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Abstract

Synaptic dynamics differ markedly across connections and strongly regulate how action
potentials are being communicated. To model the range of synaptic dynamics observed
in experiments, we develop a flexible mathematical framework based on a
linear-nonlinear operation. This model can capture various experimentally observed
features of synaptic dynamics and different types of heteroskedasticity. Despite its
conceptual simplicity, we show it is more adaptable than previous models. Combined
with a standard maximum likelihood approach, synaptic dynamics can be accurately
and efficiently characterized using naturalistic stimulation patterns. These results make
explicit that synaptic processing bears algorithmic similarities with information
processing in convolutional neural networks.

Author summary

Understanding how information is transmitted relies heavily on knowledge of the
underlying regulatory synaptic dynamics. Existing computational models for capturing
such dynamics are often either very complex or too restrictive. As a result, effectively
capturing the different types of dynamics observed experimentally remains a challenging
problem. Here, we propose a mathematically flexible linear-nonlinear model that is
capable of efficiently characterizing synaptic dynamics. We demonstrate the ability of
this model to capture different features of experimentally observed data.

Introduction 1

The nervous system has evolved a communication system largely based on temporal 2

sequences of action potentials. A central feature of this communication is that action 3

potentials are communicated with variable efficacy on short (10 ms - 10 s) time 4

scales [1–6]. The dynamics of synaptic efficacy at short time scales, or short-term 5

plasticity (STP), can be a powerful determinant of the flow of information, allowing the 6

same axon to communicate independent messages to different post-synaptic 7

targets [7, 8]. Properties of STP vary markedly across projections [9–11], leading to the 8

idea that connections can be conceived as belonging to distinct classes [12,13] and that 9

these distinct classes shape information transmission in vivo [14–16]. Thus, to 10
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understand the flow of information in neuronal networks, the connectome must be 11

indexed with an accurate description of STP properties. 12

One approach to characterizing synaptic dynamics is to perform targeted 13

experiments and extract a summary feature, most commonly the paired-pulse 14

ratio [5, 17–19], whereby a synapse can be classified as short-term depressing (STD) or 15

short-term facilitating (STF). However, a single summary feature is insufficient to 16

capture the full extent of STP diversity. Longer or more complex stimulation patterns 17

are required to describe delayed facilitation onset [6], biphasic STP [20,21] or the 18

distinction between supra- and sub-linear facilitation [22]. Such atypical STP dynamics 19

challenge the traditional dichotomy of STF and STD and suggest that more complex 20

phenotypes can exist and contribute to network function in unknown ways. A 21

complimentary approach to characterizing STP is to fit a mechanistic mathematical 22

model using all available experimental data, where the parameters correspond to 23

physical properties [23]. In this vein, the model proposed by Tsodyks and Markram 24

captures the antagonism between transient increases in vesicle release probability and 25

transient depletion of the readily releasable vesicle pool [11,24,25]. Optimizing the 26

parameter values to best fit the observed data provides an estimate of biophysical 27

properties, and thus supports a classification of STF or STD [26,27]. This simplicity 28

makes the Tsodyks-Markram model highly interpretable, but restricts its ability to 29

capture the diversity of synaptic responses to complex stimulation patterns. Complex 30

STP dynamics rely on interactions between multiple synaptic mechanisms, that cannot 31

be described in a simplified framework of release probability and depletion. To describe 32

the dynamics of complex synapses, the Tsodyks-Markram model therefore requires 33

multiple extensions [23,28], for instance, vesicle priming, calcium receptor localization, 34

multiple timescales, or use-dependent replenishment [6, 29–31]. As a compendium of 35

biophysical properties is collected, the properties become increasingly difficult to 36

adequately characterize based on experimental data because degeneracies and 37

over-parametrization lead to inefficient and non-unique characterization. Taken 38

together, current approaches appear to be either too complex for accurate 39

characterization, or insufficient to capture all experimental data. 40

The trade-off between the model’s identifiability and its ability to espouse complex 41

experimental data echoes similar trade-offs in other fields, such as in the characterization 42

of the input-output function of neurons [32–37]. Taking a systems identification 43

approach, we seek to sacrifice some of the model’s interpretability in order to avoid 44

over-parametrization and degeneracies while still capturing the large range of synaptic 45

capabilities. Inspired by the success of linear-nonlinear models for the characterization 46

of cellular responses [32,33], we extend previous phenomenological approaches to 47

synaptic response properties [3, 4, 38,39] to take into account nonlinearities and the 48

kinetics evolving on multiple time scales. We show that the resulting Spike Response 49

Plasticity (SRP) model captures short-term facilitation, short-term depression, biphasic 50

plasticity, as well as supralinear facilitation and post-burst potentiation. Using standard 51

gradient descent algorithms, model parameters can be inferred accurately with limited 52

amount of experimental data. Our work also makes explicit that synaptic dynamics 53

extend the information processing of dendritic integration by adding another layer of 54

convolution combined with nonlinear readout as in deep convolutional neural networks, 55

thus contributing to build a theory for information processing at synapses. 56
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Results 57

Deterministic Dynamics 58

To construct our statistical framework, we first consider the deterministic dynamics of 59

synaptic transmission. Our goal is to describe the dynamics of the amplitude of 60

individual post-synaptic currents (PSCs). Specifically, a presynaptic spike train will give 61

rise to a post-synaptic current trace, I(t), made of a sum of PSCs triggered by 62

presynaptic action potentials at times tj : 63

I(t) =
∑
j

µjkPSC(t− tj), (1)

where kPSC is the stereotypical PSC time course and µj is the synaptic efficacy, or 64

relative amplitude, of the jth spike in the train normalized to the first spike in the train 65

(µ1 = 1). 66

To begin modeling synaptic dynamics, we seek a compact description for generating 67

I(t) from the presynaptic spike train, S(t). Spike trains are mathematically described 68

by a sum of Dirac delta-functions, S(t) =
∑
j δ(t− tj) [35]. For our present purposes, 69

the time course of individual PSCs is assumed to remain invariant through the train, 70

but PSC amplitude is dynamic. To capture these amplitude changes, we introduce the 71

concept of an efficacy train, E(t), made of a weighted sum of Dirac delta-functions: 72

E(t) =
∑
j µjδ(t− tj). The efficacy train can be conceived as a multiplication between 73

the spike train and a time-dependent signal, µ(t), setting the synaptic efficacy at each 74

moment of time 75

E(t) = µ(t)S(t). (2)

Thus the current trace can be written as a convolution of the efficacy train and the 76

stereotypical PSC shape, kPSC : I = kPSC ∗ E, where ∗ denotes a convolution. In this 77

way, because in typical electrophysiological assays of synaptic properties the PSC shape 78

(kPSC) is known and the input spike train S(t) is controlled, characterization of 79

synaptic dynamics boils down to a characterization of how the synaptic efficacies evolve 80

in response to presynaptic spikes. Mathematically, we seek to identify the functional 81

µ[S(t)] of the spike train S(t). 82

Using this formalism, we aim to build a general framework for capturing synaptic 83

efficacy dynamics. Previous modeling approaches of STP have used a system of 84

nonlinear ordinary differential equations to capture µ(t) separated in a number of 85

dynamic factors [4, 11,23,24]. Our main result is that we propose a linear-nonlinear 86

approach inspired from the engineering of systems identification [33,40–47] and the 87

Spike Response Model (SRM) for cellular dynamics [34,48,49]. Here, the efficacies are 88

modeled as a nonlinear readout, f , of a linear filtering operation: 89

µ =
1

f(b)
f (kµ ∗ S + b) (3)

where kµ(t) is the efficacy kernel describing the spike-triggered change in synaptic 90

efficacy and b is a baseline parameter, which could be absorbed in the definition of the 91

efficacy kernel. The efficacy kernel can be parametrized by a linear combination of 92

nonlinear basis functions (see Methods). In this way, while kPSC regulates the 93

stereotypical time-course of a single PSC, the efficacy kernel, kµ, regulates the 94

stereotypical changes in synaptic efficacy following a pre-synaptic action potential. The 95

efficacy kernel can take any strictly causal form (kµ(t) = 0 for t ∈ −∞, 0]), such that a 96

spike at time tj affects neither the efficacy before tj nor the efficacy at time tj . Here we 97

call the ‘potential efficacy’ the result of the convolution and baseline, kµ ∗ S + b, before 98

taking a sigmoidal nonlinear readout. Although some early studies have used a linear 99

May 29, 2020 3/25

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.04.133892doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.04.133892
http://creativecommons.org/licenses/by/4.0/


readout [4], a nonlinear readout is potentially more apt to capture both the frequency 100

dependence and the nonlinear progression of PSC amplitudes in response to periodic 101

stimulation. The factor f(b)−1 is introduced because we are considering amplitudes 102

normalized to the first pulse, but can be replaced by an additional parameter when 103

treating non-normalized amplitudes. Together, the deterministic SRP model presented 104

so far, could capture different types of STP by changing the shape of the efficacy kernel. 105

B STF

C

D

E

F

STD STF & STDA

*

* *

D

C

E

F

* B

Sampling

Fig 1. The SRP model captures different types of short-term plasticity. A The model
first passes a pre-synaptic spike train through a convolution with the impulse-response
change in efficacy. We illustrate three choices of this efficacy kernel (B), a positive
kernel for STF (left), a negative kernel for STD (middle) and one for STF followed by
STD (right). After the convolution and combination with a baseline (C; dashed line
indicates zero), a nonlinear readout is applied, leading to the time-dependent efficacy
µ(t) (D). This time-dependent signal is then sampled at the spike times, leading to the
efficacy train (E) and thus to the post-synaptic current trace (F). Scale bars correspond
to 100 ms.

Short-Term Facilitation and Depression 106

To show that the essential phenomenology of both STF and STD can be encapsulated 107

by an efficacy kernel kµ, we will study the response to a burst of four action potentials 108

followed with a delay by a single spike and compare the responses obtained when 109

changing the shape of the efficacy kernel (Fig. 1A). For simplicity, we consider kµ to be 110

a mono-exponential decay starting at time 0. When the amplitude of this filter is 111

positive (Fig. 1B, left), a succession of spikes will lead to an accumulation of potential 112

efficacy (kµ ∗ S + b, Fig. 1C, left). After the sigmoidal readout (Fig. 1D, left) and 113

sampling at the spike times, the efficacy train (Fig. 1E, left) and the associated current 114

trace (Fig. 1F, left) show facilitation. Choosing a negative amplitude (Fig. 1B, middle) 115

gives rise to the opposite phenomenon. In this case, the succession of spikes will 116

gradually decrease potential efficacy (kµ ∗ S + b, Fig. 1C, middle). Following the 117

sigmoidal readout (Fig. 1D, middle) the efficacy train (Fig. 1E, middle) and the 118
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resulting current trace (Fig. 1F, middle) show STD dynamics. Conveniently, changing 119

the polarity of the efficacy kernel controls whether synaptic dynamics follow STF or 120

STD. 121

At many synapses, facilitation apparent at the onset of a stimulus train is followed 122

by depression, a phenomenon referred to as biphasic plasticity [20,21,50]. To model this 123

biphasic plasticity in our framework, we consider an efficacy kernel made of a 124

combination of two exponential-decays having different decay timescales and opposing 125

polarities. By choosing the fast component to have a positive amplitude and the slow 126

component to have a negative amplitude (Fig. 1B, right), we obtain a mixture between 127

the kernel for STF and the kernel for STD. Then, a succession of spikes will create an 128

accumulation of potential efficacy followed by a depreciation (kµ ∗ S + b, Fig. 1C, right). 129

Once the sigmoidal readout is performed (Fig. 1D, right), the efficacy train (Fig. 1E, 130

right) and the resulting PSC trace (Fig. 1F, right) show facilitation followed by 131

depression. Thus, the model captures various types of STP by reflecting the facilitation 132

and depression in positive and negative components of the efficacy kernel, respectively. 133

Sublinear and Supralinear Facilitation 134

100pA

20ms

1.2 mM [Ca2+]

500pA

20ms

2.5 mM [Ca2+]

1 2 3 4 5

stimulus nr.

0

500

1000

E
P

S
C

a
m

p
li
tu

d
e

(p
A

)

1 2 3 4 5

stimulus nr.

0.2

0.5

0.8

C
V

GC

PN

STIM

REC

Fig 2. Effects of extracellular calcium concentration on STP dynamics at hippocampal
mossy fiber synapses. A Mossy fiber short-term facilitation in 1.2 mM (red) and 2.5
mM (blue) extracellular [Ca2+]. EPSCs recorded from CA3 pyramidal cells in response
to stimulation of presynaptic mossy fibers (50 Hz, 5 stimuli). B EPSC peak amplitudes
as a function of stimulus number. The time course of facilitation varies dependent on
the initial release probability. C The coefficient of variation (CV), measured as the
standard deviation of EPSCs divided by the mean, is increased in 1.2 mM extracellular
[Ca2+]. Data redrawn from [22].

The typical patterns of facilitation and depression shown in Fig. 1 are well captured 135

by the traditional Tsodyks-Markram (TM) model [24–26]. We, therefore, ask if our 136

modeling framework can capture experimentally observed features that require a 137

modification of the classical TM model. While previous work has extended the TM 138

model for use-dependent depression [29] and receptor desensitization [23], we consider 139

the nonlinear facilitation observed in mossy fiber synapses onto pyramidal neurons 140

(MF-PN) in response to a burst of action potentials (Fig. 2A). In these experiments, the 141

increase of PSC amplitudes during the high-frequency stimulation is nonlinear. 142

Interestingly, the facilitation is sublinear at normal calcium concentrations (2.5 mM 143

extracellular [Ca2+]), but supralinear in physiological calcium concentrations (1.2 mM 144

extracellular [Ca2+]) [22] (Fig. 2B). The supralinearity of STF observed in 1.2 mM 145

[Ca2+] is caused by a switch from predominantly univesicular to predominantly 146

multivesicular release. In contrast, multivesicular release is already in place in 2.5 mM 147

[Ca2+], and the facilitation observed under these conditions can be solely attributed to 148
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the recruitment of additional neurotransmitter release sites at the same synaptic 149

bouton [22]. These two mechanisms, by which MF-PN synapses can facilitate glutamate 150

release, are generated by complex intra-bouton calcium dynamics [30, 51, 52], which lead 151

to gradual and compartmentalized increases in calcium concentration. Consistent with 152

the expectation that these two modes could lie on the opposite sides of the 153

inverse-parabolic relationship between coefficient of variation (CV) and mean, normal 154

calcium is associated with a gradual decrease of CV through stimulation, while 155

physiological calcium is associated with an increase of CV (Fig. 2C). Perhaps because 156

the TM model was based on experiments at 2 mM calcium concentration, the model 157

emulates sublinear facilitation. Supralinear facilitation is not possible in the original 158

structure of the model (Fig. 3C), as can be verified by mathematical inspection of the 159

update equations (see Methods). Hence the TM model must be modified to capture the 160

supralinear facilitation typical of experimental data at physiological calcium 161

concentrations. 162

To extend the TM model to account for supralinear facilitation, we considered a 163

small modification to the dynamics of facilitation without adding a new dynamic 164

variable (Fig. 3A), although supralinear facilitation can be achieved with an additional 165

state variable. This modification allows the facilitation variable of the TM model to 166

increase supralinearly when this variable is small, and sublinearly when this variable is 167

large (see Methods). By lowering the baseline facilitation parameter, the extended TM 168

model switches from sublinear facilitation to a supralinear facilitation (Fig. 3D). We 169

thus have shown that a modification to the set of equations for the TM model is 170

required to present supralinear facilitation and capture the experimentally observed 171

facilitation at physiological calcium. 172

In contrast, for the linear-nonlinear model framework, the switch from sublinear to 173

supralinear facilitation does not require a modification to the equations. We can change 174

sublinear facilitation into a supralinear one by lowering the baseline parameter without 175

changing the efficacy kernel. When the baseline parameter is high, a facilitating efficacy 176

kernel is likely to hit the saturating, sublinear, part of the nonlinear readout (Fig. 3E). 177

When the baseline parameter is low, the same facilitating efficacy kernel can recruit the 178

onset of the nonlinearity, which gives rise to supralinear facilitation (Fig. 3F). Thus, the 179

changes in extracellular calcium are conveniently mirrored in a modification of a 180

baseline parameter in the SRP model. 181

Facilitation Latency 182

Next we illustrate the role of the efficacy kernel to generalize to the multiple timescales 183

of STP without requiring a change in the structure of the model. As an illustrative 184

example, we will focus on the one particular synapse showing facilitation latency [6]. In 185

mossy fiber synapses onto inhibitory interneurons, the facilitation caused by a burst of 186

action potentials increases during the first 2 seconds after the burst (Fig. 4A). This 187

delayed facilitation cannot be captured by the classical TM model because facilitation is 188

modeled as a strictly decaying process and the experimental data shows that facilitation 189

increases during the first 1-2 seconds following the burst. Adding to this model a 190

differential equation for the slow increase of facilitation is likely sufficient to capture 191

facilitation latency, but this modification consists of a significant modification to the 192

modeling framework. In the linear-nonlinear framework, one could capture the 193

facilitation latency by modifying the shape of the efficacy kernel. An efficacy kernel 194

with a slow upswing (Fig. 4B), once convolved with a burst of action potential followed 195

by a test-pulse (Fig. 4C) will produce a delayed increase in synaptic efficacy (Fig. 4D) 196

as well as match the nonlinear increase in facilitation with the number of stimulation 197

spikes. Without automated fitting of the kernel to the data, a simple change to the 198

efficacy kernel captures facilitation latency. Thus, provided that the efficacy kernel is 199
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Tsodyks-Markram Model with Extension

Fig 3. Modeling sublinear and supralinear facilitation through changes in the baseline
parameter. A Mechanism of the classic TM model [24–26], illustrated in response to 5
spikes at 50 Hz for different values of the baseline parameter U . B Synaptic efficacy
u ∗R at each spike according to the classic TM model. Facilitation is always restricted
to sublinear dynamics. C Mechanism and D Synaptic efficacy u ∗R at each spike
according to the extended TM model (see Methods). Choosing the baseline parameter
U sufficiently small allows for supralinear facilitation. E Mechanism of the SRP model,
illustrated for two different values of the baseline parameter b, with the same synaptic
efficacy kernel kµ (left). Changing the baseline parameter b leads to a linear
displacement of the filtered spike train kµ ∗ S + b (middle), which causes a shift from
sub- to supralinear dynamics after the nonlinear readout f(kµ ∗ S + b). F Resulting
synaptic efficacy at each spike according to the SRP model. Changing the baseline
parameter causes a switch from sublinear to supralinear facilitation, as observed
experimentally in response to varying extracellular [Ca2+] (see Fig 2.)
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parameterized with basis function spanning a large part of the function space, the SRP 200

model can aptly generalize to STP properties unfolding on multiple timescales. 201
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Fig 4. Post-burst facilitation captured by a delayed facilitation kernel. A Experimental
setup and B measurement of post-burst facilitation in CA3 interneurons (redrawn from
Ref. [6]). C Synaptic plasticity model. A delayed facilitation kernel was chosen as a sum
of three normalized Gaussians with amplitudes {450, 2200, 5500}, means {1.0, 2.5,
6.0} s and standard deviation {0.6, 1.3, 2.8} s. The spiketrain (8 spikes at 100 Hz
followed by a test spike) is convolved with the delayed facilitation kernel. A nonlinear
(sigmoidal) readout of the filtered spike train leads synaptic efficacies. Dashed lines
indicate zero. D Efficacies of test spikes in the synaptic plasticity model as a function of
the number of action potentials in the preceding burst. E Synaptic efficacy of test
spikes (3 s after a single burst at 160 Hz) as a function of the number of action
potentials (APs).

Stochastic Properties 202

Synaptic transmission is inherently probabilistic. The variability associated with 203

synaptic release depends intricately on stimulation history, creating a complex 204

heteroskedasticity. Figure 2C illustrates one type of heteroskedasticity observed 205

experimentally, whereby the variability increases through a stimulation train but only 206

for the physiological calcium condition. To capture these transmission properties, we 207

must establish a stochastic framework. 208

In the previous section, we have treated the deterministic case, which corresponds to 209

the average synaptic efficacies. We now consider a sample of synaptic efficacies to be a 210

random variable such that the jth spikes associated with the random variable Yj . Its 211

mean is given by the linear-nonlinear operation: 212

〈Yj〉 ≡ µj =
1

f(b)
f (kµ ∗ S(tj) + b) . (4)
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Fig 5. Capturing heteroskedasticity with a two-kernel approach. A The µ-kernel
regulating the dynamics of the mean amplitude is paired with a σ-kernel regulating the
dynamics of the variance. Three σ-kernels are shown: a variance increasing (teal), a
variance invariant (orange) and a variance decreasing (blue) kernel. B Sample PSC
responses to a spike train generated from the three σ-kernels (gray lines) along with the
associated mean (full lines). C Probability density function of the amplitude of the first
(left) and last (right) pulse. D The mean amplitude is unaffected by different σ-kernels.
E The standard deviation is either increasing (teal), invariant (orange) or decreasing
(blue), consistent with the polarity of the σ-kernel. F The coefficient of variation results
from a combination of µ and σ kernel properties.

In this way, the current trace is made of PSCs of randomly chosen amplitudes whose 213

average pattern is set by the efficacy kernel: I(t) =
∑
j yjkPSC(t− tj), where yj is an 214

instance of Yj . Sampling from the model repeatedly will produce slightly different 215

current traces, as is typical of repeated experimental recordings (Fig. 3A). 216

To establish the stochastic properties, we must choose a probability distribution for 217

the synaptic efficacies. Previous work has argued that the quantal release of synaptic 218

vesicles produces a binomial mixture of Gaussian distributions [53,54]. There is 219

substantial evidence, however, that releases at single synapses are better captured by a 220

mixture of skewed distribution such as the binomial mixture of gamma 221

distributions [55,56]. Such skewed distributions are also a natural consequence of 222

Gaussian-distributed diameters and the cubic transform of vesicle volumes [57]. For 223

multiple synaptic contacts, release amplitudes should then be captured by a weighted 224

sum of such binomial mixtures, a mixture of mixtures as it were. Indeed, a binomial 225

mixture of skewed distributions has been able to capture the stochastic properties of 226

PSC amplitudes from multiple synaptic contacts [27,58], but only under the assumption 227

that each synapse contributes equally to the compound PSC. Together, these 228

considerations suggest that in seeking a simple parameterization of the random process, 229

we must find a skewed distribution whose mean and standard deviation can change in 230

the course of STP. 231
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Following prior work [56,58], we chose to focus on gamma-distributed PSCs: 232

p(yj |S(tj), θ) = g(yj |µj , σj), (5)

where g(y|µ, σ) is the gamma distribution with mean, µ, and standard deviation, σ. 233

The mean is set by the linear-nonlinear operation (Eq. 4) and the standard deviation is 234

set by a possibly distinct linear-nonlinear operation: 235

σi = σ0f(kσ ∗ Si + bσ), (6)

where we have introduced a baseline parameter, bσ and another kernel, kσ, for 236

controlling the standard deviation. We call this time-dependent function, the variance 237

kernel. The factor σ0 is introduced to scale the nonlinearity f appropriately, but could 238

be omitted if data has been standardized. In this framework, some common statistics 239

have a simple expression in terms model parameters. This is the case for the stationary 240

CV. Since we are considering filters decaying to zero after a long interval, the statistics 241

of releases arriving after a long interval depends solely on the baseline parameters, such 242

that CV =
√

1/σ0f(bσ). 243

The properties of this choice of probability distributions are illustrated in Figure 5. 244

Using a depressing kernel, Fig. 5 depicts the effect of choosing a variance kernel with 245

positive, negative and zero amplitude (Fig. 5A). These kernel choices show that the 246

model can capture both increases and decreases of variability, although an increase in 247

variability during STD is generally observed [59,60]. The temporal profile of the 248

variance kernel determines the time-dependent changes in variance. For simplicity, we 249

chose an exponential decay with a relaxation time scale equal to that of the efficacy 250

kernel. The kernel amplitude and baseline were chosen to match experimental 251

observations at STD synapses (CV increasing from a little less than 0.5 to almost 1 252

after 5 pulses [60]). With these modeling choices, we simulated the probabilistic 253

response to input trains (Fig. 5B, 5 spikes, 100 Hz). The model with positive σ-kernel 254

shows a progressive increase of trial-to-trial variability. Conversely, the model with a 255

negative σ-kernel displays the opposite progression, as can be observed by comparing 256

the probability distribution of the first and the last response (Fig. 5C). The average 257

response follows precisely the same STD progression (Fig. 5D), despite drastically 258

different progression of standard deviation (Fig. 5E) and CV (Fig. 5F). Thus 259

gamma-distributed amplitudes with dynamic variance can capture multiple types of 260

heteroskedasticity. 261

Next we asked if the model could capture the striking changes in heteroskedasticity 262

observed in some experiments (Fig. 2C). In this case, decreasing the extracellular 263

concentration of calcium not only changed the average response progression from 264

sublinear to supralinear (Fig. 2B), but also changed the CV progression from strongly 265

decreasing to strongly increasing (Fig. 2C, [22]). Figure 6 shows that changing the 266

µ-kernel baseline in a model with facilitating standard deviation can reproduce this 267

phenomenon. Here, as in the deterministic version of the model, the change in baseline 268

changes the progression of efficacies from sublinear to supralinear (Fig. 6A-D). These 269

effects are associated with changes in variances that are sublinear and supralinear, 270

respectively (Fig. 6E). In the model with a low baseline (red curve in Fig. 6), the 271

variance increases more quickly than the efficacy, leading to a gradual increase in CV. 272

Despite the fact that the variance increases for both cases (Fig. 6E), only the model 273

with sublinear increase in efficacy displays a decreasing CV. We conclude that, by 274

controlling a baseline parameter, the model can capture both the change from sublinear 275

to supralinear facilitation and the change in heteroskedasticity incurred by a 276

modification of extracellular calcium. 277
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Fig 6. Capturing effect of external calcium concentration on coefficient of variation
through baseline of µ-kernel. A Comparing facilitating µ-kernels with high (blue) and
low (red) baseline but fixed, σ-kernel. B-F as in Fig. 5. The coefficient of variation
increases with pulse number for the low baseline case, but decreases with pulse number
for the high baseline case.

Inference 278

Thus far, we have illustrated the flexibility of the SRP framework for qualitatively 279

reproducing a diversity of notable synaptic dynamics features. Now we investigate the 280

ability of this framework to capture synaptic dynamics quantitatively. As in the 281

characterization of cellular dynamics [61], a major impediment to precise 282

characterization is parameter estimation. Since efficient parameter inference is largely 283

depends on the presence of local minima, we first investigated the cost function 284

landscape for estimating model parameters. 285

We have developed an automatic characterization methodology based on the 286

principle of maximum likelihood (see Methods). Given our probabilistic model of 287

synaptic release, we find optimal filter time-course by iteratively varying their shape to 288

determine the one maximizing the likelihood of synaptic efficacy observations. The 289

method offers a few advantages. Firstly, the method is firmly grounded in Bayesian 290

statistics, allowing for the inclusion of prior knowledge and the calculation of posterior 291

distribution over the model parameters [26,58]. Secondly, although targeted 292

experiments can improve inference efficiency, our approach does not rely on 293

experimental protocols designed for characterization. Naturalistic spike trains recorded 294

in vivo [30, 62], Poisson processes or other synthetic spike trains can be used in 295

experiments to characterize synaptic dynamics in realistic conditions. 296

To test the efficiency of our inference method, we generated an artificial Poisson 297

spike train and used this spike train to generate surrogate synaptic efficacy data using 298

our SRP model (Fig. 7A-B). We then asked if our inference method identified the 299

correct parameters and whether local minima were observed. Instead of the case where 300

the filters are described by a combination of nonlinear basis functions, we considered 301
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only one basis function, a mono-exponential decay with its decay time constant known. 302

In cases where the time constant is unknown, one would fit the coefficient of a 303

combination of nonlinear basis functions, as is typical in other linear-nonlinear 304

models [32,34,63,64]. Using a long stimulus train, the likelihood function appeared 305

convex over a fairly large range of parameter values as no local minima were observed 306

(Fig. 7C-F). The slanted elongation of likelihood contour indicates a correlation or 307

anti-correlation between parameter estimates. Not surprisingly, we found that the 308

estimates of baseline and scale factor of the σ-kernel would be anti-correlated (Fig. 7D), 309

while on the other hand the estimates of filter amplitudes for efficacy and variance would 310

have little correlation (Fig. 7C). Furthermore, we found that the parameter estimates 311

matched closely the parameters used to simulate the responses after 100 to 150 spikes 312

(Fig. 7G-H), with efficacy parameters requiring more data than variance parameters 313

(compare Fig. 7G and H). The relationship between error in parameter estimation and 314

training size is such that for large training sets the percent error goes to zero (Fig. 7G). 315

As might be expected, the method performs poorly for parameters that do not regulate 316

the efficacy. For instance, when a facilitating efficacy kernel is added to a high baseline 317

parameter, the high baseline saturates the nonlinear readout, and no facilitation of the 318

efficacy will be observed. As a result, kernel amplitude is poorly estimated when the 319

baseline used for simulations is high (Fig. 7H). Using a separate artificial Poisson input 320

for testing the predictive power of the model, we calculated the mean squared error 321

between the inferred and true model (Fig. 7I). The prediction error of the inferred 322

model almost matched that of the true model, even if inference was based on less than 323

100 spikes. We conclude that maximum likelihood applied to the SRP model is able to 324

characterize the model efficiently and accurately, and that, for simple filters, the 325

landscape is sufficiently devoid of local minima to allow efficient characterization. 326

Relation to Generalized Linear Models 327

We have shown that, in one situation, the likelihood landscape appears devoid of local 328

minima, but is this always the case? Without additional restrictions on the model 329

described in the previous section, it is unlikely that the likelihood would be always 330

convex. However, with some simplifications, the model becomes a Generalized Linear 331

Model (GLM), and convexity proofs are possible in some cases [41,65]. In this section, 332

we describe two such simplifications. 333

We can assume that the standard deviation is always proportional to the mean: 334

σ = σ0µ. This assumes that the CV is constant through a high-frequency train, a 335

coarse assumption given the large changes in CV observed experimentally [22, 60]. If for 336

some reason an accurate reproduction of the changes in variability can be sacrificed, 337

this simplification leads to interesting properties. In this case, no variance parameters 338

are to be estimated apart from the scaling σ0. There is thus a reduction in the number 339

of parameters to be estimated. In addition, since the gamma distribution belongs to the 340

exponential family and the mean is a linear-nonlinear function of the other parameters, 341

we satisfy the requirements for GLMs and the likelihood is devoid of local minima when 342

the proof given by Paninski (2004) [41] applies. 343

For the depressing synapses, the CV is increasing during a high-frequency train. 344

This can be modeled by a constant standard deviation with a mean decreasing through 345

the stimulus train. Similarly, for the facilitating synapses at normal extracellular 346

calcium shown in Fig. 2, the gradual decrease in CV can be explained by an 347

approximately constant standard deviation, σ = σ0, and an increasing mean. Setting 348

the variance to a constant again reduces the number of parameters to be estimated and 349

recovers the necessary assumptions of a GLM. 350
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Fig 7. Statistical inference of kinetic properties on surrogate data. A Simulated
Poisson spike trains mark pre-synaptic stimulation. B Simulated post-synaptic currents
of the spike train in A for two independent sampling of the true parameter set (top) and
for sampling of true and inferred models (bottom). Negative log-likelihood landscape as
a function of C µ- and σ-kernel amplitudes, D σ baseline and scaling factor, E µ and σ
baseline and F σ scaling and amplitude. G average σ parameter errors as function
training size (left) and average µ parameter errors as a function of training size (right).
H Average amplitude (µ and σ) and σ scaling factor error as a function of saturation;
error bars are SEM. I Mean square error (MSE) of inferred and true model as a function
of training size. Dashed line is MSE between independent samples of the true parameter
set.

Relation to Convolutional Neural Networks 351

A convolution followed by a nonlinear readout is also the central operation performed in 352

convolutional neural networks (CNNs). Because this type of algorithm is associated 353

with high performance in challenging tasks, we asked what type of neural network 354

architecture corresponds to synaptic information processing. In a artificial neural 355

network, an input arranged as a one-dimensional array x is convolved with a bank of 356

kernels {ki} and readout through a nonlinearity f to generate a representation of a first 357

hidden layer of neurons 358

h
(i)
t = f

(
kTi (m� xt:t+K)

)
(7)

where Ki is the length of the ith kernel and a mask m operates on the input with the 359

Hadamard product (�). This mask is made of samples from Bernoulli random variable 360

normed so that the average of kTi (m� xt:t+K) is kTi � xt:t+K . It randomly silences 361
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B

Fig 8. A synaptic contribution to the hierarchy of linear-nonlinear computations. A
Synapses distributed on primary (orange, blue and green) and secondary (yellow and
red) dendrites may have different synaptic properties (different color tints). B Each
synapse is characterized by two kernels separated by a nonlinear sampling operation. (1)
A pre-synaptic convolution kernel regulates synaptic dynamics. (2) A post-synaptic
convolution kernel regulates the shape of the post-synaptic potential locally. The
post-synaptic potentials from different synapses are summed within each dendritic
compartment, forming a processing hierarchy converging to the soma.

parts of the input, an approach called dropout that was proposed to improve 362

learning [66]. Although CNN architectures vary, the next layer may be that of a pooling 363

operation hk = 1
Z

∑k+Z
t=k h

(i)
t before reaching a fully connected layer. To emulate the 364

operation performed by STP, we consider a weight vector w for weighting the output of 365

different kernels in the filter bank 366

yk = f
(
wThk

)
(8)

where hk concatenates the set of h
(i)
k from different kernels i but the same input index 367

k. By optimizing the kernels, similar CNNs can be trained to classify images [66, 67] as 368

well as sounds [68,69]. 369

In a synapse with STP, the discretized efficacy train of the ith afferent, e
(i)
t , results 370

from a convolution and a nonlinear readout of the discretized spike train s
(i)
t 371

e
(i)
t = f

(
kTi s

(i)
t:t+K

)
st

(i), (9)

which is simply the discretized version of Eq. 2 and 3. This discretization makes clear 372

the parallel with a convolutional layer in Eq. 7. As the spike train is conceived as a 373

stochastic random variable sampling a potential [34, 48, 49], the stochastic spike train is 374
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analogous to the dropout mask m. The efficacy train triggers PSCs, which are pooling 375

the efficacy train on the PSC : e
(i)
k =

∑k+Z
t=k εt−ke

(i)
t , where εi is a discretized and 376

normalized PSC. Then, different synaptic afferents, with possibly different efficacy 377

kernels (Fig. 8), are combined via by synaptic weights before taking a nonlinear readout 378

at the cell body [34,49] or the dendrites [70] to give rise to an instantaneous firing rate 379

ρt: 380

ρt = f
(
wTet

)
(10)

This equation corresponds to the fully connected layer that followed a pooling operation, 381

Eq. 8. Together, we find a striking parallel between the formalism developed here to 382

describe STP and that of an artificial neural network which uses dropout at a 383

convolutional layer followed by a fully connected layer. 384

Discussion 385

The linear-nonlinear framework has been able to capture core elements of 386

subcellular [47], cellular [34,36,37, 71] and network signalling. We have shown that the 387

same framework aptly captures synaptic dynamics. In the SRP framework, 388

activity-dependent changes in efficacy are captured by an efficacy kernel. We have 389

shown that switching the polarity of the kernel captures whether STD or STF is 390

observed. Extending previous work at ribbon synapses [72], we have shown that the 391

modeling framework captures multiple experimental features of synaptic dynamics. The 392

model successfully reproduces the experimental extracellular calcium concentration 393

manipulations seen to affect high-frequency stimulation responses. The framework can 394

naturally capture long-lasting effects such as post-burst facilitation. Finally, by 395

considering the dynamics of stochastic properties, a maximum likelihood approach can 396

estimate model parameters from complex, time-limited, and physiological stimulation 397

patterns. The added flexibility and the efficient inference are of interest to large scale 398

characterization of synaptic dynamics [73] as well as the understanding information 399

processing of neural networks [15,74]. 400

When summarizing dynamic properties with two time-dependent functions we called 401

kernels, one is compelled to ask, what is their biophysical implementation? By analogy 402

with characterization of neuronal excitability, the answer is likely to involve a mixture of 403

independent mechanisms. The membrane kernel, for instance, depends on membrane 404

resistance and membrane capacitance, but also the density of low-threshold channels, 405

such as A- and H-type currents. Similarly, the efficacy kernel is likely to reflect residual 406

presynaptic calcium concentration, the changing size of the readily releasable pool [31] 407

but also many other possible mechanisms. Determining the relative importance of these 408

processes, however, is not possible with the methodology described here. This could be 409

achieved only with a combination of experiments aimed at isolating independent 410

mechanisms and a detailed biophysical model, at the cost of constructing a model with 411

reduced predictive power. In our view, the modeling framework presented here is less a 412

tool for identifying molecular mechanisms, but rather one for the characterization, 413

network simulations, and theoretical analysis [25,75,76] of the diversity of synaptic 414

dynamics across signalling pathways [17], cell types [14,50] or subcellular 415

compartments [77]. 416

There remains limitations to this approach; one such limitation is the choice of a 417

gamma distribution of release sizes. Formally, this modeling choice means that the 418

model replaces release failures with small to very small releases. In other terms, whereas 419

the presence of release failures is a bimodal or multimodal distribution of amplitudes, 420

the model assumes that the distribution of evoked amplitudes is unimodal. Nonetheless, 421

recent work has shown that the release size distribution appears unimodal despite being 422
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generated by multiple modes [56]. We have argued that for the small vesicle sizes at 423

central synapses, quantal peaks are smeared by quantal variability [56]. When 424

considering electrophysiological preparations where multiple synapses are simultaneously 425

activated [27,58,78], the diversity of synaptic weights will strengthen further the 426

assumption for a gamma-distribured, right-skewed and unimodal distribution. 427

Another unanswered question is that having explored various monotonic progressions 428

of variability, can the model capture a non-monotonic progression? This case is relevant 429

because the random and equally likely release of a number of vesicles will give rise to a 430

non-monotonic progression of variability when release probability is changing over a 431

larger range. For instance, in a facilitating synapse where multiple release sites increase 432

an initially low release probability through a high-frequency train, the variability will 433

first increase and then decrease. This convex, non-monotonic progression arises from 434

the fact that variability is at its lowest point either when release probability is zero or 435

when it is one. Given the mathematical features of the model, it may be possible to 436

generate such a non-monotonic progression of variability with a biphasic σ-kernel. 437

Previous modeling and experimental work has established that dendritic integration 438

can follow a hierarchy of linear-nonlinear processing steps [47,70,79]. Subcellular 439

compartments filter and sum synaptic inputs through an integration kernel 440

encapsulating a local passive and quasi-active properties. Active properties are 441

responsible for a static nonlinear readout and for communication toward the cell body. 442

Much in the same spirit, the work presented here extends this model by one layer, 443

where presynaptic spikes first pass through a linear-nonlinear step before entering 444

dendrites (Fig. 8). Since synapses at different locations or from different pathways may 445

have different synaptic dynamics [17,77], and since spiking neural codes can multiplex 446

streams of information [8, 80,81], these synaptic properties have the capability to 447

extract different streams of information from multiple pathways and to process these 448

possibly independent signals in segregated compartments. 449

The structure of information processing arising from this picture bears a striking 450

resemblance with multi-layer convolutional neural networks [82,83]. But it should be 451

noted that the convolution takes place along the temporal dimension instead of the 452

spatial dimension for many neural network applications. Yet, this algorithmic similarity 453

suggests that the linear-nonlinear structure of synaptic processing capabilities on neural 454

and neuronal networks. Whether the STP is controlled by genes [84], activity-dependent 455

plasticity [85,86], retrograde signalling [87], or neuromodulation [88,89], a particular 456

choice of efficacy kernels, when combined with a nonlinear readout, can optimize 457

information processing. 458

Methods 459

All numerical simulations and parameter inference were done in Python using the 460

numpy and scipy packages [90,91]. 461

Tsodyks-Markam Model and its Modifications 462

The Tsodyks-Markram (TM) model was first presented in 1997 [24] as a 463

phenomenological model of depressing synapses between cortical pyramidal neurons and 464

was quickly extended to account for short-term facilitating synapses [11, 50]. In the TM 465

model, the normalized PSC amplitude µn at a synapse caused by spike n of a 466

presynaptic spike train is defined as 467

µn = Rnun (11)
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where two factors un and Rn describe the utilized and recovered efficacy of the synapse, 468

respectively. The temporal evolution of these variables are described by the following 469

ordinary differential equations: 470

dR(t)

dt
=

1−R(t)

τR
− u(t−)R(t−)S(t) (12)

471

du(t)

dt
=
U − u(t)

τu
+ f

[
1− u(t−)

]
S(t) (13)

where f is the facilitation constant, τu the facilitation time scale, U the baseline efficacy 472

and τR the depression timescale. The spike-dependent changes in R and u are 473

implemented by the dirac delta function within the spike train S(t). The notation t− 474

indicates that the function should be evaluated as the limit approaching the spike times 475

from below. 476

In the TM model, facilitation is modelled as spike-dependent increases in the utilized 477

efficacy u. Immediately after each spike, the efficacy increases by f(1− u(t−)). This 478

efficacy jump depends on a facilitation constant f and on the efficacy immediately 479

before the spike u(t−). Therefore, as u increases during a spike train, the 480

spike-dependent ’jump’ decreases for each subsequent spike. As a consequence, TM 481

models of facilitating synapses are limited to a logarithmically saturating – that is, 482

sublinear – facilitation. 483

To allow supralinear facilitation, we introduce a small change in the spike-dependent 484

increase of factor u: 485

du(t)

dt
=
U − u(t)

τu
+ u(t−)f

[
1− u(t−)

]
δ (t− tS) . (14)

In this new model, given a presynaptic spike train at constant frequency, the size of the 486

spike-dependent jump u(t−)f
[
1− u(t−)

]
saturates logarithmically for u > 0.5 but is 487

increasing exponentially while u < 0.5. Thus this model provides supralinear facilitation 488

in the low efficacy regimen, and it switches to sublinear facilitation for larger efficacies. 489

These models can be integrated between two spikes n and n+ 1, separated by time 490

∆t to speed up the numerical implementation [50]. For the classic TM model we have 491

Rn+1 = 1− [1−Rn (1− un)] exp

(
−∆t

τR

)
(15)

492

un+1 = U + [un + f (1− un)− U ] exp

(
−∆t

τu

)
(16)

Similarly, the generalized model introduced in this work can be integrated between 493

spikes: 494

un+1 = U + [un + f (1− un)un − U ] exp

(
−∆t

τu

)
(17)

Where u+n = un + f (1− un)un is the value of u after the spike-dependent increase 495

following the nth spike. In both models, at time t = 0, we assume no previous 496

activation, therefore R0 = 1 and u0 = U . 497

Statistical Inference 498

To extract the properties of the model from experimental data, we developed a 499

maximum likelihood approach. Given a set of amplitudes y = {y1, y2, ..., yi, ..., yn} 500

resulting from a stimulation spike-train S, we want to find the parameters θ maximizing 501

the likelihood p(y|S, θ). For the mathematical model presented here, the negative 502

log-likelihood (NLL) is: 503
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NLL(y|S, θ) =
∑
i

yiµi
σ2
i

−
(
µ2
i

σ2
i

− 1

)
ln

(
yiµi
σ2
i

)
+ ln

(Γ(
µ2
i

σ2
i
)σ2
i

µi

) (18)

where µi and σi are shorthand for efficacy and standard deviation at the ith spike time: 504

µi = µ(ti), σi = σ(ti), that is, the elements of the vectors µ and σ. 505

We parametrize the time-dependent standard deviation and mean of the gamma 506

distribution by expanding the filters kµ and kσ in a linear combination of nonlinear 507

basis: kµ(t) =
∑
l alhl(t), and kσ(t) =

∑
m cmhm(t). Typical choices for such nonlinear 508

basis are raised cosine [32], splines [63,64], rectangular [92] or exponential decays [34]. 509

In counterpart to the numerical simulations where the kernels are made of a 510

combination of exponential functions with different decay time constants, we have used 511

this choice of basis functions. 512

In this framework, hyper-parameters are the choice of the number of basis functions,
l ∈ [0, L] and m ∈ [0,M ], as well as the decay time scale for each basis function
hl(t) = Θ(t)e−t/τl/τl, where Θ(t) is a Heaviside function. Free parameters are the
amplitude of the basis functions {al}, {cm} and the scaling factor σ0. By chosing
hyper-parameters a priori, the modeller must choose a number of bases that is neither
too big to cause overfitting, nor too small to cause model rigidity. The choice of time
constant is made to tile exhaustively the range of physiologically relevant time scales. It
is important to note that, because a combination of exponential basis functions can be
used to capture a decay time scale absent from the set of τ hyper-parameters, the choice
of τ does not specify the time scale of synaptic dynamics. The time-scale will be
determined by inferring the relative amplitude of the basis funcitons. We can label the
baseline parameter as the coefficient regulating the amplitude of a constant basis
function, such that a0 = bh0(t) = bµ and c0 = bσh0(t) = bσ. There are thus
L+ 2 +M + 2 free parameters in total :

θ = {a0, ..., aL, σ0, c0, ..., cM}

To perform parameter inference, we first filter the data using the set of basis functions 513

and stored the filtered spike train just before each spike in a matrix. Each row of the 514

matrix corresponds to an individual basis function, and each column corresponds to 515

spike timings. The matrix, X, thus stores the result of the convolution between the 516

various basis function (rows) and at the time of the various spikes (columns). 517

For simplicity, it is convenient to take the same choice of basis functions for the
efficacy and the variance kernel. The amplitudes are expressed in a vector
θµ = {a0, ..., aL}, for the efficacy kernel, and θσ = {c0, ..., cM} for the variance kernel.
Using this matrix notation, the linear combination is expressed as a matrix
multiplication:

µ =
1

f(a0)
f
(
XTθµ

)
σ = σ0f

(
XTθσ

)
where µ and σ have length n and can be used to evaluate the NLL according to Eq. 18. 518

Performing a grid search of the parameter space around initialized parameter values, we 519

can obtain the landscape for the function, and ascertain the presence of convexity. The 520

inferred parameters will then be the set of θµ and θσ minimizing the NLL over the 521

training set. 522
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