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Abstract  14 

For many pollinators, flowers provide predictable temporal schedules of resource availability, 15 

meaning an ability to learn time-dependent information could be widely beneficial. However, 16 

this ability has only been demonstrated in a handful of species. Observational studies of 17 

Heliconius butterflies suggest that they may have an ability to form time-dependent foraging 18 

preferences.  Heliconius are unique among butterflies in actively collecting and digesting pollen, 19 

a dietary behaviour linked to spatiotemporally faithful ‘trap-line’ foraging. Time-dependency of 20 

foraging preferences is hypothesised to allow Heliconius to exploit temporal predictability in 21 

alternative pollen resources, as well as contributing to optimal use of learnt foraging routes. 22 

Here, we provide the first experimental evidence in support of this hypothesis, demonstrating 23 

that Heliconius hecale can learn opposing colour preferences in two time periods. This shift in 24 

preference is robust to the order of presentation, suggesting that preference is tied to the time of 25 

day and not due to ordinal learning. However, we also show that this ability is not limited to 26 

Heliconius, as previously hypothesised, but is also present in a related genus of non-pollen 27 

feeding butterflies. This demonstrates that time learning pre-dates the origin of pollen-feeding 28 

and may be prevalent across butterflies with less specialized foraging behaviours.  29 

 30 
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pollinator.  32 

1. Introduction                 33 

 34 

The specific cues providing animals with reliable information about resource availability vary 35 

across environments, and this variation shapes which cues animals learn to use [1,2]. For 36 

example, animals inhabiting dark environments may preferentially learn associations with 37 

olfactory cues over visual cues [3,4]. These learning propensities can also evolve in response to 38 

changes in conditions. In experimental conditions where colour cues are reliable, but odours are 39 

not, Drosophila evolve strong visual learning propensities [5]. An animal’s learning abilities are 40 

therefore influenced by the relative reliability of the cues associated with key resources [6]. 41 

However, the context in which a cue is encountered can also have a role in shaping the reliability 42 

of that cue [7,8].  43 

 For many pollinators, foraging for flowers occurs in the context of temporal variation in 44 

resource profitability. Flowers tend to vary predictably in the availability of pollen and nectar 45 

[9]. Consequently, some specialist nectarivores use time as a contextual cue to modulate their 46 

foraging strategy [9]. For example, honey bees can consistently change their preference towards 47 

particular visual cues throughout the day [10,11], and some nectarivorous ants remember the 48 

time of day at which resources are most profitable [12,13]. However, the ability to learn time-49 

dependent associations has only been formally demonstrated in a handful of invertebrates, 50 

including Drosophila, bees, and ants [11,14–21], and there is evidence that this ability can vary 51 

across species from the same family [12,13,22]. Hence, the prevalence of this ability, and the 52 

ecological factors that may account for its variability, are unclear. 53 

 Heliconius butterflies display a foraging behaviour not seen in the other 17,000+ 54 

described species of butterflies [23–25]. Heliconius actively collect and feed on pollen grains 55 

from a restricted range of plants that occur in low densities, but flower continuously [23,26]. 56 

This dietary adaptation provides an adult source of essential amino acids [24], which is plausibly 57 

linked to dramatically increased lifespan and reproductive longevity [27]. Pollen feeding is 58 

associated with a suite of derived foraging and cognitive adaptations not seen in other tropical 59 

butterflies, including fidelity to a local home-range [26,28], as well as temporally and spatially 60 

faithful ‘trap-lining’ behaviour, in which individual butterflies consistently visit particular 61 
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flowers at specific times of day [26]. Foraging efficiency is reported to increase with experience, 62 

suggesting trap-lines are learnt and refined throughout an individual’s life [29]. Recent data also 63 

suggest wild Heliconius visit particular flower species in a manner that coincides with the 64 

maximal temporal availability of nectar and pollen rewards [30]. Since the timing of pollen 65 

release and nectar production varies across flowering plants [26,30], the time of day becomes a 66 

useful contextual cue to optimise foraging behaviour [26,30].  67 

Given their derived foraging behaviour it has been hypothesised that Heliconius have 68 

evolved specific cognitive traits that support trap-lining behavior, including the ability to use the 69 

time of day as a contextual cue [26,31]. However, to our knowledge, time-dependent associative 70 

learning has not been reported in any Lepidoptera. In this study, we provide the first evidence 71 

that Heliconius butterflies can form time-dependent preferences for distinct flowers, and 72 

subsequently explore whether this ability is a derived trait in Heliconius associated with the 73 

evolution of pollen-feeding.  74 

 75 

 76 

2. Materials and Methods 77 

 78 

Experiments were performed at the Smithsonian Tropical Research Institute in Gamboa, 79 

Panama.  We initially focused on Heliconius hecale, with secondary experiments in Heliconius 80 

melpomene and Dryas iulia, a closely related, non-pollen feeding Heliconiini. Individuals were 81 

labelled with unique IDs. Animal husbandry is described in the ESM. 82 

 83 

2.1. Experimental set-up 84 

 85 

Artificial feeders were constructed from foam sheets with an Eppendorf tube placed centrally. 86 

Yellow and purple were chosen as experimental colours as they were equally approached by 87 

naïve butterflies in our pilot experiments. During training, feeders contained either a 10% sugar 88 

water solution with 2.5 CCF per 50 ml of critical care formula (a surrogate for pollen; rewarded 89 

feeder), or a saturated quinine water solution (punished feeder). 12 artificial feeders of each 90 

colour were placed on a grid of 24, with randomised positions (Figure S1). Butterflies were 91 
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presented with feeders for 2 hours in the morning (AM) (08:00-10:00) and 2 hours in the 92 

afternoon (PM) (15:00-17:00).  93 

 94 

2.2. Experimental procedure 95 

 96 

The experiment had four phases. 1) During pre-training, freshly eclosed butterflies were fed on 97 

white artificial feeders, in the AM and PM, for two days. 2) The naïve shift in colour preference 98 

based on time of day was recorded prior to training, using clean, empty feeders. Due to low 99 

feeding rates in the PM session, we split the initial preference test across two days. AM colour 100 

preference was recorded on day 1, and butterflies were food deprived in the PM. PM colour 101 

preference was performed on day 2, after food deprivation in the AM. 3) The training reward 102 

structure was split such that the purple feeders were rewarded in AM and yellow feeders 103 

rewarded in PM, or vice versa. This training phase lasted for 10 days. 4) During the final post-104 

training preference test butterflies were presented with clean, empty feeders for one hour in the 105 

AM, followed by the reinforced AM feeders for one hour, and then clean, empty feeders for an 106 

hour in the PM. To determine whether butterflies were learning the order in which they 107 

encountered the reward, rather than the time of day, a proportion of butterflies had the order of 108 

their AM and PM trials reversed (see supplemental material). During trials, artificial feeders 109 

were filmed from above with a GoPro HERO 5 camera (Figure S1). Using this footage, we 110 

scored the number of feeding attempts made by each individual.  111 

 112 

2.3. Training criterion 113 

 114 

For an observed behaviour to be a consequence of learning an animal must experience the 115 

reward contingency scheme [32]. Individuals were significantly less active in AM than PM 116 

during training (z = -13.11, n = 41, p < 0.01, figure S1A). As a consequence, some individuals (n 117 

= 11) either did not attempt to feed from both feeders in AM or, more commonly, PM during 118 

training, or did not make any foraging attempts during a final test session, and were removed 119 

from further analyses. We analysed the remaining data in two ways. First, we ran models 120 

including all remaining individuals. Second, following previous learning studies [33–35], we 121 

established a training criterion. As we are interested in whether time-dependent memories are 122 
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formed and can therefore guide behaviour in the absence of the reward, we identified individuals 123 

that correctly adjust their behaviour in AM and PM sessions during training with reinforced 124 

feeders. We then asked whether these individuals demonstrate evidence of learning by behaving 125 

in the same way when presented with unreinforced feeders in the post-training preference test. 126 

Our training criteria was that the majority (>50%) of feeding choices made by an individual in 127 

the final two training days were correct in both AM and PM. 128 

 129 

2.4. Statistical Analysis 130 

 131 

Data were analysed using generalized linear mixed models (GLMMs) in R [36]. We examined 132 

the influence of time on: (a) activity levels, measured as total foraging attempts, using GLMM 133 

with a Poisson distribution; (b) shifts in proportional colour preference when naïve, using 134 

GLMM with a binomial distribution; (c) shifts in proportional colour preference when trained, 135 

using GLMM with a binomial distribution, and presentation order in the final test included as a 136 

predictor. Across all models we included identity as a random effect. As individuals were trained 137 

and tested in groups of 8-13 within a single cage, where possible, a random effect of cage was 138 

also included to control for group level cage effects. We ensured all models fit their assumptions 139 

with the R package DHARMa [37] (see ESM).  140 

 141 

3. Results 142 

 143 

3.1. Heliconius butterflies can learn time-dependent associations 144 

 145 

Across the H. hecale that experienced the full training set, there was no significant effect of the 146 

time of day on naïve colour preferences (z = 0.90, n = 30, p = 0.36), and no overall effect of time 147 

of day on trained colour preference (z = -1.846, n = 30, p = 0.06). However, there was 148 

considerable variation in behavior during training, and only a subset of individuals (n = 16) 149 

passed the training criterion (Figure S2). Prior to training, both butterflies that met the training 150 

criterion, and those that did not, showed no significant shift in colour preference throughout the 151 

day (z = 0.33, n = 16, p = 0.73 and z = 1.15, n = 14, p = 0.24 respectively).  152 
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 Once trained, however, individuals that passed the training criteria showed a significant 153 

effect of the time of day on colour preference (z = -2.24, n = 16, p = 0.02, figure 1B). On 154 

average, the preference for AM rewarded colour decreased by 11% from AM to PM. The 155 

presentation order of the post-training preference test (AM first vs PM first) had no effect (z = 156 

0.36, p = 0.71, n =16). Among individuals that did not meet the training criterion there was no 157 

shift in colour preference throughout the day after training (z = 1.05, n = 14, p = 0.29). Addition 158 

of a small sample of H. melpomene (n = 6) support and strengthen these results (see ESM). 159 

 160 

3.2. Evidence time-learning is common across Heliconiini  161 

 162 

In a secondary experiment using Dryas iulia, a closely related genus within Heliconiini that does 163 

not pollen feed, 12 individuals experienced the full training set, with no overall response to 164 

training (z = 0.01, n = 12, p = 0.99). However, consistent with data from H. hecale, variation in 165 

the behaviour during training resulted in only a subset of individuals (n = 6) passing the training 166 

criterion. Among these individuals there was no significant effect of time of day on naïve 167 

preference (z = 1.67, n = 6, p = 0.09), but post-training there was a significant effect of time on 168 

colour preference, with preference for in the AM rewarded colour decreasing by 40% from AM 169 

to PM (Fig 2B, z = -9.334, n = 6, p < 0.001). Individuals that did not reach the training criterion 170 

show no effect of time before training (z =0.437, n= 6, p = 0.66), and show a significant shift in 171 

the incorrect direction post-training (z = 7.354, n = 6, p < 0.001).  172 

 173 

4. Discussion 174 

 175 

In this experiment, we demonstrate that Heliconius butterflies can use time as a context for 176 

making foraging decisions. The observed shift in preference here is similar in magnitude to 177 

observed temporal variation in floral visits by wild Heliconius [30]. Time-dependent learning 178 

and trap-lining can occur via an ordinal or a circadian timing mechanism [38]. Given 179 

presentation order has no effect on our results, we find no support for ordinal learning as an 180 

explanation, indicating the possible presence of a circadian memory. While suggestive of a 181 

circadian mechanism, our data do not confirm the presence of an endogenous mechanism, as it is 182 

possible butterflies are responding to external cues that covary with the time of day (e.g. light 183 
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levels, sun position). Nevertheless, the functional consequences of time learning by either 184 

mechanism are similar. To the best of our knowledge, these results provide the first experimental 185 

evidence of time-dependent learning in Lepidoptera.  186 

 The dietary innovation of pollen feeding in Heliconius butterflies has had major 187 

implications for their life history and ecology [28,39]. For most butterflies, reproductive output is 188 

constrained by the proteins collected during the larval stage [40]. Pollen feeding provides adult 189 

Heliconius with a reliable source of protein, leading to a pronounced delay of reproductive 190 

senescence [41]. Being able to efficiently exploit the sparsely distributed pollen-rich flowers is 191 

therefore critical to reproductive success in Heliconius [41]. Competition for pollen resources 192 

can be pronounced, and some Heliconius will forage early in the morning and actively defend 193 

flowers against other butterflies [23], suggesting selection may have favoured cognitive 194 

mechanisms that increase foraging efficiency. On this basis, it has been suggested that 195 

Heliconius may have acquired the ability to use time as a foraging cue in the context of pollen-196 

feeding [26]. Indeed, our experiments confirm Heliconius can use time as a foraging cue.  197 

However, we also show that a non-pollen feeding relative, Dryas iulia, has the same capacity. 198 

This suggests that an ability to learn time-dependent associations did not evolve in response to 199 

selection for trapline foraging, and pre-dates the origin of pollen-feeding. Although our sample 200 

size for Dryas is smaller than for Heliconius, the proportion of individuals passing the training 201 

criterion and the pattern of results are highly consistent. While data on the foraging behavior of 202 

Dryas in the wild is limited, they have no known foraging specialisations that are not seen in 203 

other groups, and have lifespans typical for tropical species [42]. It is therefore reasonable to 204 

suggest that the ability to use time as a contextual foraging cue may be widespread across 205 

butterflies.  206 

Previous work shows that time learning is prevalent among social Hymenoptera, where 207 

allocentric foraging provides an ecological context for using time cues in the context of a 208 

consistent foraging landscape [43–45]. Heliconius have converged on several foraging 209 

behaviours observed in these species, and also share dramatically expanded mushroom bodies, a 210 

region of the insect brain responsible for learning and memory [39]. Time-dependent memory 211 

acquisition is also reported in cockroaches [46], a third clade associated with mushroom body 212 

expansion [47]. This could be seen as indicating that the ecological challenges associated with 213 

learning foraging sites exert selective pressures favouring neuroanatomical elaboration 214 
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supporting specialised cognitive abilities, like time learning [21,47–50]. However, our data on 215 

Dryas suggest that elaborated mushroom bodies are not necessary for the time learning abilities 216 

displayed in these taxa. This is further supported by the fact that Drosophila, which have 217 

substantially smaller mushroom bodies, can also learn time-dependent olfactory associations 218 

[14]. Therefore, the neural basis of integrating time information with foraging cues may be 219 

relatively simple. Integrating time and place memories may be more complex than forming these 220 

associations in isolation, as hypothesised in hummingbirds [48,51]. However, time learning is 221 

likely to be an important precursor for temporally and spatially faithful foraging. Hence, the pre-222 

existence of this trait may have helped facilitate the evolution of trap-lining, and the transition to 223 

pollen-feeding in Heliconius. 224 

The ability to form time-dependent associations may have wider ecological effects. If a 225 

pollinator has a time learning ability, sympatric plant species can coexist by sharing, rather than 226 

competing for, the same pollinator by temporally partitioning pollen or nectar rewards [28]. This 227 

effect may explain observed divergence in the nectar/pollen release schedules of Psiguria 228 

flowers, a preferred pollen resource for Heliconius [26]. A similar phenomenon is observed in 229 

bees and Dalechampia flowers, adding support to the idea that time learning abilities have 230 

implications for ecological diversity [28]. 231 

 Overall, our results support the importance of temporal predictability in resources, rather 232 

than allocentric foraging or pollen-feeding, in promoting an ability for time learning. This is 233 

supported by the presence of time learning in both Dyras and Heliconius, and both pollinivorous 234 

and nectarivorous Hymenoptera. Moreover, time learning does not seem to be associated with an 235 

expansion of insect memory centres. Whether butterflies use internal or external cues to register 236 

time of day remains an open question for future study.  237 

 238 
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 403 

 404 

 405 

 406 

Figure legends 407 

 408 

Figure 1: Data from the colour preference trials of H. hecale individuals who met the training 409 

criterion. Artificial feeders were new, empty, and unreinforced in both cases. (A) Naïve 410 

preferences of butterflies in the morning and afternoon. (B) Colour preferences of butterflies 411 

from (A) after training. Grey lines connect individuals across time periods. Data are presented as 412 

means ± SE. * indicates P <0.05 413 

 414 

Figure 2: Data from the colour preference trials of D. iulia individuals who met the training 415 

criterion. Artificial feeders were new, empty, and unreinforced in both cases. (A) Naïve 416 

preferences of butterflies in the morning and afternoon. (B) Colour preferences of the butterflies 417 

from (A) after training. Grey lines connect individuals across time periods. Data are presented as 418 

means ± SE. ** indicates P<0.01 419 
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