation abundance in each region was calculated using 

the owin function in the spatstat R package51.  

DBSCAN spatial clustering was carried out using the dbscan package in R52. The histo-

cytometry dataset was subset to include stromal cells from each sample. The DBSCAN was 

then used to identify spatially discrete regions of high stromal density, using a randomly down-

sampled subset of each sample including 10% of all stromal cells. The minimum points 

parameter was set to the default of 4, as recommended for two-dimensional data. The ε (eps) 

parameter was set to 500 (equivalent to 110 µm), based on manual identification of the 

inflection point in kNN-distance plots for each sample. The predict function was then used to 

apply this clustering to all fibroblasts in each sample. The fraction of subpopulations at each 

niche was calculated and niches with similar compositions were identified by unsupervised 

hierarchical clustering using Ward’s method. 

Cell culture 

Primary lung fibroblasts were isolated from disaggregated tissue samples as described 

previously14 and cultured in DMEM supplemented with L-glutamine (1% v/v; Sigma), penicillin-

streptomycin (1% v/v; Sigma) and foetal calf serum (FCS; 10% v/v for routine maintenance 

and 1% v/v for experimentation; Biosera). Human Recombinant TGF-β1 (R&D Systems) was 

reconstituted in 4mM HCl, 0.1% (w/v) BSA and administered to cells at a dose of 2ng/ml. 
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Human recombinant IL-1β (ThermoFisher) was reconstituted in deionised water and 

administered at 10 ng/ml. 

Quantitative Real-time PCR (QPCR) 

Cell pellets from trypsinised cells underwent RNA extraction with DNase digestion using 

ReliaprepTM RNA Cell Miniprep System (Promega). RNA quantitation was performed using a 

NanoDrop Spectrophotometer (Thermo Fisher Scientific). One microgram of RNA was reverse 

transcribed in a 20μl reaction volume, using the High Capacity cDNA Reverse Transcription 

Kit (Applied Biosystems), according to manufacturer’s instructions. Two nanograms of cDNA 

was analysed by PCR using TaqMan Real-Time PCR Assays (COL1A1 [Hs00164004_m1]. 

IL6 [Hs00174131_m1]; and housekeeping genes - ACTB [Hs01060665_g1], B2M 

[Hs00187842_m1], GAPDH [Hs02786624_g1]; Thermo Fisher Scientific) and the 

QuantStudio 7 Flex Real-Time PCR system (Thermo Fisher Scientific). 

Statistical analysis 

Statistical analysis was performed as described in the methods above and in figure legends, 

as appropriate for each statistical method implemented. 

Data Availability 

The scRNA-sequencing data generated in this study will be made available using the NCBI 

Gene Expression Omnibus database when accepted for publication. 
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Figures 

Figure 1: Single cell RNA-sequencing identifies fibroblast subpopulations in human 

NSCLC. 

 

a) Human tumour-adjacent normal lung (n=6) and non-small cell lung cancer (NSCLC) (n=12; 

adenocarcinoma [LUAD] or squamous cell carcinoma [LUSC]) samples were disaggregated 
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and analysed by scRNA-seq. A 2D visualisation (tSNE dimensionality reduction) of cell-type 

clustering is shown, highlighting different cell lineages. Further analysis is shown in Extended 

Data Fig.1.  

b) UMAP plots showing subpopulations identified for each cell lineage identified in panel a. 

c-e) Transcriptome-based meta-analysis of mesenchymal stromal cells (predominantly 

fibroblasts) in human NSCLC (LUAD, LUSC or large cell lung cancer [LCLC]; further analysis 

shown in Extended Data Fig.2). 

c) A 2D visualisation (UMAP dimensionality reduction) showing unsupervised clustering of 

stromal cells, highlighting subpopulations (grey points represent non-clustered cells).  

d) UMAP plot (as per c) with points coloured by dataset or tissue type, as indicated. 

e) Stacked bar chart showing the relative abundance of each stromal subpopulation by 

NSCLC subtype. 
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Extended Data Figure 1: 

 

a) Human tumour-adjacent lung (n=6) and NSCLC (n=12) samples were disaggregated and 

analysed by scRNA-seq. A 2D visualisation (tSNE dimensionality reduction) of cell-type 

clustering is shown, highlighting different cell populations. 
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b) Barplots showing the cell-type composition of each sample analysed by scRNA-seq. 

c) Violin and boxplots showing the number of unique molecular identifiers (UMI) per cell for 

different cell-types. 

d) tSNE plot showing the tissue type for cells analysed by scRNA-seq 

e) Feature plots showing the expression of fibroblast marker genes. 

f) Feature plots showing the expression of canonical markers for different cell-types. 
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Figure 2: Fibroblast subpopulations represent a continuum of differentiation states 

ranging from inflammatory fibroblasts to myofibroblasts 

 

a) Barplot showing the enrichr combined score for biological process (GO-terms) enrichment 

associated with consensus marker genes for each fibroblast subpopulation (complete results 

provided in Supplementary Tables 1&2). 

b) Dotplots showing fibroblast subpopulation’s expression of previously described fibroblast 

phenotype gene sets (complete results provided in Supplementary Table 3; Myo CAFs = 
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Myofibroblastic-CAFs; iCAFs = inflammatory-CAFs; IPF = Idiopathic pulmonary fibrosis). 

Statistical significance was assessed using a Wilcox test with fdr correction to compare the 

median expression level per sample for each cluster to all other clusters (***adj. p<0.001, 

**adj. p<0.01, *adj. p<0.05).  

c) Diffusion map showing trajectory inference using the slingshot algorithm applied to 

components 1 and 2 or 1 and 3. Points represent individual cells coloured by cluster and lines 

represent the principal curves identified for each inferred trajectory. 

d) Network plots summarising all cell state transitions identified by trajectory inference. Nodes 

represent cluster medians mapped to diffusion map components (as shown in c) 1 and 2 (i); 

1 and 3 (ii); or in a tree layout (iii) showing all cell state transitions identified.  

e) Heatmap showing topological overlap of gene expression in trajectory-inferred pseudotime 

as a symmetrical matrix. Gene modules, identified by correlation network analysis, are shown 

to the left of the heatmap. The top 3 hub genes (measured by intra-module connectivity) for 

each module are labelled.  

f) Dotplots showing the expression of each pseudotime gene expression module by different 

fibroblast subpopulations. Statistical significance was assessed using a Wilcox test with fdr 

correction to compare the median expression level per sample for each cluster to all other 

clusters (***adj. p<0.001, **adj. p<0.01, *adj. p<0.05, • adj. p=0.05).  
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Extended Data Figure 2:  

 

a) Barplots showing the stromal subpopulation composition of each sample analysed. 
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b) Violin and boxplots showing the number of unique molecular identifiers (UMI) per cell for 

each stromal subpopulation. 

c) Violin plots showing the expression of selected marker genes across stromal 

subpopulations. 

d) Heatmap showing consensus cluster marker expression. Three selected markers for each 

fibroblast subpopulation are labelled. 

e) Plots showing trajectory inference validation using the Monocle algorithm  
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Figure 3: Fibroblast subpopulations accumulate at spatially discrete niches 
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a) Representative example of multiplex immunohistochemistry (mxIHC) staining and pseudo-

immunofluorescence (pIF) image generation. 

b) ROC analysis of fibroblast detection classifiers trained using the metrics indicated (see also 

Extended Data Fig. 3b). 

c) Representative point pattern plot showing per cell expression levels of pan-cytokeratin 

(PanCK). Sample dataset was randomly downsampled to 10% of cells for plotting. 

d) As per c showing results of the fibroblast classifier. Only non-epithelial cells (PanCK low) 

are shown; the sample dataset was randomly downsampled to 10% for plotting. 

e)  As per c showing fibroblast subpopulation classifier results. 

f) Representative images showing stromal hot-spot identification. The upper panel shows a 

heatmap for stromal cell density; the lower panel shows the results from DBSCAN clustering 

analysis. 

g) Representative point pattern plot showing the results of Niche classification by clustering 

stromal hotspots based on subpopulation composition (see also Extended Data Fig.3c) 

h) Heatmap showing the pairwise spearman correlation between stromal subpopulations 

across DBSCAN hotspots.  Non-significant (adj. p>0.05) correlations are shown in white 

squares. 

i) Representative micrographs showing myofibroblastic and inflammatory niches. Scale bars 

represent 100 µm. 
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Extended Data Figure 3:  

 

a) Violin plots showing expression of ACTA2, POSTN and SERPINE1 in the scRNA-seq and 

MxIHC datasets, as indicated. 
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b) Representative images showing manual annotation of fibroblasts for training a random 

forest classifier for automated detection. 

c) Box and violin plots showing the relative fraction of stromal subpopulations across 

different niches. 

d) Representative micrographs showing a pericyte-rich and muscle-rich niche. Scale bars 

represent 100µm. 
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Figure 4: IL-1β and TGF-β1 treatment alone is not sufficient to generate ex-vivo 

inflammatory and myofibroblast phenotypes respectively 
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a-b) Predicted ligand involvement in Myofibroblast (a) and inflammatory fibroblast (b) gene 

expression. Bar plots show enrichment scores for “GEO ligand perturbation UP” gene sets 

from the enrichr database. 

c) Dotplots showing expression of fibroblast subpopulation marker genes, measured by 

scRNA-seq, in primary fibroblasts cultured in vitro on a “soft” (2kPa) substrate and treated with 

IL-1β (10ng/ml) or TGF-β1 (2ng/ml). statistical significance was assessed using a wilcox test 

compared to the control (CTR) group with fdr correction (****adj. p<0.001, ***adj. p<0.001). 

d) Dotplots comparing ex vivo and in vitro expression levels for myofibroblast (CAF4) or 

inflammatory fibroblast (NF3) marker genes. Fibroblasts were treated as per panel c or 

cultured on tissue culture plastic (TCP). 

e) Comparison of in vitro and ex vivo fibroblast phenotypes by projection onto the fibroblast 

marker gene diffusion map (shown in Fig.2d). Points represent individual cells or the median 

position of cells from each condition. 
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Extended Data Figure 4:  

 

a) Scatter plots showing ligands predicted regulatory activity over myofibroblast marker or 

pseudotime module genes.  

b) As per (a) for inflammatory fibroblast marker genes. 
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c) Violin plots showing the source of IL1B and TGFB1 expression in the NSCLC tumour 

microenvironment, measured using the TLDS scRNA-seq dataset. 

d) Barplots showing QPCR analysis of primary fibroblasts (n = 3 independent experiments) 

cultured on a 2kPa substrate or tissue culture plastic (TCP) treated with TGF-β1 (2ng/ml for 

72 hours) or IL-1β (10ng/ml for 72 hours). Statistical significance was assessed using one-

way ANOVA with Dunnet’s comparison between treatment groups and the 2kPa CTR group. 

*adj. p<0.05. 

e) Violin plots showing relative expression (measured by scRNA-seq) of proto-myofibroblast 

and myofibroblast marker genes in primary fibroblasts treated as described above. 

f) Pie chart showing the proportion of myofibroblast genes up-regulated following TGF-β1 

treatment and the relative proportion of these genes identified from our scRNA-seq analysis 

or publicly available datasets (see also Supplementary table 6). 

g) Pie chart showing the proportion of inflammatory fibroblast genes up-regulated following 

IL-1β treatment and the relative proportion of these genes identified from our scRNA-seq 

analysis or publicly available datasets (see also Supplementary table 6). 
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Figure 5: In Silico modelling identifies IL-1β and TGF-β1 independent mechanisms of 

fibroblast activation 
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a) Diffusion map showing sample clustering based on fibroblast phenotypes. Samples are 

represented by the median position of fibroblasts in the diffusion map. 

b) Bar plots show the Kleinberg Hub Scores for expression of ligands recognised by fibroblast 

expressed receptors in different sample types.  

c) Volcano plot showing the results from linear regression modelling of associations between 

ligand expression (per sample averaged over single cells) and each sample’s median 

fibroblast phenotype. Ligands with p<0.01 are labelled,  

d-e) Heatmap showing the average expression of ligands associated with myofibroblasts (d) 

or inflammatory fibroblast (e) activation and barplots showing the relative contribution of 

different cell types to this expression. 

f) Barplots showing the regulatory potential of ligands associated with myofibroblast activation 

on TGF-β1 independent myofibroblast genes. 

g) Barplots showing the regulatory potential of ligands associated with inflammatory fibroblast 

activation on Il-1β independent inflammatory genes. 

h) Circos plot showing known links between ligands associated with myofibroblast activation 

and TGF-β1 independent myofibroblast genes. The primary source of each ligand is also 

shown. 

i) Circos plot showing known links between ligands associated with inflammatory fibroblast 

activation and Il-1β independent inflammatory genes. The primary source of each ligand is 

also shown. 
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Extended Data Figure 5: 

 

a-e) Example of signalling pathway inference for IL-11 mediated regulation of TGF-β1 

independent myofibroblast genes, generated using an R shiny app available at myofibroblast 

activation. 
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f-j) As per a-e, showing an example of signalling pathway inference for IL-6 mediated 

regulation of IL-1β independent inflammatory genes, generated using an R shiny app 

available at inflammatory fibroblast activation. 

a&f) Barplot showing the relative contribution of different cell-types to the expression of IL11 

in myofibroblast and proto-myofibroblast rich samples (a); or IL6 expression in inflammatory 

and proto-inflammatory rich samples (f). 

b-c & g-h) Scatter plots showing the relationship between IL11 expression and trajectory 2 

(CAF4-CAF3-CAF2-NF2-NF3; b&g) or trajectory 3 (CAF4-CAF3-CAF2-CAF1-NF3; c&h) 

pseudotime. 

d&i) Inferred downstream mediators involved in IL11 mediated regulation of TGF-β1 

independent myofibroblast genes (d) or IL6 mediated regulation of IL-1β independent 

inflammatory genes (i), identified using the NicheNet database. 

e&j) Barplot showing IL11’s regulatory potential score for the top 20 TGF-β1 independent 

myofibroblast genes (e) or IL6’s regulatory potential score for the top 20 IL-1β independent 

inflammatory genes (j), measured using the NicheNet database. 
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Supplementary Table Legends 

Supplementary Table 1: Fibroblast subpopulation consensus marker genes. 

Differentially expressed genes were identified for each fibroblast subpopulation using a 

MAST test. This analysis was run on TLDS and Lambrechts datasets separately. Meta-

log(fold-change) and Meta-adj.p values were then calculated from the lowest fold change or 

highest p value. 

 

Supplementary Table 2: Fibroblast subpopulation consensus marker enrichr analysis. 

Results from examining fibroblast subpopulation consensus markers for enrichment with 

genes from gene ontology (GO) biological processes. 

 

Supplementary Table 3: Fibroblast subpopulation gene signature expression. 

The expression of previously described fibroblast gene signatures was analysed across 

subpopulations identified by scRNA-seq. Statistical significance was assessed using a 

Wilcox test with fdr correction to compare the median expression level per sample for each 

cluster to all other clusters. The gene sets analysed are also provided in a separate sheet. 

 

Supplementary Table 4: Pseudotime gene expression module statistics. 

Statistics for pseudotime gene modules, identified by correlation network analysis of 

expression levels in trajectory-inferred pseudotime.  

 

Supplementary Table 5: Pseudotime gene expression module enrichr results. 

Results from examining pseudotime gene expression modules for enrichment with genes 

from pathways (KEGG); ligand perturbation gene sets (Ligand); microRNA targets (miRNA); 

and transcription factor targets (TF). 
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Supplementary Table 6: Identification of myofibroblast or inflammatory fibroblast 

genes regulated by TGF-β1 or IL-1β respectively  

Curated gene sets for TGF-β1 and IL-1β response genes in fibroblasts. Data is taken from 

scRNA-seq performed in this study and publicly available datasets (provided in separate 

sheets). 

 

Supplementary Table 7: Generalised linear modelling (GLM) of ligand associations with 

pseudotime trajectories 

The predictive value of each ligand's average expression for the sample's position in 

pseudotime was assessed using GLM. The statistics from this analysis for each pseudotime-

inferred trajectory are shown. 

 

Supplementary Table 8: Modelling ligand regulatory potential on either TGF-β1 or IL-1β 

independent myofibroblast or inflammatory fibroblast activation respectively. 

This table contains statistics from GLM and predicted regulatory potential for all ligands 

significantly associated with myofibroblast or inflammatory fibroblast activation (p < 0.05). 

Regulatory potential was calculated using the NicheNet R package. 
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