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Abstract

Synaptic dynamics differ markedly across connections and strongly regulate how action
potentials are being communicated. To model the range of synaptic dynamics observed
in experiments, we develop a flexible mathematical framework based on a
linear-nonlinear operation. This model can capture various experimentally observed
features of synaptic dynamics and different types of heteroskedasticity. Despite its
conceptual simplicity, we show it is more adaptable than previous models. Combined
with a standard maximum likelihood approach, synaptic dynamics can be accurately
and efficiently characterized using naturalistic stimulation patterns. These results make
explicit that synaptic processing bears algorithmic similarities with information
processing in convolutional neural networks.

Author summary

Understanding how information is transmitted relies heavily on knowledge of the
underlying regulatory synaptic dynamics. Existing computational models for capturing
such dynamics are often either very complex or too restrictive. As a result, effectively
capturing the different types of dynamics observed experimentally remains a challenging
problem. Here, we propose a mathematically flexible linear-nonlinear model that is
capable of efficiently characterizing synaptic dynamics. We demonstrate the ability of
this model to capture different features of experimentally observed data.

Introduction

The nervous system has evolved a communication system largely based on temporal
sequences of action potentials. A central feature of this communication is that action
potentials are communicated with variable efficacy on short (10 ms - 10 s) time

scales |[1H6]. The dynamics of synaptic efficacy at short time scales, or short-term
plasticity (STP), can be a powerful determinant of the flow of information, allowing the
same axon to communicate independent messages to different post-synaptic

targets [7,8]. Properties of STP vary markedly across projections [9H11], leading to the
idea that connections can be conceived as belonging to distinct classes [12}[13] and that
these distinct classes shape information transmission in vivo [14H16]. Thus, to
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understand the flow of information in neuronal networks, the connectome must be
indexed with an accurate description of STP properties.

One approach to characterizing synaptic dynamics is to perform targeted
experiments and extract a summary feature, most commonly the paired-pulse
ratio [54|17H19], whereby a synapse can be classified as short-term depressing (STD) or
short-term facilitating (STF). However, a single summary feature is insufficient to
capture the full extent of STP diversity. Longer or more complex stimulation patterns
are required to describe delayed facilitation onset [6], biphasic STP [20L[21] or the
distinction between supra- and sub-linear facilitation [22]. Such atypical STP dynamics
challenge the traditional dichotomy of STF and STD and suggest that more complex
phenotypes can exist and contribute to network function in unknown ways. A
complimentary approach to characterizing STP is to fit a mechanistic mathematical
model using all available experimental data, where the parameters correspond to
physical properties [23]. In this vein, the model proposed by Tsodyks and Markram
captures the antagonism between transient increases in vesicle release probability and
transient depletion of the readily releasable vesicle pool [11[24,25]. Optimizing the
parameter values to best fit the observed data provides an estimate of biophysical
properties, and thus supports a classification of STF or STD [26L[27]. This simplicity
makes the Tsodyks-Markram model highly interpretable, but restricts its ability to
capture the diversity of synaptic responses to complex stimulation patterns. Complex
STP dynamics rely on interactions between multiple synaptic mechanisms, that cannot
be described in a simplified framework of release probability and depletion. To describe
the dynamics of complex synapses, the Tsodyks-Markram model therefore requires
multiple extensions [23,/28], for instance, vesicle priming, calcium receptor localization,
multiple timescales, or use-dependent replenishment [6,[29-31]. As a compendium of
biophysical properties is collected, the properties become increasingly difficult to
adequately characterize based on experimental data because degeneracies and
over-parametrization lead to inefficient and non-unique characterization. Taken
together, current approaches appear to be either too complex for accurate
characterization, or insufficient to capture all experimental data.

The trade-off between the model’s identifiability and its ability to espouse complex
experimental data echoes similar trade-offs in other fields, such as in the characterization
of the input-output function of neurons [32H37]. Taking a systems identification
approach, we seek to sacrifice some of the model’s interpretability in order to avoid
over-parametrization and degeneracies while still capturing the large range of synaptic
capabilities. Inspired by the success of linear-nonlinear models for the characterization
of cellular responses [32}|33], we extend previous phenomenological approaches to
synaptic response properties [3},4},3839] to take into account nonlinearities and the
kinetics evolving on multiple time scales. We show that the resulting Spike Response
Plasticity (SRP) model captures short-term facilitation, short-term depression, biphasic
plasticity, as well as supralinear facilitation and post-burst potentiation. Using standard
gradient descent algorithms, model parameters can be inferred accurately with limited
amount of experimental data. Our work also makes explicit that synaptic dynamics
extend the information processing of dendritic integration by adding another layer of
convolution combined with nonlinear readout as in deep convolutional neural networks,
thus contributing to build a theory for information processing at synapses.
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Results

Deterministic Dynamics

To construct our statistical framework, we first consider the deterministic dynamics of
synaptic transmission. Our goal is to describe the dynamics of the amplitude of
individual post-synaptic currents (PSCs). Specifically, a presynaptic spike train will give
rise to a post-synaptic current trace, I(t), made of a sum of PSCs triggered by
presynaptic action potentials at times ¢;:

I(t) = Zﬂjszc(t—tj)» (1)

J

where kpsc is the stereotypical PSC time course and p; is the synaptic efficacy, or
relative amplitude, of the jth spike in the train normalized to the first spike in the train
(1 =1).

To begin modeling synaptic dynamics, we seek a compact description for generating
I(t) from the presynaptic spike train, S(t). Spike trains are mathematically described
by a sum of Dirac delta-functions, S(t) = >_, d(t —t;) |35]. For our present purposes,
the time course of individual PSCs is assumed to remain invariant through the train,
but PSC amplitude is dynamic. To capture these amplitude changes, we introduce the
concept of an efficacy train, F(t), made of a weighted sum of Dirac delta-functions:
E(t) = 3_; 1;6(t —tj). The efficacy train can be conceived as a multiplication between
the spike train and a time-dependent signal, u(t), setting the synaptic efficacy at each

moment of time
() = n(H)S(t). (2)

Thus the current trace can be written as a convolution of the efficacy train and the
stereotypical PSC shape, kpsc: I = kpsc * E, where * denotes a convolution. In this
way, because in typical electrophysiological assays of synaptic properties the PSC shape
(kpsc) is known and the input spike train S(t) is controlled, characterization of
synaptic dynamics boils down to a characterization of how the synaptic efficacies evolve
in response to presynaptic spikes. Mathematically, we seek to identify the functional
wu[S(t)] of the spike train S(t).

Using this formalism, we aim to build a general framework for capturing synaptic
efficacy dynamics. Previous modeling approaches of STP have used a system of
nonlinear ordinary differential equations to capture () separated in a number of
dynamic factors [44|11}23|24]. Our main result is that we propose a linear-nonlinear
approach inspired from the engineering of systems identification [33}|40-47] and the
Spike Response Model (SRM) for cellular dynamics [34,/48,49]. Here, the efficacies are
modeled as a nonlinear readout, f, of a linear filtering operation:

_ 1
")

where k,,(t) is the efficacy kernel describing the spike-triggered change in synaptic
efficacy and b is a baseline parameter, which could be absorbed in the definition of the
efficacy kernel. The efficacy kernel can be parametrized by a linear combination of
nonlinear basis functions (see Methods). In this way, while kpgc regulates the
stereotypical time-course of a single PSC, the efficacy kernel, k,,, regulates the
stereotypical changes in synaptic efficacy following a pre-synaptic action potential. The
efficacy kernel can take any strictly causal form (k,(t) = 0 for t € —o0, 0]), such that a
spike at time ¢; affects neither the efficacy before t; nor the efficacy at time ¢;. Here we
call the ‘potential efficacy’ the result of the convolution and baseline, k,, * S + b, before
taking a sigmoidal nonlinear readout. Although some early studies have used a linear

f(k,*S+Db) (3)
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readout [4], a nonlinear readout is potentially more apt to capture both the frequency
dependence and the nonlinear progression of PSC amplitudes in response to periodic
stimulation. The factor f(b)~! is introduced because we are considering amplitudes
normalized to the first pulse, but can be replaced by an additional parameter when
treating non-normalized amplitudes. Together, the deterministic SRP model presented

so far, could capture different types of STP by changing the shape of the efficacy kernel.

B STF STD STF & STD

M‘Iﬁk’d

POC WY
g I W B
PR

Fig 1. The SRP model captures different types of short-term plasticity. A The model
first passes a pre-synaptic spike train through a convolution with the impulse-response
change in efficacy. We illustrate three choices of this efficacy kernel (B), a positive
kernel for STF (left), a negative kernel for STD (middle) and one for STF followed by
STD (right). After the convolution and combination with a baseline (C; dashed line
indicates zero), a nonlinear readout is applied, leading to the time-dependent efficacy
w1(t) (D). This time-dependent signal is then sampled at the spike times, leading to the
efficacy train (E) and thus to the post-synaptic current trace (F). Scale bars correspond
to 100 ms.

Short-Term Facilitation and Depression

To show that the essential phenomenology of both STF and STD can be encapsulated
by an efficacy kernel k,,, we will study the response to a burst of four action potentials
followed with a delay by a single spike and compare the responses obtained when
changing the shape of the efficacy kernel (Fig. [IJA). For simplicity, we consider k;, to be
a mono-exponential decay starting at time 0. When the amplitude of this filter is
positive (Fig. , left), a succession of spikes will lead to an accumulation of potential
efficacy (k,, * S + b, Fig. [IIC, left). After the sigmoidal readout (Fig. [ID, left) and
sampling at the spike times, the efficacy train (Fig. 7 left) and the associated current
trace (Fig. [IF, left) show facilitation. Choosing a negative amplitude (Fig. [IB, middle)
gives rise to the opposite phenomenon. In this case, the succession of spikes will
gradually decrease potential efficacy (k, * S + b, Fig. , middle). Following the
sigmoidal readout (Fig. [ID, middle) the efficacy train (Fig. [IE, middle) and the
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resulting current trace (Fig. , middle) show STD dynamics. Conveniently, changing
the polarity of the efficacy kernel controls whether synaptic dynamics follow STF or
STD.

At many synapses, facilitation apparent at the onset of a stimulus train is followed
by depression, a phenomenon referred to as biphasic plasticity [20,21,/50]. To model this
biphasic plasticity in our framework, we consider an efficacy kernel made of a
combination of two exponential-decays having different decay timescales and opposing
polarities. By choosing the fast component to have a positive amplitude and the slow
component to have a negative amplitude (Fig. [IB, right), we obtain a mixture between
the kernel for STF and the kernel for STD. Then, a succession of spikes will create an
accumulation of potential efficacy followed by a depreciation (k, * S + b, Fig. , right).
Once the sigmoidal readout is performed (Fig. , right), the efficacy train (Fig. ,
right) and the resulting PSC trace (Fig. [IF, right) show facilitation followed by
depression. Thus, the model captures various types of STP by reflecting the facilitation
and depression in positive and negative components of the efficacy kernel, respectively.

Sublinear and Supralinear Facilitation

A 1.2 mM [Ca?T] B C
=z 1000 0.8
STIM 2
)
100pA2|0_ E ;
@ e 2. 500 - 5 0.5
2.5 mM [Ca?t] g
O
N
REC % .__-—-/'/i
= oL 1 I I I 0.2 L I I I 1
500pA| 1 2 3 4 5 1 2 3 4 5
20ms stimulus nr. stimulus nr.

Fig 2. Effects of extracellular calcium concentration on STP dynamics at hippocampal
mossy fiber synapses. A Mossy fiber short-term facilitation in 1.2 mM (red) and 2.5
mM (blue) extracellular [Ca®*]. EPSCs recorded from CA3 pyramidal cells in response
to stimulation of presynaptic mossy fibers (50 Hz, 5 stimuli). B EPSC peak amplitudes
as a function of stimulus number. The time course of facilitation varies dependent on
the initial release probability. C The coefficient of variation (CV), measured as the
standard deviation of EPSCs divided by the mean, is increased in 1.2 mM extracellular
[Ca?*]. Data redrawn from [22].

The typical patterns of facilitation and depression shown in Fig. [I] are well captured
by the traditional Tsodyks-Markram (TM) model [2426]. We, therefore, ask if our
modeling framework can capture experimentally observed features that require a
modification of the classical TM model. While previous work has extended the TM
model for use-dependent depression [29] and receptor desensitization [23], we consider
the nonlinear facilitation observed in mossy fiber synapses onto pyramidal neurons
(MF-PN) in response to a burst of action potentials (Fig. ) In these experiments, the
increase of PSC amplitudes during the high-frequency stimulation is nonlinear.
Interestingly, the facilitation is sublinear at normal calcium concentrations (2.5 mM
extracellular [Ca®T]), but supralinear in physiological calcium concentrations (1.2 mM
extracellular [Ca®t]) [22] (Fig. ) The supralinearity of STF observed in 1.2 mM
[Ca2+] is caused by a switch from predominantly univesicular to predominantly
multivesicular release. In contrast, multivesicular release is already in place in 2.5 mM
[Ca®T], and the facilitation observed under these conditions can be solely attributed to
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the recruitment of additional neurotransmitter release sites at the same synaptic
bouton [22]. These two mechanisms, by which MF-PN synapses can facilitate glutamate
release, are generated by complex intra-bouton calcium dynamics [304[51,/52], which lead
to gradual and compartmentalized increases in calcium concentration. Consistent with
the expectation that these two modes could lie on the opposite sides of the
inverse-parabolic relationship between coefficient of variation (CV) and mean, normal
calcium is associated with a gradual decrease of CV through stimulation, while
physiological calcium is associated with an increase of CV (Fig. ) Perhaps because
the TM model was based on experiments at 2 mM calcium concentration, the model
emulates sublinear facilitation. Supralinear facilitation is not possible in the original
structure of the model (Fig. ), as can be verified by mathematical inspection of the
update equations (see Methods). Hence the TM model must be modified to capture the
supralinear facilitation typical of experimental data at physiological calcium
concentrations.

To extend the TM model to account for supralinear facilitation, we considered a
small modification to the dynamics of facilitation without adding a new dynamic
variable (Fig. ), although supralinear facilitation can be achieved with an additional
state variable. This modification allows the facilitation variable of the TM model to
increase supralinearly when this variable is small, and sublinearly when this variable is
large (see Methods). By lowering the baseline facilitation parameter, the extended TM
model switches from sublinear facilitation to a supralinear facilitation (Fig. ) We
thus have shown that a modification to the set of equations for the TM model is
required to present supralinear facilitation and capture the experimentally observed
facilitation at physiological calcium.

In contrast, for the linear-nonlinear model framework, the switch from sublinear to
supralinear facilitation does not require a modification to the equations. We can change
sublinear facilitation into a supralinear one by lowering the baseline parameter without
changing the efficacy kernel. When the baseline parameter is high, a facilitating efficacy

kernel is likely to hit the saturating, sublinear, part of the nonlinear readout (Fig. )

When the baseline parameter is low, the same facilitating efficacy kernel can recruit the
onset of the nonlinearity, which gives rise to supralinear facilitation (Fig. ) Thus, the
changes in extracellular calcium are conveniently mirrored in a modification of a
baseline parameter in the SRP model.

Facilitation Latency

Next we illustrate the role of the efficacy kernel to generalize to the multiple timescales
of STP without requiring a change in the structure of the model. As an illustrative
example, we will focus on the one particular synapse showing facilitation latency [6]. In
mossy fiber synapses onto inhibitory interneurons, the facilitation caused by a burst of
action potentials increases during the first 2 seconds after the burst (Fig. [llA). This
delayed facilitation cannot be captured by the classical TM model because facilitation is
modeled as a strictly decaying process and the experimental data shows that facilitation
increases during the first 1-2 seconds following the burst. Adding to this model a
differential equation for the slow increase of facilitation is likely sufficient to capture
facilitation latency, but this modification consists of a significant modification to the
modeling framework. In the linear-nonlinear framework, one could capture the
facilitation latency by modifying the shape of the efficacy kernel. An efficacy kernel
with a slow upswing (Fig. ), once convolved with a burst of action potential followed
by a test-pulse (Fig. ) will produce a delayed increase in synaptic efficacy (Fig. )
as well as match the nonlinear increase in facilitation with the number of stimulation
spikes. Without automated fitting of the kernel to the data, a simple change to the
efficacy kernel captures facilitation latency. Thus, provided that the efficacy kernel is
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Tsodyks-Markram Model
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Spike Response Plasticity Model
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Fig 3. Modeling sublinear and supralinear facilitation through changes in the baseline
parameter. A Mechanism of the classic TM model , illustrated in response to 5
spikes at 50 Hz for different values of the baseline parameter U. B Synaptic efficacy

u * R at each spike according to the classic TM model. Facilitation is always restricted
to sublinear dynamics. C Mechanism and D Synaptic efficacy u * R at each spike
according to the extended TM model (see Methods). Choosing the baseline parameter
U sufficiently small allows for supralinear facilitation. E Mechanism of the SRP model,
illustrated for two different values of the baseline parameter b, with the same synaptic
efficacy kernel k,, (left). Changing the baseline parameter b leads to a linear
displacement of the filtered spike train &, * .S + b (middle), which causes a shift from
sub- to supralinear dynamics after the nonlinear readout f(k, * S +0b). F Resulting
synaptic efficacy at each spike according to the SRP model. Changing the baseline
parameter causes a switch from sublinear to supralinear facilitation, as observed
experimentally in response to varying extracellular [Ca%] (see Fig|2])
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parameterized with basis function spanning a large part of the function space, the SRP
model can aptly generalize to STP properties unfolding on multiple timescales.

C Efficacy kernel k,, D
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Fig 4. Post-burst facilitation captured by a delayed facilitation kernel. A Experimental
setup and B measurement of post-burst facilitation in CA3 interneurons (redrawn from
Ref. [6]). C Synaptic plasticity model. A delayed facilitation kernel was chosen as a sum
of three normalized Gaussians with amplitudes {450, 2200, 5500}, means {1.0, 2.5,
6.0} s and standard deviation {0.6, 1.3, 2.8} s. The spiketrain (8 spikes at 100 Hz
followed by a test spike) is convolved with the delayed facilitation kernel. A nonlinear
(sigmoidal) readout of the filtered spike train leads synaptic efficacies. Dashed lines
indicate zero. D Efficacies of test spikes in the synaptic plasticity model as a function of
the number of action potentials in the preceding burst. E Synaptic efficacy of test
spikes (3 s after a single burst at 160 Hz) as a function of the number of action
potentials (APs).

Stochastic Properties

Synaptic transmission is inherently probabilistic. The variability associated with
synaptic release depends intricately on stimulation history, creating a complex
heteroskedasticity. Figure illustrates one type of heteroskedasticity observed
experimentally, whereby the variability increases through a stimulation train but only
for the physiological calcium condition. To capture these transmission properties, we
must establish a stochastic framework.

In the previous section, we have treated the deterministic case, which corresponds to
the average synaptic efficacies. We now consider a sample of synaptic efficacies to be a
random variable such that the jth spikes associated with the random variable Y;. Its
mean is given by the linear-nonlinear operation:

1

f (e x S(t5) +0). (4)
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Fig 5. Capturing heteroskedasticity with a two-kernel approach. A The p-kernel
regulating the dynamics of the mean amplitude is paired with a o-kernel regulating the
dynamics of the variance. Three o-kernels are shown: a variance increasing (teal), a
variance invariant (orange) and a variance decreasing (blue) kernel. B Sample PSC
responses to a spike train generated from the three o-kernels (gray lines) along with the
associated mean (full lines). C Probability density function of the amplitude of the first

(left) and last (right) pulse. D The mean amplitude is unaffected by different o-kernels.

E The standard deviation is either increasing (teal), invariant (orange) or decreasing
(blue), consistent with the polarity of the o-kernel. F The coefficient of variation results
from a combination of y and o kernel properties.

In this way, the current trace is made of PSCs of randomly chosen amplitudes whose
average pattern is set by the efficacy kernel: I(t) =, y;kpsc(t —t;), where y; is an
instance of Y;. Sampling from the model repeatedly will produce slightly different
current traces, as is typical of repeated experimental recordings (Fig. )

To establish the stochastic properties, we must choose a probability distribution for
the synaptic efficacies. Previous work has argued that the quantal release of synaptic
vesicles produces a binomial mixture of Gaussian distributions . There is
substantial evidence, however, that releases at single synapses are better captured by a
mixture of skewed distribution such as the binomial mixture of gamma
distributions . Such skewed distributions are also a natural consequence of
Gaussian-distributed diameters and the cubic transform of vesicle volumes . For
multiple synaptic contacts, release amplitudes should then be captured by a weighted
sum of such binomial mixtures, a mixture of mixtures as it were. Indeed, a binomial
mixture of skewed distributions has been able to capture the stochastic properties of
PSC amplitudes from multiple synaptic contacts , but only under the assumption
that each synapse contributes equally to the compound PSC. Together, these
considerations suggest that in seeking a simple parameterization of the random process,
we must find a skewed distribution whose mean and standard deviation can change in
the course of STP.
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Following prior work [56L|58|, we chose to focus on gamma-distributed PSCs:

p(y;1S(t5),0) = g(y;lus, o5), (5)

where g(y|u, o) is the gamma distribution with mean, u, and standard deviation, o.
The mean is set by the linear-nonlinear operation (Eq. |4)) and the standard deviation is
set by a possibly distinct linear-nonlinear operation:

o; = 0o f(ko % Si +bs), (6)

where we have introduced a baseline parameter, b, and another kernel, &, for
controlling the standard deviation. We call this time-dependent function, the variance
kernel. The factor oy is introduced to scale the nonlinearity f appropriately, but could
be omitted if data has been standardized. In this framework, some common statistics
have a simple expression in terms model parameters. This is the case for the stationary
CV. Since we are considering filters decaying to zero after a long interval, the statistics
of releases arriving after a long interval depends solely on the baseline parameters, such
that CV = /1/0¢f(bs).

The properties of this choice of probability distributions are illustrated in Figure [f]
Using a depressing kernel, Fig. [5] depicts the effect of choosing a variance kernel with
positive, negative and zero amplitude (Fig. ) These kernel choices show that the
model can capture both increases and decreases of variability, although an increase in
variability during STD is generally observed [59,60]. The temporal profile of the
variance kernel determines the time-dependent changes in variance. For simplicity, we
chose an exponential decay with a relaxation time scale equal to that of the efficacy
kernel. The kernel amplitude and baseline were chosen to match experimental
observations at STD synapses (CV increasing from a little less than 0.5 to almost 1
after 5 pulses [60]). With these modeling choices, we simulated the probabilistic
response to input trains (Fig. , 5 spikes, 100 Hz). The model with positive o-kernel
shows a progressive increase of trial-to-trial variability. Conversely, the model with a
negative o-kernel displays the opposite progression, as can be observed by comparing
the probability distribution of the first and the last response (Fig. ) The average
response follows precisely the same STD progression (Fig. ), despite drastically
different progression of standard deviation (Fig. [FE) and CV (Fig. [5F). Thus
gamma-distributed amplitudes with dynamic variance can capture multiple types of
heteroskedasticity.

Next we asked if the model could capture the striking changes in heteroskedasticity
observed in some experiments (Fig. ) In this case, decreasing the extracellular
concentration of calcium not only changed the average response progression from
sublinear to supralinear (Fig. 2B), but also changed the CV progression from strongly
decreasing to strongly increasing (Fig. , [22]). Figure |§| shows that changing the
p-kernel baseline in a model with facilitating standard deviation can reproduce this
phenomenon. Here, as in the deterministic version of the model, the change in baseline
changes the progression of efficacies from sublinear to supralinear (Fig. @A-D). These
effects are associated with changes in variances that are sublinear and supralinear,
respectively (Fig. [6E). In the model with a low baseline (red curve in Fig. [f]), the
variance increases more quickly than the efficacy, leading to a gradual increase in CV.
Despite the fact that the variance increases for both cases (Fig. |§[E)7 only the model
with sublinear increase in efficacy displays a decreasing CV. We conclude that, by
controlling a baseline parameter, the model can capture both the change from sublinear
to supralinear facilitation and the change in heteroskedasticity incurred by a
modification of extracellular calcium.
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Fig 6. Capturing effect of external calcium concentration on coefficient of variation
through baseline of p-kernel. A Comparing facilitating p-kernels with high (blue) and
low (red) baseline but fixed, o-kernel. B-F as in Fig. |5 The coefficient of variation
increases with pulse number for the low baseline case, but decreases with pulse number
for the high baseline case.

Inference

Thus far, we have illustrated the flexibility of the SRP framework for qualitatively
reproducing a diversity of notable synaptic dynamics features. Now we investigate the
ability of this framework to capture synaptic dynamics quantitatively. As in the
characterization of cellular dynamics 7 a major impediment to precise
characterization is parameter estimation. Since efficient parameter inference is largely
depends on the presence of local minima, we first investigated the cost function
landscape for estimating model parameters.

We have developed an automatic characterization methodology based on the
principle of maximum likelihood (see Methods). Given our probabilistic model of
synaptic release, we find optimal filter time-course by iteratively varying their shape to
determine the one maximizing the likelihood of synaptic efficacy observations. The
method offers a few advantages. Firstly, the method is firmly grounded in Bayesian
statistics, allowing for the inclusion of prior knowledge and the calculation of posterior
distribution over the model parameters . Secondly, although targeted
experiments can improve inference efficiency, our approach does not rely on
experimental protocols designed for characterization. Naturalistic spike trains recorded
in vivo , Poisson processes or other synthetic spike trains can be used in
experiments to characterize synaptic dynamics in realistic conditions.

To test the efficiency of our inference method, we generated an artificial Poisson
spike train and used this spike train to generate surrogate synaptic efficacy data using
our SRP model (Fig. [7A-B). We then asked if our inference method identified the
correct parameters and whether local minima were observed. Instead of the case where
the filters are described by a combination of nonlinear basis functions, we considered
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only one basis function, a mono-exponential decay with its decay time constant known.

In cases where the time constant is unknown, one would fit the coefficient of a
combination of nonlinear basis functions, as is typical in other linear-nonlinear

models [32}|34,/63,64]. Using a long stimulus train, the likelihood function appeared
convex over a fairly large range of parameter values as no local minima were observed
(Fig. —F). The slanted elongation of likelihood contour indicates a correlation or
anti-correlation between parameter estimates. Not surprisingly, we found that the
estimates of baseline and scale factor of the o-kernel would be anti-correlated (Fig. ),
while on the other hand the estimates of filter amplitudes for efficacy and variance would
have little correlation (Fig. Ep) Furthermore, we found that the parameter estimates
matched closely the parameters used to simulate the responses after 100 to 150 spikes
(Fig. -H), with efficacy parameters requiring more data than variance parameters
(compare Fig. and H). The relationship between error in parameter estimation and

training size is such that for large training sets the percent error goes to zero (Fig. )

As might be expected, the method performs poorly for parameters that do not regulate
the efficacy. For instance, when a facilitating efficacy kernel is added to a high baseline
parameter, the high baseline saturates the nonlinear readout, and no facilitation of the
efficacy will be observed. As a result, kernel amplitude is poorly estimated when the
baseline used for simulations is high (Fig. ) Using a separate artificial Poisson input
for testing the predictive power of the model, we calculated the mean squared error
between the inferred and true model (Fig. ) The prediction error of the inferred
model almost matched that of the true model, even if inference was based on less than
100 spikes. We conclude that maximum likelihood applied to the SRP model is able to
characterize the model efficiently and accurately, and that, for simple filters, the
landscape is sufficiently devoid of local minima to allow efficient characterization.

Relation to Generalized Linear Models

We have shown that, in one situation, the likelihood landscape appears devoid of local
minima, but is this always the case? Without additional restrictions on the model
described in the previous section, it is unlikely that the likelihood would be always
convex. However, with some simplifications, the model becomes a Generalized Linear
Model (GLM), and convexity proofs are possible in some cases [41,/65]. In this section,
we describe two such simplifications.

We can assume that the standard deviation is always proportional to the mean:

o = oop. This assumes that the CV is constant through a high-frequency train, a
coarse assumption given the large changes in CV observed experimentally [22,/60]. If for
some reason an accurate reproduction of the changes in variability can be sacrificed,
this simplification leads to interesting properties. In this case, no variance parameters
are to be estimated apart from the scaling 0. There is thus a reduction in the number
of parameters to be estimated. In addition, since the gamma distribution belongs to the
exponential family and the mean is a linear-nonlinear function of the other parameters,
we satisfy the requirements for GLMs and the likelihood is devoid of local minima when
the proof given by Paninski (2004) [41] applies.

For the depressing synapses, the CV is increasing during a high-frequency train.
This can be modeled by a constant standard deviation with a mean decreasing through
the stimulus train. Similarly, for the facilitating synapses at normal extracellular
calcium shown in Fig. [2] the gradual decrease in CV can be explained by an
approximately constant standard deviation, o = 0y, and an increasing mean. Setting
the variance to a constant again reduces the number of parameters to be estimated and
recovers the necessary assumptions of a GLM.
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Fig 7. Statistical inference of kinetic properties on surrogate data. A Simulated
Poisson spike trains mark pre-synaptic stimulation. B Simulated post-synaptic currents
of the spike train in A for two independent sampling of the true parameter set (top) and
for sampling of true and inferred models (bottom). Negative log-likelihood landscape as
a function of C p- and o-kernel amplitudes, D o baseline and scaling factor, E 1 and o
baseline and F o scaling and amplitude. G average o parameter errors as function

training size (left) and average p parameter errors as a function of training size (right).

H Average amplitude (u and o) and o scaling factor error as a function of saturation;
error bars are SEM. | Mean square error (MSE) of inferred and true model as a function
of training size. Dashed line is MSE between independent samples of the true parameter
set.

Relation to Convolutional Neural Networks

A convolution followed by a nonlinear readout is also the central operation performed in
convolutional neural networks (CNNs). Because this type of algorithm is associated
with high performance in challenging tasks, we asked what type of neural network
architecture corresponds to synaptic information processing. In a artificial neural
network, an input arranged as a one-dimensional array x is convolved with a bank of
kernels {k;} and readout through a nonlinearity f to generate a representation of a first
hidden layer of neurons

hgi) = [ (k& (m O xp14k)) (7)

where K is the length of the ith kernel and a mask m operates on the input with the
Hadamard product (®). This mask is made of samples from Bernoulli random variable
normed so that the average of kiT(m O Xppr k) 18 kiT ® Xyt k- 1t randomly silences
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A g B impinging spike trains

a synapses

secondary
dendrites

primary
dendrites

Fig 8. A synaptic contribution to the hierarchy of linear-nonlinear computations. A
Synapses distributed on primary (orange, blue and green) and secondary (yellow and
red) dendrites may have different synaptic properties (different color tints). B Each
synapse is characterized by two kernels separated by a nonlinear sampling operation. (1)
A pre-synaptic convolution kernel regulates synaptic dynamics. (2) A post-synaptic
convolution kernel regulates the shape of the post-synaptic potential locally. The
post-synaptic potentials from different synapses are summed within each dendritic
compartment, forming a processing hierarchy converging to the soma.

parts of the input, an approach called dropout that was proposed to improve

learning [66]. Although CNN architectures vary, the next layer may be that of a pooling
operation hy = % fikz hgl) before reaching a fully connected layer. To emulate the
operation performed by STP, we consider a weight vector w for weighting the output of

different kernels in the filter bank
yr = f (w'hy,) (8)

where hy, concatenates the set of h,(f) from different kernels ¢ but the same input index
k. By optimizing the kernels, similar CNNs can be trained to classify images [66,[67] as
well as sounds [68}69].

(@)

In a synapse with STP, the discretized efficacy train of the ith afferent, e;”’, results

from a convolution and a nonlinear readout of the discretized spike train s,gi)

6? =f (kiTSSt)JrK) St(i), 9)

which is simply the discretized version of Eq. [2land [3] This discretization makes clear
the parallel with a convolutional layer in Eq. [7] As the spike train is conceived as a
stochastic random variable sampling a potential [34,48.49], the stochastic spike train is
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analogous to the dropout mask m. The efficacy train triggers PSCs, which are pooling
the efficacy train on the PSC : el = S 2 ¢, el where ¢ is a discretized and
normalized PSC. Then, different synaptic afferents, with possibly different efficacy
kernels (Fig. , are combined via by synaptic weights before taking a nonlinear readout
at the cell body [34L/49] or the dendrites 70| to give rise to an instantaneous firing rate
Pt

pr=1[ (WTet) (10)

This equation corresponds to the fully connected layer that followed a pooling operation,
Eq. [8 Together, we find a striking parallel between the formalism developed here to
describe STP and that of an artificial neural network which uses dropout at a
convolutional layer followed by a fully connected layer.

Discussion

The linear-nonlinear framework has been able to capture core elements of

subcellular [47], cellular [341[36[37,[71] and network signalling. We have shown that the
same framework aptly captures synaptic dynamics. In the SRP framework,
activity-dependent changes in efficacy are captured by an efficacy kernel. We have
shown that switching the polarity of the kernel captures whether STD or STF is
observed. Extending previous work at ribbon synapses [72], we have shown that the
modeling framework captures multiple experimental features of synaptic dynamics. The
model successfully reproduces the experimental extracellular calcium concentration
manipulations seen to affect high-frequency stimulation responses. The framework can
naturally capture long-lasting effects such as post-burst facilitation. Finally, by
considering the dynamics of stochastic properties, a maximum likelihood approach can
estimate model parameters from complex, time-limited, and physiological stimulation
patterns. The added flexibility and the efficient inference are of interest to large scale
characterization of synaptic dynamics [73] as well as the understanding information
processing of neural networks [15]74].

When summarizing dynamic properties with two time-dependent functions we called
kernels, one is compelled to ask, what is their biophysical implementation? By analogy
with characterization of neuronal excitability, the answer is likely to involve a mixture of
independent mechanisms. The membrane kernel, for instance, depends on membrane
resistance and membrane capacitance, but also the density of low-threshold channels,
such as A- and H-type currents. Similarly, the efficacy kernel is likely to reflect residual
presynaptic calcium concentration, the changing size of the readily releasable pool [31]
but also many other possible mechanisms. Determining the relative importance of these
processes, however, is not possible with the methodology described here. This could be
achieved only with a combination of experiments aimed at isolating independent
mechanisms and a detailed biophysical model, at the cost of constructing a model with
reduced predictive power. In our view, the modeling framework presented here is less a
tool for identifying molecular mechanisms, but rather one for the characterization,
network simulations, and theoretical analysis [25}[75,|76] of the diversity of synaptic
dynamics across signalling pathways [17], cell types |141[50] or subcellular
compartments [77].

There remains limitations to this approach; one such limitation is the choice of a
gamma distribution of release sizes. Formally, this modeling choice means that the
model replaces release failures with small to very small releases. In other terms, whereas
the presence of release failures is a bimodal or multimodal distribution of amplitudes,
the model assumes that the distribution of evoked amplitudes is unimodal. Nonetheless,
recent work has shown that the release size distribution appears unimodal despite being
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generated by multiple modes [56]. We have argued that for the small vesicle sizes at
central synapses, quantal peaks are smeared by quantal variability [56]. When
considering electrophysiological preparations where multiple synapses are simultaneously
activated [27],58,|78], the diversity of synaptic weights will strengthen further the
assumption for a gamma-distribured, right-skewed and unimodal distribution.

Another unanswered question is that having explored various monotonic progressions
of variability, can the model capture a non-monotonic progression? This case is relevant
because the random and equally likely release of a number of vesicles will give rise to a
non-monotonic progression of variability when release probability is changing over a
larger range. For instance, in a facilitating synapse where multiple release sites increase
an initially low release probability through a high-frequency train, the variability will
first increase and then decrease. This convex, non-monotonic progression arises from
the fact that variability is at its lowest point either when release probability is zero or
when it is one. Given the mathematical features of the model, it may be possible to
generate such a non-monotonic progression of variability with a biphasic o-kernel.

Previous modeling and experimental work has established that dendritic integration
can follow a hierarchy of linear-nonlinear processing steps [47,70}/79]. Subcellular
compartments filter and sum synaptic inputs through an integration kernel
encapsulating a local passive and quasi-active properties. Active properties are
responsible for a static nonlinear readout and for communication toward the cell body.
Much in the same spirit, the work presented here extends this model by one layer,
where presynaptic spikes first pass through a linear-nonlinear step before entering
dendrites (Fig. . Since synapses at different locations or from different pathways may
have different synaptic dynamics [17,[77], and since spiking neural codes can multiplex
streams of information [8}80,/81], these synaptic properties have the capability to
extract different streams of information from multiple pathways and to process these
possibly independent signals in segregated compartments.

The structure of information processing arising from this picture bears a striking
resemblance with multi-layer convolutional neural networks [82}83]. But it should be
noted that the convolution takes place along the temporal dimension instead of the
spatial dimension for many neural network applications. Yet, this algorithmic similarity
suggests that the linear-nonlinear structure of synaptic processing capabilities on neural
and neuronal networks. Whether the STP is controlled by genes [84], activity-dependent
plasticity [851[86], retrograde signalling [87], or neuromodulation [88}[89], a particular
choice of efficacy kernels, when combined with a nonlinear readout, can optimize
information processing.

Methods

All numerical simulations and parameter inference were done in Python using the
numpy and scipy packages [90,91].

Tsodyks-Markam Model and its Modifications

The Tsodyks-Markram (TM) model was first presented in 1997 |24] as a
phenomenological model of depressing synapses between cortical pyramidal neurons and
was quickly extended to account for short-term facilitating synapses [11,[50]. In the TM
model, the normalized PSC amplitude u,, at a synapse caused by spike n of a
presynaptic spike train is defined as

n = Rpty, (11)
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where two factors u, and R, describe the utilized and recovered efficacy of the synapse,
respectively. The temporal evolution of these variables are described by the following
ordinary differential equations:

dR(t) _ 1- R(t)

dt o T uERET)S) (12)
dz;(tt) _ U ;u(t) + f[l _ u(tf)]s(t) (13)

where f is the facilitation constant, 7,, the facilitation time scale, U the baseline efficacy
and 7R the depression timescale. The spike-dependent changes in R and u are
implemented by the dirac delta function within the spike train S(¢). The notation ¢~
indicates that the function should be evaluated as the limit approaching the spike times
from below.

In the TM model, facilitation is modelled as spike-dependent increases in the utilized
efficacy u. Immediately after each spike, the efficacy increases by f(1 —w(t~)). This
efficacy jump depends on a facilitation constant f and on the efficacy immediately
before the spike u(t~). Therefore, as u increases during a spike train, the
spike-dependent ’jump’ decreases for each subsequent spike. As a consequence, TM
models of facilitating synapses are limited to a logarithmically saturating — that is,
sublinear — facilitation.

To allow supralinear facilitation, we introduce a small change in the spike-dependent
increase of factor u:

du(t) U —u(t)

T +ut)f[1—ult)]o(t—ts). (14)

In this new model, given a presynaptic spike train at constant frequency, the size of the
spike-dependent jump u(t7)f[1 — u(t™)] saturates logarithmically for u > 0.5 but is
increasing exponentially while © < 0.5. Thus this model provides supralinear facilitation
in the low efficacy regimen, and it switches to sublinear facilitation for larger efficacies.
These models can be integrated between two spikes n and n + 1, separated by time
At to speed up the numerical implementation [50]. For the classic TM model we have

Ryy1=1-[1-R,, (1 —uy,)|exp (—f}j) (15)
Unt1 = U+ [un + f (1 —up) — Ulexp (—ft) (16)

Similarly, the generalized model introduced in this work can be integrated between
spikes:

Unt1 = U+ [un + f (1 —up)u, —Ulexp (—At> (17)

Where u, = u,, + f (1 — u,) u, is the value of u after the spike-dependent increase
following the n*" spike. In both models, at time t = 0, we assume no previous
activation, therefore Ry = 1 and ug = U.

Statistical Inference

To extract the properties of the model from experimental data, we developed a
maximum likelihood approach. Given a set of amplitudes y = {y1, Y2, .-+, Yi, s Yn }
resulting from a stimulation spike-train S, we want to find the parameters § maximizing
the likelihood p(y|S,#). For the mathematical model presented here, the negative
log-likelihood (NLL) is:
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Yilbi 0 Yilbi I‘(Z—?)a?
NLL(y|S,0) = = (Cs 1) ( 75 )+ —— (18)

where p; and o; are shorthand for efficacy and standard deviation at the ith spike time:
wi = u(t;), oy = o(t;), that is, the elements of the vectors p and o.

We parametrize the time-dependent standard deviation and mean of the gamma
distribution by expanding the filters k,, and k, in a linear combination of nonlinear
basis: k,(t) = >, aihi(t), and ks (t) = >, cmhm(t). Typical choices for such nonlinear
basis are raised cosine [32], splines [63,/64], rectangular [92] or exponential decays [34].
In counterpart to the numerical simulations where the kernels are made of a
combination of exponential functions with different decay time constants, we have used
this choice of basis functions.

In this framework, hyper-parameters are the choice of the number of basis functions,
1 €[0,L] and m € [0, M], as well as the decay time scale for each basis function
hy(t) = ©(t)e /™ /7, where ©(t) is a Heaviside function. Free parameters are the
amplitude of the basis functions {a;}, {¢;,} and the scaling factor og. By chosing
hyper-parameters a priori, the modeller must choose a number of bases that is neither
too big to cause overfitting, nor too small to cause model rigidity. The choice of time
constant is made to tile exhaustively the range of physiologically relevant time scales. It
is important to note that, because a combination of exponential basis functions can be
used to capture a decay time scale absent from the set of 7 hyper-parameters, the choice
of 7 does not specify the time scale of synaptic dynamics. The time-scale will be
determined by inferring the relative amplitude of the basis funcitons. We can label the
baseline parameter as the coefficient regulating the amplitude of a constant basis
function, such that ag = bho(t) = b, and ¢y = byho(t) = b,. There are thus
L+ 2+ M + 2 free parameters in total :

0= {ao, s AL, 00,C0y --0y Cjw}

To perform parameter inference, we first filter the data using the set of basis functions
and stored the filtered spike train just before each spike in a matrix. Each row of the
matrix corresponds to an individual basis function, and each column corresponds to
spike timings. The matrix, X, thus stores the result of the convolution between the
various basis function (rows) and at the time of the various spikes (columns).

For simplicity, it is convenient to take the same choice of basis functions for the
efficacy and the variance kernel. The amplitudes are expressed in a vector
6, = {ao, ...,ar}, for the efficacy kernel, and 6, = {c, ..., car} for the variance kernel.
Using this matrix notation, the linear combination is expressed as a matrix
multiplication:

_ b opxr
#= Flag? )

g = O'0f (XTBU)

where p and o have length n and can be used to evaluate the NLL according to Eq.
Performing a grid search of the parameter space around initialized parameter values, we
can obtain the landscape for the function, and ascertain the presence of convexity. The
inferred parameters will then be the set of §,, and 6, minimizing the NLL over the
training set.
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