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ABSTRACT

Genes implicated in tumorigenesis often exhibit diverse sets of genomic variants in the tumor

cohorts within which they are frequently mutated. We sought to identify the downstream expres-

sion effects of these perturbations and to find whether or not this heterogeneity at the genomic

level is reflected in a corresponding heterogeneity at the transcriptomic level. Applying a novel

hierarchical framework for organizing the mutations present in a cohort along with machine learn-

ing pipelines trained on samples’ expression profiles we systematically interrogated the signatures

associated with combinations of perturbations recurrent in cancer. This allowed us to catalogue

the mutations with discernible downstream expression effects across a number of tumor cohorts as

well as to uncover and characterize a multitude of cases where subsets of a gene’s mutations are

clearly divergent in their function from the remaining mutations of the gene. These findings suc-

cessfully replicated across a number of disease contexts and were found to have clear implications

for the delineation of cancer processes as well as clinical decisions, underlining the importance of

considering the diversity present within oncogenes when studying the downstream effects of their

mutations.
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INTRODUCTION

Each tumor faces a common set of obstacles arising from internal dynamics and external de-

fense mechanisms1. Tumor cohorts, however, are replete with diverse yet recurrent tactics for

overcoming these shared obstacles. Tumorigenesis can thus be perceived as a landscape within

which each tumor navigates a unique, multidimensional path, weaving between segments trodden

by other tumors. A number of the early breakthroughs in cancer treatment directly resulted from

coarse demarcations of these paths into distinct subtypes based on “landmarks”—usually defined

by mutations and/or markers derived from proteomic or transcriptomic data—that were then used

to engineer subtype-specific treatments2–4.

Although these biomarker-based treatment matching criteria have proven effective in some

precision medicine applications, there is a sizable subset of patients whose tumors harbor no dis-

cernible drug targets, thus diminishing their likelihood of successful treatment and survival5–8.

Developing a more thorough understanding of the downstream effects of landmark events could

therefore improve tailored treatment design outcomes. In particular, we envision a tactic which de-

tects whether two genomic alterations (or combinations thereof) have a shared downstream effect,

and can therefore be grouped together when weighing treatment options. This type of approach

should also be able to detect whether two such alterations or groupings result in divergent tran-

scriptional programs and can therefore be considered distinct. Despite recent efforts to profile the

downstream effects of mutations recurrent in cancer, for most mutations we still know little about

the programs they trigger. As a result, most clinical guidelines depend on only a limited sub-

set of specific perturbations within a gene or on other coarse biomarker-based demarcations9,10.

A clearer discernment of the convergences and divergences between the downstream programs

present within cancer genes is thus a crucial prerequisite for addressing the challenges presently

faced by precision oncology11,12.

Mutations of frequently altered genes often manifest as patterns of differential expression in

other downstream genes. Such patterns are usually referred to as the transcriptomic signature or

program associated with the mutation. It was previously shown that it is possible to generate

transcriptomic signatures for common cancer drivers by training machine learning algorithms to

predict which samples in a tumor cohort harbor their mutations13–16. A corollary to these results
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is that these mutation classifiers should also provide insight into the effects of the mutation in

question. This hypothesis is supported by the correlations observed between these models’ pre-

dictions and other measurements of downstream activity including protein levels, response to drug

treatment, and mutations in genes belonging to related cancer pathways17,18.

Further development of transcriptomic signatures is complicated by the dissimilitude of driver

mutations within a gene19,20. Although genes such as BRAF carry one hotspot responsible for

almost all mutations observed in the gene in tumor cohorts21, many genes implicated in tumor

progression and proliferation have a widely distributed pattern of genomic alterations22–25. These

mutations have varying degrees of impact and some are neutral. Moreover, it is not uncommon

for different alterations within a gene to carry out diametrically opposite roles in cancer develop-

ment depending on context26. In cases such as KRAS this property has already been exploited

to engineer clinical interventions targeted to a specific KRAS hotspot rather than the gene as a

whole27.

Can we measure these variable and divergent impacts? Consider the case in which a gene

contains multiple groupings of mutations, each significantly divergent from the rest with respect

to downstream impact. In this scenario, we would expect transcriptomic classifiers trained to

predict the presence of mutations within individual groupings to be more accurate than a gene-

wide classifier trained to predict the presence of any mutation of the gene. Conversely, if we do

not observe increased classifier performance for subgroups, it is likely that they are convergent.

Although subgroup-specific classifiers benefit to a certain degree from having a more uniform set

of downstream effects to identify in a tumor cohort, they must also overcome the loss in statistical

power inherent in characterizing a set of mutations present in a smaller proportion of available

training samples. The discovery of mutation groupings robustly associated with better-performing

classifiers within a gene would hence clearly present strong evidence of divergence.

The landscape of transcriptomic classifier accuracy across cancer genes’ mutation subgroup-

ings should thus inform us about the convergent and divergent effects of these mutations. This

understanding is useful for two immediate clinical purposes: estimating the likelihood that a vari-

ant of unknown significance has an effect similar to a previously characterized hotspot variant,

and obtaining an informed grouping criteria for recurrent mutations to aid in the design of clinical

trials and precision medicine guidelines. Based on these observations, we examined frequently
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altered genes in large tumor cohorts by systematically interrogating mutation subgroupings asso-

ciated with improved classification performance. Instead of focusing on a single gene or pathway

of interest, we sought to create a framework inspired by class-grouping approaches28–30 which

would generalize well to the population of somatic alterations recurrent in cancer. Specifically,

we test each gene for the existence of at least one good multinomial classifier by searching over

a hierarchy of one-vs-rest binary classifiers. We confirm previous findings showing that it is pos-

sible to predict the presence of mutations associated with cancer using regression models trained

on expression data and expand upon them to demonstrate the utility of taking into account the

heterogeneity of mutation profiles within individual genes.

MATERIALS AND METHODS

Expression dataset preparation

We characterized the divergences present across alteration landscapes in cancer using tran-

scriptomic signatures trained on a collection of publicly available tumor cohorts drawn from the

METABRIC31, TCGA32,33, and Beat AML34 projects. In each of these cohorts, we filtered out

samples for which either expression or mutation data was not available. Applying UMAP, a

manifold-based unsupervised learning technique35, to the expression profiles of the remaining

samples revealed clusters in cohorts such as TCGA-BRCA and TCGA-HNSC corresponding to

molecular subtypes known to have unique transcriptomic profiles36–38 (Figure S1). To ensure that

this heterogeneity at the molecular level did not confound our interrogation of heterogeneity at

the genomic level, we partitioned cohorts containing subtypes associated with readily identifiable

transcriptomic clusters. This yielded sub-cohorts such as METABRIC(LumA) and HNSC(HPV-)

which were used alongside cohorts that did not require partitioning (Figure S2, Table S1).

Enumeration of cancer gene mutation subgroupings in tumor cohorts

For clarity, we apply the term point mutation loosely to describe any genomic alteration involv-

ing a small number of nucleotides (e.g. SNPs, frameshifts, inframe insertions) while reserving the

more general term mutation for the broader collection of perturbations spanning both point muta-
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tions and large-scale mutations such as copy number alterations (CNAs). We identified oncogenic

and tumor suppressor genes based on their inclusion in the OncoKB database39. Our search for

mutation groupings was restricted to the subset of these genes with point mutations present in at

least 20 samples in any one of our cohorts. For each such gene, we enumerated subsets of its

point mutations that could potentially have a biologically meaningful downstream transcriptomic

signature.

Specifically, we hierarchically decomposed the variants of frequently mutated genes within a

particular cohort. Each level in one of these hierarchies is associated with an attribute that can be

used to characterize mutations in a non-overlapping, discrete manner, thus resulting in branches

into which the mutations present in the cohort can be sorted. For example, one can build a simple

two-level hierarchy
〈
EXON→ AMINO ACID POSITION

〉
that clusters a gene’s mutations according to

genomic position by first grouping together mutations located on the same exon and then grouping

together each exon’s mutations according to their amino acid position. Other attributes employed

as hierarchical discriminators included overlap with a known binding domain, as well as the trans-

lation effect of the mutation (e.g. missense, nonsense, frameshift, etc.). Although our method can

be applied to both point mutations and CNAs, here we focus on the former due to the richer set of

attributes available for sorting them into our mutation trees.

For each cancer gene satisfying the 20-sample recurrence threshold in a cohort, we arranged its

point mutations according to four hierarchies chosen to express useful biological priors about its

mutations’ possible downstream effects.
〈
EXON→AA POSITION→AA SUBSTITUTION

〉
is the two-

level hierarchy described above that then further groups mutations at each amino acid position ac-

cording to the specific amino acid that replaces the wild-type. This is useful for grouping together

mutations that are located close to one another and can therefore be expected to bear a higher like-

lihood of having similar roles in downstream processes. Both
〈
SMART DOMAIN→ FORM(BASE)

〉
and

〈
PFAM DOMAIN→ FORM(BASE)

〉
first organize mutations according to their overlap with a

known protein domain and then segregate mutations according to translational “form” (i.e. mis-

sense, nonsense, frameshift insertion, etc.) while grouping together insertions and deletions of

forms such as frameshifts (hence “base”). These two trees enhance how the “closeness” of muta-

tions is defined using a secondary source of information about structural units within the protein

they affect and also incorporate information on the general nature of the perturbation caused by
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the mutation. Finally,
〈
FORM→ EXON

〉
considers unamalgamated mutation forms (i.e. frameshift

insertions and deletions considered separately from one another) that are then grouped together by

exonic position. This accounts for the possibility that, within particular genes, mutations of the

same type are more likely to have similar downstream effects than mutations that are close to one

another.

Each of these mutation trees can be used to generate a population of mutation subgroupings,

defined as a branch or a combination of branches in a constructed hierarchy. With the mutation

trees described above one can generate subgroupings such as

FGFR3

Exon = 6

Location = 249

S249C

which consists of a single branch within the tree
〈
EXON→AA POSITION→AA SUBSTITUTION

〉
,

GATA3

no overlapping SMART domain

FrameShift or SpliceSite

consisting of two branches of the tree
〈
SMART DOMAIN→ FORM(BASE)→AA SUBSTITUTION

〉
,

and

TP53

NonsenseMutation

Exon = 5

SpliceSite

MissenseMutation

Exon = 6

consisting of three branches in the tree
〈
FORM→ EXON

〉
. While the first of these subgroupings

simply represents the mutations belonging to a single hotspot of FGFR3, the other two represent

less obvious groupings of the mutations of GATA3 and TP53 which we can interrogate for possible

divergence from the remaining mutations of the gene.

Branches within subgroupings are combined using the union operation, i.e. all mutations on

at least one of the branches are included in the subgrouping. To limit the number of mutation
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subgroupings to test, we only considered subgroupings consisting of at most two branches in one

of the above hierarchies. Subgroupings were further filtered to only include those containing mu-

tations present in at least 20 samples in a cohort, with each branch containing mutations present

in at least 10 samples, and to remove subgroupings which included all the mutations of the corre-

sponding gene.

Although these hierarchies allow for a fairly extensive search over the possible subsets of the

mutations of a gene occurring in a cohort of samples, they do not offer a firm lower bound for

finding the maximally divergent subgrouping. For our purposes, however, it is sufficient to detect

at least one statistically significant divergent partitioning. Since we are systematically scanning

all frequently altered genes across many cohorts, computational cost and statistical loss due to

multiple hypothesis testing are limiting constraints. We found that our sampling heuristic based

on biological priors can still elucidate multiple interpretable divergent subsets while pruning the

search space down to a manageable size.

Training and evaluating subgroup transcriptomic signatures

For each gene we trained a classifier to predict which samples in the cohort carried at least

one point mutation on the gene—we refer to this as the gene-wide task. We then trained sepa-

rate classifiers to predict which samples carried individual subgroupings’ mutations, referred to as

the set of subgrouping tasks. Each task involved applying a logistic regression classifier utilizing

the ridge regularization penalty to the given cohort’s expression data in order to generate binary

labels for the samples that corresponded to whether they harbored a mutation in the subgrouping

(see Supplementary Methods)40. To ensure that our subgrouping classifiers were identifying the

downstream trans-regulatory effects of genomic perturbations and not solely their direct effects

on the transcription of the corresponding gene and its genomic locality, we removed expression

features associated with genes on the same chromosome as the gene whose mutations were being

predicted. The output of each trained classifier was a continuous per-sample score denoting the

classifier’s confidence that it was mutated in the subgrouping or gene, with higher values denoting

greater confidence that a mutation was present. We measured a classifier’s ability to identify a

transcriptomic signature for its assigned task using the area under the receiver operating character-
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istic curve metric (AUC) calculated using samples’ mean scores across ten iterations of four-fold

cross-validation.

RESULTS

Subgrouping classifiers uncover alteration divergence in a breast cancer cohort

We found 38 genes with a total of 853 mutation subgroupings satisfying our classification

task enumeration criteria using the 1017 METABRIC samples belonging to the luminal A sub-

type of breast cancer. The transcriptomic signatures trained on these tasks revealed that many

frequently mutated cancer genes within the METABRIC(LumA) cohort have readily identifiable

downstream expression effects. Crucially, a sizeable subset of these genes contain subgroupings

with expression signatures that diverge from those associated with the gene as a whole (Figure 1).

For example, while it is easy to find a downstream effect in the expression data for GATA3 point

mutations when they are considered as a whole (177 mutated samples; AUC=0.837), there are sev-

eral subsets of GATA3 variants that produced even more accurate transcriptomic signatures: point

mutations not assigned to an exon of GATA3 (in particular, splice variants) coupled with point

mutations located on the 5th exon (79 samples; AUC=0.929), splice site mutations at codon 308

(43 samples; AUC=0.912), and frameshift mutations overlapping the zinc finger domain listed in

the SMART database (36 samples; AUC=0.877).

These results are striking in that predicting the presence of a rarer type of mutation should,

everything else being equal, be more difficult owing to decreased statistical power. Furthermore,

while samples carrying any type of GATA3 mutation clearly have expression profiles distinct from

those of samples that are wild-type for GATA3, our experiment demonstrates that it is also possible

to find signatures that are able to consistently differentiate between different types of mutations

within the GATA3 perturbational landscape. This is consistent with recent work showing that

GATA3 mutations in breast cancer can be segregated according to their effect on the function of

the GATA3 protein into subsets that broadly overlap with those identified as divergent above41.

Similar inferences can be made about the frameshift and splice site mutations of MAP3K1,

which were found to segregate according to lack of overlap with the protein kinase domain (72

samples out of 149 mutated for MAP3K1; AUC=0.886 vs. AUC=0.786 for subgrouping task vs.
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FIG. 1. Divergent transcriptomic programs are a recurring feature of frequently mutated genes in breast
cancer.

853 subgroupings within the point mutations of 38 genes with known links to cancer processes in
METABRIC(LumA) were enumerated by grouping together variants with common properties. A logis-
tic ridge regression classifier was trained to predict the presence of any point mutation in each of these
genes as well as the presence of each enumerated subgrouping. Comparing the classification performance
(AUC) for each gene-wide task (x-axis) to the best performance across all tested subgroupings of the gene
(y-axis) reveals subgroupings within genes such as GATA3 and MAP3K1 with downstream effects that are
consistently separable from the remaining mutations of the gene. The pie charts’ areas are proportional to
the number of samples in the cohort that carry any point mutation of the corresponding gene; the darker
slice inside each pie is scaled according to the proportion of these samples carrying a mutation in the best
subgrouping, which for selected cases is described below the gene name.
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gene-wide), as well as SF3B1 point mutations, within which mutations on the 15th exon were

found to be highly divergent (27/47 SF3B1 mutants, AUC=0.999 vs. AUC=0.845). In the latter

case, improved classification performance was primarily due to the presence of the K700E hotspot

which accounted for all but one of these mutants, and could also be predicted nearly perfectly on

its own (26/47 SF3B1 mutants, AUC=0.999). Moreover, the SF3B1 subgrouping which excluded

silent mutations yielded a more modest boost in the quality of the transcriptomic signature (39/47

SF3B1 mutants, AUC=0.917), suggesting that SF3B1 variants can be ordered according to the

strength of their downstream effects, with K700E mutations having the most significant impact.

Several other genes, including CTCF and AKT1, were found to follow a similar pattern in which

the best subgrouping was constructed by excluding silent mutations, using a single hotspot, or

both.

The case of ARID1A was particularly noteworthy as classifiers struggled to find a signature

when all of its mutations were considered together (68 samples; AUC=0.649), or even when re-

stricted to predicting combinations of non-silent mutation types such as missense and nonsense

(35 samples; AUC=0.550) or frameshift deletions and missense (34 samples; AUC=0.503). Only

combining frameshift deletions and nonsense mutations of ARID1A into a subgrouping resulted

in a major boost to classification performance for the gene (21 samples; AUC=0.911). This is

consistent with the rarity of ARID1A missense mutations compared to nonsense mutations and

frameshifts in other cancer types, suggesting that missense mutations are not selected for in gen-

eral due to their lack of an effect on downstream processes42,43. This demonstrates our method’s

ability to generate transcriptomic signatures for cancer genes which would be otherwise difficult

to profile by identifying subsets of mutations that differ significantly in their behavior from other

mutations on the same gene.

Intriguingly, we were unable to identify within-gene divergent subgroupings for TP53 and

PIK3CA in METABRIC(LumA). Nevertheless, successfully training gene-wide classifiers for

these well-known cancer drivers (AUC=0.901 and AUC=0.813 for the 221 TP53 and 488 PIK3CA

point mutations respectively) lends further credence to our framework’s ability to identify down-

stream effects where they would reasonably be expected to occur. It may be the case that nuanced

yet consequential differences exist between the downstream expression effects of mutations within

such genes, but that these differences are overshadowed by an expression program common to a
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sufficiently high proportion of the mutations. Similarly, whatever heterogeneity exists within the

mutational profiles of these genes may be too granular to observe without access to larger tumor

cohorts. For example, if TP53 variants could be rightly decomposed into dozens of distinct sub-

groupings, it would be difficult to find a transcriptional signature for each of these subgroupings

individually within a cohort that only contains a total of 221 TP53-mutated samples. Our results

are thus better interpreted as proving the divergence of some perturbational profiles rather than

disproving the divergence of others.

Subgrouping classifiers outperform random background benchmarks

Our approach to characterizing transcriptomic heterogeneity within the alteration profiles of

cancer genes is based on testing as many mutation subgroupings as possible to identify those with

divergent expression signatures. Although we have already demonstrated that this strategy can be

gainfully applied to find such subgroupings, it is also clearly susceptible to multiple hypothesis

testing—how can we be sure that the improvements in AUC we have observed are not simply the

upper tail of the noise inherent in measuring the accuracy of a large population of classifiers? We

thus devised several strategies to demonstrate the significance of our mutation classifier perfor-

mances.

To establish a metric of confidence that the classification performance observed for the best

subgroupings represented a significant improvement over using all point mutations for each gene

and was not just a result of testing a multitude of subgrouping hypotheses, we derived a metric

for comparing the AUCs of tasks to one another through down-sampling. A pool of 500 AUCs

were generated for each task by randomly selecting 500 subsets of samples from the cohort and

recalculating the AUC using solely the classifier scores returned for each of these sets of sam-

ples (see Supplementary Methods). This allowed us to interrogate the sensitivity of the AUCs we

measured relative to the variation across the space of samples on which they were trained. Cal-

culating the probability that a down-sampled AUC for each subgrouping task was higher than a

down-sampled AUC for its associated gene-wide task trained on METABRIC(LumA) confirmed

that our approach of considering subgroupings was particularly likely to yield a robust improve-

ment in classification performance in the genes SF3B1 and ARID1A where all of the best found

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2020. ; https://doi.org/10.1101/2020.06.02.128850doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.02.128850
http://creativecommons.org/licenses/by-nc-nd/4.0/


subgroupings’ down-sampled AUCs were higher than those of the gene-wide task (Figure S3).

This down-sampling confidence metric also offered further support for the presence of divergence

in genes such as GATA3 (conf=0.999), MAP3K1 (conf=0.999), and AKT1 (conf=0.967) when

applied to the optimal subgrouping discovered in each case.

Furthermore, we cannot ascertain the significance of the AUCs we have observed in these clas-

sification tasks in isolation. Our prediction pipelines’ persistent ability to produce higher scores

for samples in which a particular set of mutations is present leads us to claim that the set of mu-

tations must have some biological relevance, but this relevance is difficult to establish without

also comparing the classification performance against other sets of samples that could have been

selected from the cohort to construct classification tasks. We thus created a set of classification

tasks to predict the presence of randomly chosen sets of samples of the same size as the muta-

tion subgroupings we previously tested. The distribution of AUCs for this null background set of

tasks was markedly lower than the corresponding distribution for tasks related to cancer genes,

confirming that the mutation labels associated with cancer genes encode a significant amount of

information relative to randomly-chosen labels (Figures S4A–B). For each gene we also created

a gene-specific null background set of classification tasks by randomly selecting subsets from the

collection of samples carrying any point mutation of the gene. The performance observed for these

tasks revealed that in cases such as GATA3, AKT1, and FOXA1 our hierarchical organization of

the mutations in each gene yielded better subgroupings than those that could be found by simply

picking subsets of mutations occurring on the gene at random as measured by the down-sampling

confidence metric discussed above (Figure S4C). This underlines the utility of leveraging the var-

ious attributes of mutations as a biological prior for clustering them together into subgroupings

with more uniform downstream transcriptomic effects.

Mutation prediction performance is robust with respect to choice of classification algorithm

Since our method requires scanning a sizeable population of subgroupings, we opted to use a

linear ridge regression classifier that efficiently scales up to a large number of tasks. However, this

choice of algorithm can potentially prevent us from detecting nonlinear transcriptomic signatures.

Our tuning regime was also designed to be fairly straightforward in order to reduce computa-
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tional load, testing only eight ridge regularization hyper-parameter values. To find whether our

mutation prediction results in METABRIC(LumA) were affected by these efforts to reduce the

computational cost of our classification pipelines, we repeated the above experiment with radial

basis function support vector44 and random forest classifiers45 as well as with a larger tuning grid

for the ridge regression classifier.

These more complex classifiers failed to produce improved AUC performance across our pre-

diction tasks and did not affect the efficacy of subgrouping tasks relative to gene-wide tasks despite

taking up to an order of magnitude longer to run to completion for the cohort sample sizes con-

sidered (Figure S5). The Spearman correlation of AUCs across non-random classification tasks

was 0.941, 0.893, and 0.984 for the support vector, random forest, and large-tuning-grid classi-

fiers respectively against the AUCs measured using the original linear regression approach, further

demonstrating our results’ invariance to the machine learning algorithm used. The mutational

profile heterogeneity we observe is thus not a by-product of the behavior specific to any one par-

ticular classification method, and can be observed using a relatively simple learning framework.

That linear regression is sufficient for successful prediction in this context is likely due to the

relatively small size of the available tumor cohorts. Even if more complex relationships between

genomic perturbations and expression levels are indeed present in breast cancer, it is likely difficult

to characterize them without more statistical power than is available in a population of only 1017

samples.

Enlarging the subgrouping search space does not significantly alter relative classifier

performance

Relaxing the parameters of our subgrouping enumeration heuristic to allow for a larger search

space of 7598 subgroupings that included those composed of up to three branches of at least five

samples did not uncover a significant number of cases of divergent subgroupings that had not

already been found using the original criteria (Figure S6). In cases such as AKT1 and SF3B1

the best possible subgrouping had clearly already been identified due to the limited number of

combinations of mutation groupings we could test given the small number of samples carrying

any of their point mutations. MAP3K1 and PIK3CA exhibited very modest improvements in
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classification performance using the enlarged pool of subgroupings (AUCs of 0.895 vs. 0.886 and

0.817 vs. 0.813 respectively for expanded vs. original subgrouping search spaces) which were not

sufficient to justify a ninefold increase in computational cost. Nevertheless, the fact that the best

subgrouping of TP53 from this larger set converges even closer to the gene-wide set of mutations

lends greater credence to the difficulty of finding a divergent set of mutations within this gene.

There were some genes, including CDH1 and PTEN, that benefited from our deeper subgrouping

search. This is likely due to the fact that in both of these genes the mutations are well-spread,

with no single hotspot accounting for more than 10% of the mutations occurring within them in

METABRIC(LumA).

We also integrated copy number alterations (CNAs) in our subgroupings. For every enumerated

subgrouping, we created up to two additional classification tasks using the point mutations in the

subgrouping combined with deep deletions or deep amplifications of the same gene in cases where

one or both of these types of CNAs were present in at least five cohort samples. However, this

did not improve classification performance for cases such as GATA3, SF3B1, and AKT1 within

which divergent subgroupings had already been found when not including CNAs in the set of

mutations to predict (Figure S7). In genes such as TP53 and MAP3K1 there were simply not

enough deep CNAs present in the METABRIC(LumA) cohort for us to test any subgroupings

which included them. On the other hand, we found that using deep deletions along with missense

mutations on the catalytic domain and frameshifts on the C2 domain of PTEN led to a well-

performing transcriptomic signature (38 samples; AUC=0.762) compared to both using all PTEN

point mutations (51 samples; AUC=0.655) or using all PTEN point mutations and deep deletions

(67 samples; AUC=0.744). Including CNAs in our subgrouping enumeration also allowed us to

better characterize genes such as ERBB2 (HER2) where using deep amplifications on their own

produced a superior expression signature (43 samples; AUC=0.820) relative to using all point

mutations of the gene (38 samples; AUC=0.671) or all point mutations in conjunction with deep

gains (80 samples; AUC=0.722).
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Breast cancer cohorts exhibit concordant divergence characteristics

We performed the same analyses on TCGA-BRCA data to test whether the mutation grouping

behavior in METABRIC generalizes to other breast cancer cohorts and is not simply an artefact of

expression patterns specific to METABRIC or of over-fitting within our classification tasks. The

subgrouping enumeration procedure described above was repeated with the TGCA-BRCA lumi-

nal A sub-cohort consisting of 499 samples to identify 16 cancer genes containing 238 subgroup-

ings of which 14 genes and 222 subgroupings had also been enumerated in METABRIC(LumA).

Training and evaluating classification tasks predicting the presence of these subgroupings using

TCGA-BRCA(LumA) expression data revealed transcriptomic signature characteristics broadly

concordant with what was observed in METABRIC(LumA), with a Spearman correlation of 0.734

across AUCs recorded for non-random subgroupings enumerated in both cohorts (Figure 2). This

is despite the fact that the expression calls in the TCGA-BRCA(LumA) cohort were made in an

independent setting using next-generation sequencing profiling as opposed to microarrays.

In particular, genes such as GATA3, MAP3K1, and AKT1 which contain divergent subgroup-

ings in METABRIC(LumA) exhibit the same behavior in TCGA-BRCA(LumA), while genes

like TP53, PIK3CA, and CDH1 without such subgroupings in METABRIC(LumA) also lack

them in the counterpart TCGA cohort. Furthermore, subgroupings found to be divergent in

one cohort tended to also be identified as divergent in the other cohort (Figure S8). The set of

missense mutations overlapping with the Pleckstrin homology domain was found to have the

best AUC across AKT1 subgroupings in both METABRIC(LumA) and TCGA-BRCA(LumA),

while the best subgroupings of GATA3 in each cohort also perform much better than the gene-

wide task in the other cohort. An outlier in this regard was MAP3K1, in which the set of mis-

sense and frameshift mutations was found to have a strong relative AUC in METABRIC(LumA)

(AUC=0.883 vs. AUC=0.786 for the gene-wide task), but did not exhibit similar performance in

TCGA-BRCA(LumA) (AUC=0.804 vs. AUC=0.792 for the gene-wide task). A similar discor-

dance was also observed in the opposite direction where the best MAP3K1 subgrouping identified

in TCGA-BRCA(LumA) performed poorly in METABRIC(LumA) (AUC=0.851 vs. AUC=0.647

for the subgrouping of missense and nonsense mutations). Nevertheless, the discovery of at least

some divergent subgroupings of MAP3K1 in each cohort suggests a consistent pattern of hetero-
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A B

FIG. 2. Subgrouping performance is consistent across breast cancer cohorts.

Cancer gene subgrouping enumeration and classification was repeated using the luminal A sub-cohort of
TCGA-BRCA. The colors for genes’ plotted points and pie charts correspond to those in Figure 1.
(A) Prediction AUCs for gene-wide classification tasks and subgrouping tasks enumerated in both
METABRIC(LumA) (x-axis) and TCGA-BRCA(LumA) (y-axis). Larger point size indicates a higher joint
proportion of mutated samples (calculated as the geometric mean of the two cohort proportions).
(B) Comparison of relative subgrouping performance (AUC) between cancer genes profiled in TCGA-
BRCA(LumA) (filled-in pie charts) versus those profiled in METABRIC(LumA) (hollow pie charts).

geneity within its alterations, and that the set of mutations driving this divergence is not well-

characterized by the particular combinations of mutation annotation levels over which we chose

to enumerate subgroupings. ARID1A, notable as the case where divergent behavior was found

in one breast cancer cohort but not the other, can be explained by the fact that the incidence of

ARID1A mutations varies significantly between the two cohorts: in METABRIC(LumA) 6.7% of

samples carry a point mutation in the gene, while in TCGA-BRCA(LumA) only 4.2% do. Since

there are only 21 total mutated samples in the latter case, none of the ARID1A subgroupings that

our method enumerated in METABRIC(LumA) satisfied the sample frequency threshold in the

TCGA-BRCA(LumA) sub-cohort.

To further validate the generalizability of subgrouping performance, we applied the models

trained to predict subgroupings found in METABRIC(LumA) to the TCGA-BRCA(LumA) co-

hort and vice versa. We found that the AUCs for these classifiers in the previously unseen co-
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hort were similar to the cohort on which they were trained (Figure S9), with a Spearman cor-

relation of 0.848 between the original AUCs for models transferred from METABRIC(LumA)

to TCGA-BRCA(LumA) and their AUCs in the transfer context, and a Spearman correlation of

0.823 between the original and transfer AUCs for models trained on TCGA-BRCA(LumA) and

transferred to METABRIC(LumA). Furthermore, for genes such as GATA3 and AKT1 with di-

vergent subgroupings in the two breast cancer cohorts, these subgroupings also outperformed the

corresponding gene-wide classifier in this transfer setting (Figure S10).

The robustness of our findings was further underlined by obtaining comparable results when

running the same experiment using TCGA-BRCA(LumA) expression calls produced by kallisto46

as input rather than calls produced by RSEM47. Similar results were also obtained when using

other combinations of the subtypes present in breast cancer instead of solely luminal A in both

TCGA-BRCA and METABRIC (Figure S11). We thus conclude that the advantages of consid-

ering subgroupings within genes to model downstream transcriptomic effects are persistent when

exposing these models to as yet unseen datasets, and that these mutation models generalize well

across different breast cancer cohorts and expression quantification methods.

Divergent cancer gene subgroupings are present across a variety of cancer types

To further interrogate the presence of divergent alteration profiles across different tumor con-

texts, we repeated our enumeration and classification steps across the fourteen other cohorts in

TCGA with a sufficient number of samples as well as the Beat AML cohort. In total, 6530 sub-

groupings across 160 different genes were tested using the TCGA cohorts, in addition to the 853

subgroupings across 38 genes tested in METABRIC(LumA) and the 132 subgroupings across 14

genes tested in Beat AML. This revealed that gene-wide expression signatures can be trained for a

number of cancer genes in most oncological contexts (Figure 3). Furthermore, divergent subgroup-

ings are a feature of not just breast cancer but of many other tumor types as well (Figure S12).

A multitude of genes exhibit at least one subset of point mutations with a robust transcriptomic

signature that significantly outperforms the gene-wide signature (Table I).

For example, within the context of prostate adenocarcinoma (TCGA-PRAD), mutations of

FOXA1 that overlap with the fork head binding domain are much easier to predict than all FOXA1
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FIG. 3. Many cancer genes’ point mutations have identifiable expression signatures.

Our experiment attempted to predict the point mutations of a total of 192 cancer genes across 15 TCGA
tumor cohorts using transcriptomic profiles. Shown are the AUCs for all 555 of these gene-wide tasks, with
particularly well-performing classifiers highlighted. Point size corresponds to number of point-mutated
samples.

Cohort Gene Mutation Subgrouping AUCs† Samps‡

BLCA
FGFR3 any mutation on 9th exon or S249C 0.919 vs. 0.845 49/61
NFE2L2 2nd exon 0.939 vs. 0.815 20/27

HNSC(HPV-)
FBXW7 WD40 repeat domain 0.887 vs. 0.794 26/33
NSD1 frameshift w/o domain or nonsense w/o domain 0.976 vs. 0.932 32/52

LIHC CTNNB1 3rd exon 0.968 vs. 0.936 78/94
LUAD EGFR inframe del on any exon or missense on 21st exon 0.934 vs. 0.837 51/73
LUSC NFE2L2 2nd exon 0.896 vs. 0.837 67/75
PRAD FOXA1 fork head domain 0.957 vs. 0.830 22/31

STAD

APC frameshift w/o domain or nonsense w/o domain 0.854 vs. 0.756 21/53
ATM frameshift w/o domain or missense w/o domain 0.882 vs. 0.782 31/46

CREBBP any mutation w/o acetylation domain 0.898 vs. 0.821 25/44
PIK3CA missense on C2 domain or w/o domain 0.900 vs. 0.859 40/70

SPEN frameshift w/o domain or silent w/o domain 0.868 vs. 0.811 29/51
† given as (AUC of listed subgrouping) vs. (AUC of gene-wide classifier)
‡ number of samples in the subgrouping task vs. in the gene-wide task

TABLE I. Cataloguing cancer genes with divergent subgroupings across TCGA cohorts.

The subgrouping enumeration and classification tasks were applied to each TCGA cohort meeting our
selection criteria. Notable cases of genes containing subgroupings with significantly better AUCs than the
corresponding gene-wide task are listed above.

point mutations taken together (22/31 FOXA1 mutants; AUC=0.957 vs. AUC=0.830; conf=0.988).

This is consistent with the importance of such domains in guiding the regulatory functions of tran-

scription factors as well as with previous characterizations of the functional divergences present
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within FOXA1 mutations in prostate cancer cohorts48–50. In the HPV- subtype of head and neck

squamous carcinomas (TCGA-HNSC), NSD1 was found to have a divergent subgrouping consist-

ing of frameshifts and nonsense mutations not overlapping with a protein domain (32/52 samples,

AUC=0.976 vs. AUC=0.932, conf=0.970). Thus we can deduce that the 18 missense mutations

of NSD1 present in the cohort have a much weaker downstream effect, especially since the same

subgrouping with nonsense mutations replaced by missense mutations had poor classification per-

formance (24/52 samples, AUC=0.818). EGFR contains two major hotspots (E746-A750del and

L858R) in the lung adenocarcinoma cohort (TCGA-LUAD) which form the bulk of the samples

in the best found subgrouping (51/73 samples, AUC=0.934 vs. AUC=0.837, conf=0.995). This

implies that these two loci have similar or at the very least highly complementary impacts on the

transcriptome.

We also found that genes frequently mutated in multiple cohorts tended to be consistent in

the overall structure of their alterations’ downstream effects. For instance, we can produce a

well-performing signature for TP53 variants in multiple cancer cohorts including melanoma (67

mutated samples in TCGA-SKCM; AUC=0.905), bladder cancer (200 muts in TCGA-BLCA;

AUC=0.881), and lung adenocarcinoma (264 muts in TCGA-LUAD; AUC=0.885) in addition to

the signature found in luminal A breast cancer already described above. However, TP53 mutations

do not exhibit divergence in any of these cancers, as no subgrouping’s transcriptomic signature

was found to be significantly divergent from that of TP53 mutations as a whole (down-sampled

confidence scores of 0.66, 0.04, and 0.04 respectively) (Figure S13A). Likewise, PIK3CA has no

detectable divergence in 7 out of 9 cohorts where it satisfied the mutation recurrence threshold and

only a very weak divergence in stomach and small-cell lung cancer (Figure S13B).

In contrast to this, NFE2L2 is associated with both a robust downstream signature and signif-

icant divergence in all three cohorts in which its subgroupings were enumerated (TGCA-BLCA:

20/27 muts, AUC=0.939, conf=0.97; TCGA-LUSC: 67/75 muts, AUC=0.896, conf=0.97; TCGA-

HNSC(HPV-): 21/31 muts, AUC=0.898, conf=0.84) (Figure S13C). Meanwhile, cases where

strong divergence was observed in some cohorts but not others tended to be driven by varying mu-

tation frequencies and types rather than inconsistent patterns of downstream effects. For example,

the divergent subgrouping of FOXA1 in TCGA-PRAD described above has only 24 samples bear-

ing point mutations in TCGA-BRCA(LumA) and none in METABRIC(LumA) (Figure S13D).
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The cause of this discrepancy remains beyond the scope of this paper, but we speculate that it is

primarily contingent upon differences in sequencing platforms and pipelines.

The transfer validation method that was used to compare the performance of trained models

between our two breast cancer cohorts was extended across all of the cohorts we used for train-

ing. Transferring trained classifiers across disease contexts revealed that transcriptomic models

for cancer genes such as TP53 generally perform well even when they are applied to a tumor type

different from that in which they have been trained (Figure S14). This reflects both the robust-

ness of our classification pipelines and the ubiquitous nature of the downstream effects associated

with TP53 perturbations. On the other hand, even high quality PIK3CA models do not migrate

as well among tumor types, suggesting that recurrent PIK3CA mutations may result in unique

downstream transcriptional signals predicated on the unique cancer context in which they devel-

oped. In NFE2L2, subgrouping models performed well in transfer validation and outperformed

models trained using all of the gene’s point mutations in transfer contexts (Figure S15). These

subgrouping models are therefore especially likely to preserve their performance when applied

to novel cohorts or patient samples, which is especially important in a variety of clinical settings

where they would be implemented.

Subgroupings outperform mutation subsets chosen using variant significance metrics

We have already compared the classification performance with our mutation subgroupings

against the performance when using all point mutations for the corresponding gene, as well as

against the performance when using sets of samples chosen at random from both the training co-

hort as a whole and the set of samples carrying any point mutation on the gene. To further validate

our approach, we compared the performance of classifiers tasked with predicting the presence of

our mutation subgroupings against those predicting subsets of mutations constructed using exist-

ing metrics designed to capture the impact of mutations on cancer processes. For each gene with

enumerated subgroupings in a cohort we thus created a classification task for each possible thresh-

old value of the PolyPhen and SIFT scores51,52 assigned to its variants that resulted in a unique set

of at least 20 samples carrying a mutation of the gene satisfying the threshold. This allowed us to

evaluate the relative efficacy of the transcriptomic signature trained using a subgrouping contain-
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ing n mutated samples of a gene against that of a signature trained using a subgrouping containing

the top n mutants according to PolyPhen or SIFT wherever these scores were available.

We found that in cases such as EGFR in TCGA-LUAD and NFE2L2 in TCGA-HNSC our

method of discovering subsets of mutations outperformed any possible choice of cutoff of the

above metrics (Figures 4A–D). For the former, the aforementioned subgrouping (composed chiefly

of the E746-A750del and L858R hotspots) exhibited significantly better performance than the best

found PolyPhen cutoff of ≥ 0.957 which included the top 34 EGFR-mutated samples in TCGA-

LUAD according to this metric (AUC=0.934 vs. AUC=0.862; conf=0.974), as well as the best

found SIFT cutoff of ≤ 0.12 which included 37 EGFR mutants (AUC=0.867; conf=0.968). This

is explained by the fact that the E746-A750del mutation is not assigned a score by either PolyPhen

or SIFT, and thus is not included in any of the corresponding threshold-based classification tasks,

hence exposing the limitations of these metrics relative to our more flexible method of gauging the

downstream effects of mutations. On the other hand, in the case of NFE2L2 in TCGA-HNSC, the

difference between our best subgrouping consisting of the 21 NFE2L2 mutants with perturbations

on the gene’s second exon and the best found cutoff for PolyPhen (≥ 0.999) was due to a mutation

present in a single sample (V32G) scored as benign by PolyPhen, while the difference between this

subgrouping and the best found cutoff for SIFT (≤ 0.05) was largely due to three mutants on other

exons (D457G, L562F, D570N) that were also predicted as being deleterious according to SIFT.

Despite these small differences in the composition of the classification tasks, the improvement

in prediction accuracy was considerable in both cases when using our subgrouping (AUC=0.898)

versus these metrics (PolyPhen AUC=0.848; conf=0.757, SIFT AUC=0.841; conf=0.657). From

these findings we conclude that the downstream expression effects of mutations on the second

exon of NFE2L2 are likely to be uniform with respect to one another but divergent from other

deleterious mutations of NFE2L2.

Using PolyPhen and SIFT cutoffs also failed to find divergence within genes such as TP53

and PIK3CA where we had not discovered any divergent subgroupings (Figures 4E–F). This

lends further credence to the possibility that the divergences within the mutation profiles of these

genes, if they do exist, are overshadowed by a common expression program. When we performed

this comparison for all cases with divergent subgroupings, we found that many of these subsets

could not have been identified using either PolyPhen or SIFT (Figure S16). Our subgrouping
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FIG. 4. Comparing subgroupings against mutation subsets defined by other tools for measuring variant
significance.

Classification tasks were created in which the top n samples according to the value of various continuous
mutation properties were treated as a discrete subgrouping. Using the same training and testing regime
as before, we compare the AUCs for these tasks to those for subgrouping tasks created using our original
discrete approach. This revealed cases where using subgroupings was clearly superior to using these metric
cutoffs (A–D), as well as cases where neither subgroupings nor cutoffs significantly outperform the gene-
wide classifier (E and F). Legend labels are annotated with the sub-sampled confidence score of the best
subgrouping (star marker) against the best set of mutations chosen using the given cutoff.
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enumeration method can thus outperform other approaches for evaluating the potential impact

of oncogenic mutations, and highlights the importance of incorporating a variety of biological

priors when characterizing the relationships between genomic perturbations and their tumorigenic

effects.

Subgrouping classifier output reveals the structure of downstream effects within cancer

genes

Comparing the performances of transcriptomic signatures for different subsets of mutations

within cancer genes has allowed us to identify divergences within them. However, this analysis

does not on its own pinpoint the nature of the differences within these genes’ mutations that are

responsible for this observed heterogeneity—a subgrouping could have a transcriptomic profile

that diverges from that of its parent gene for a variety of reasons. For instance, it is possible that

the mutations of the gene not belonging to the subgrouping are functionally silent. Another possi-

bility is the existence of multiple transcriptomic programs within the gene that are complementary

or orthogonal to one another, each of which can be uniquely mapped to a subset of the gene’s

mutations. We thus investigated the output of the signatures we trained for these subgroupings to

better understand the mechanisms driving the downstream transcriptomic effects of tumorigenic

alterations.

For selected subgroupings that had been identified as divergent in the cohorts we included in our

experiment we examined the mutation scores their expression classifiers returned for the mutations

on the same gene not belonging to the subgrouping (Figure S17). This helped us to characterize

the relationships that were responsible for the observed divergence between each subgrouping and

the remaining mutations on the gene in which they were found. For example, we were able to

confirm that the mutations falling outside of the best found subgrouping of missense mutations

overlapping the Pleckstrin homology domain within AKT1 in METABRIC(LumA) behave like

wild-type samples according to our classifiers’ scores, which is consistent with the fact that most

of these are synonymous substitutions.

More surprising was finding that ARID1A missense mutations in METABRIC(LumA) are pre-

dicted by both the best found subgrouping’s classifier and the gene-wide classifier as behaving
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like ARID1A wild-types and synonymous mutations (Figure S18A). This is strongly suggestive

of the neutrality of these mutations with regards to downstream transcriptomic processes, espe-

cially relative to the nonsense and frameshift mutations our framework identified as constituting

a divergent subgrouping. Furthermore, treating ARID1A missense mutations as equivalent to

ARID1A wild-types and synonymous substitutions resulted in a classifier that was better able to

separate samples with active ARID1A mutations from the remainder of the cohort, with far fewer

nonsense and frameshift ARID1A mutants being assigned low scores by the optimal subgroup-

ing’s classifier compared to the gene-wide classifier. Similar behavior was observed for mutations

on exons other than the second within NFE2L2 in TCGA-BLCA and TCGA-LUSC as well as

mutations not belonging to the L858R or E746-A750del hotspots within EGFR in TCGA-LUAD

(Figures S18B–D). In all three of these cases our method of organizing subsets of mutations within

a gene allowed us to differentiate between mutations with and without a downstream effect, which

explains how we were able to train a mutation classifier with a higher accuracy than the gene-wide

model.

In other genes, our classification framework uncovered a blurrier distinction between active

and inactive mutations. SF3B1 mutants not belonging to the K700E hotspot which constituted

the bulk of the best found subgrouping for the gene in METABRIC(LumA) were assigned scores

between that of subgrouping and wild-type samples. Further investigation revealed that samples

with SF3B1 mutations on the 14th exon closest to the K700E hotspot were especially likely to be

seen as having higher scores than mutations on the other exons of the gene, suggesting that the

strength of the downstream effect associated with SF3B1 variants is proportional to their proximity

to the hotspot (Figure S18E).

This approach also helped to explain why silent mutations were included in the best found

subgrouping of NF1 in METABRIC(LumA). Although one should expect that these synonymous

variants would have downstream effects equivalent to that of NF1 wild-types when compared to

other types of NF1 point mutations, we found that a classifier trained to predict NF1 nonsense and

silent mutations performed significantly better than the NF1 gene-wide classifier (21/48 NF1 point

mutants, AUC=0.782 vs. AUC=0.660, down-sampled confidence=0.97) as well as the classifier

trained to predict NF1 nonsense and missense mutations (31/48 NF1 point mutants, AUC=0.614).

Because there were fewer than 20 samples total bearing NF1 nonsense mutations, no classifier was

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2020. ; https://doi.org/10.1101/2020.06.02.128850doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.02.128850
http://creativecommons.org/licenses/by-nc-nd/4.0/


trained on them in isolation, which was also true of silent mutations.

Examining the distributions of the scores returned by these classifiers revealed that the com-

bined NF1 nonsense and silent mutation subgrouping’s classifier was not only better able to dis-

tinguish between its own mutations and the remaining samples in the cohort, but it also did a

better job of separating other NF1 mutations from NF1 wild-types than the gene-wide classifier,

and especially NF1 missense mutations (Figure S19A). Furthermore, it successfully predicted the

presence of silent mutations in held out samples. We thus conclude that these NF1 variants clas-

sified as synonymous very likely do have downstream transcriptomic effects aligned with those of

active NF1 mutations. Although this finding contradicts the intuition that so-called silent muta-

tions should not imbue significant downstream impacts, it is less surprising in light of prior work

demonstrating that these mutations can indeed enact non-trivial effects on splicing, transcript fold-

ing/stability, translational rates, co-translational folding/stability, and degradation53,54. Although

NF1 splice mutations are often mistaken for silent mutations by sequencing methods55,56, evi-

dence that synonymous mutations of the NF1 gene are selected in cancers such as T-cell acute

lymphoblastic leukemia57 signals a need for more research in this area.

An altogether different type of pattern was discovered within GATA3 in breast cancer where

we found that GATA3 mutations not included in the best found subgroupings tended to have pre-

dicted scores between those assigned to samples carrying the subgrouping and GATA3 wild-types

(Figures S19B–C). Further examination revealed that GATA3 mutations can be decomposed into

disjoint pairs of subgroupings corresponding to whether they overlap with the zinc finger domain

or the X308 splice site hotspot whose predicted scores were orthogonal to one another. This be-

havior was present in both METABRIC(LumA) and TCGA-BRCA(LumA), thus revealing the

presence of two independent expression programs within GATA3 that are consistent across dif-

ferent breast cancer cohorts (Figure 5). This builds upon existing research demonstrating that

GATA3 mutations can be partitioned into subsets with different functions and clinical outcomes

by providing a transcriptomic characterization of these groupings41,58.
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A B

FIG. 5. GATA3 downstream effects can be decomposed into two orthogonal axes

Amongst the divergent subgroupings enumerated for GATA3 in our breast cancer cohorts we found a pair of
non-overlapping subgroupings that produced mutation scores with no correlation with one another in both
METABRIC(LumA) (A) and TCGA-BRCA(LumA) (B). Each cohort sample is represented by a point, with
samples shaded according to whether they carried a mutation in one of the subgroupings (blue/yellow fill),
in neither (grey fill), or in both (hollow circle).

Subgroupings enrich the characterization of drug response in cell lines

Do these divergences in downstream effects lead to divergent responses to pharmacological

treatments? To answer that question, we tested the performance of our subgrouping classifiers

in predicting response to drug interventions in cancer cell lines. We applied the classifiers we

trained in each of our cohorts to the CCLE cohort59, which contains -omic and drug response

data for 990 cell lines. For each classification task, we calculated the correlation between the

mutation scores predicted for the CCLE cohort and drug response as measured by AUC50 for the

265 drugs which had response profiles available in at least 100 of the cell lines in the cohort where

expression calls had also been made. We thus found that many subgroupings which exhibited

divergent classification performance in the training cohort also yielded divergent associations with
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these clinical phenotypes.

For example, the scores returned by the best GATA3 subgrouping in METABRIC(LumA) con-

sisting of mutations on the 5th exon and splice site mutations not on any exon consistently had

stronger correlations with increased sensitivity to a wide range of drugs interrogated in CCLE,

including tyrosine kinase inhibitors such as Dasatinib and Lapatinib (Figure 6A). The former is

a selective SRC-family kinase inhibitor typically used for treatment of chronic myeloid leukemia

and acute lymphoblastic leukemia60. Moreover, Dasatinib has also shown promise in breast can-

cer, with several clinical trials currently exploring its use as a monotherapy or in combination

with other agents like Paclitaxel and Trastuzumab61–63. Zinc finger 2 (ZnFn2) mutations occur in

the 5th exon of the GATA3 gene, and typically result in a truncated C-terminus. Because ZnFn2

mutations are known to cause observable decrease in typical GATA3 binding, these mutations are

generally thought to cause loss of function58, however Znfn2 mutant GATA3 also has the poten-

tial to localize to a novel suite of target genes, resulting in increased expression at those sites41.

ZnFn2 mutations are associated with very poor prognosis relative to other mutants, and cell lines

harboring these mutants exhibit transcriptional reprogramming in favor of epithelial to mesenchy-

mal transition (EMT)41. SRC and SRC-family kinases are also known to regulate EMT in solid

tumors64,65, thus providing an indirect link to the observed sensitivity of cells harboring GATA3

Znfn2 mutations to Dasatinib.

Other genes in which divergent subgroupings were associated with divergent drug response in-

cluded NFE2L2 and SPEN (Figures 6B–C). In addition, we found cases such as NSD1 where the

best found subgrouping was associated with a stronger overall association in cell lines across the

majority of drugs included in this analysis (Figure 6D). These findings indicate that the subgroup-

ings our approach discovers allow for the creation of transcriptomic models that are better able to

characterize the impact of recurrent mutations on processes integral to tumorigenesis.

DISCUSSION

We have introduced a method for exploring and characterizing the heterogeneity of alteration

landscapes in genes frequently mutated in several cancers. In addition to ascertaining gene-wide

transcriptomic signatures, this approach allowed us to systematically identify cancer genes con-
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A B

C D

FIG. 6. Using subgroupings improves concordance with clinically relevant phenotypes.

We applied our trained classifiers to the CCLE cohort and computed the Spearman correlations between
the scores returned by the classifiers and drug response for 265 compounds with AUC50s measured in at
least 100 cell lines which also had expression calls available. For (A) GATA3 in METABRIC(LumA),
(B) NFE2L2 in TCGA-LUSC, (C) SPEN in TCGA-STAD, and (D) NSD1 in TCGA-HNSC(HPV-) we
compared these correlations for the gene-wide classifier and the classifier of the best found subgrouping.
Points correspond to individual drugs, with the area of each point proportional to the number of cell lines
for which AUC50s were available for the given drug. Correlations were multiplied by −1, and thus higher
correlations correspond to stronger association with increased sensitivity of the cell lines to the compound
in question.
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taining subsets of mutations with functional effects that diverge from their remaining mutations.

Considering subgroupings of mutations allowed us to find an expression profile associated with

a gene implicated in tumorigenesis in many cases where it was otherwise difficult or impossible,

and to discern which mutations in a gene are particularly likely to have a quantifiable downstream

effect. The gains from considering a variety of mutation subgrouping tasks were far greater than

from using more sophisticated classification algorithms, and often yielded more accurate models

than using other methods to identify significant variants. Subgrouping signatures also exhibited

strong performance in tumor cohorts to which they were not exposed during training, as well as

improved association with drug response in cell lines.

Taken together, our findings confirm that genes with divergent mutation profiles are ubiquitous

in cancer. Furthermore, they demonstrate that no characterization of the downstream effects of

genes implicated in tumorigenesis is complete without taking these divergences into account. Our

exploration of the subgrouping search space allowed us to construct more robust models linking

the genome and transcriptome in tumor cohorts, as well as to predict the effects of mutations of

unknown significance and to characterize the relationships between different perturbation axes ex-

tant within genes active in cancer processes. The detection of divergent alteration subgroupings

has the potential to improve the specificity of precision treatments, aid in patient stratification, and

to anticipate otherwise unexpected and undesirable therapeutic outcomes. Further, discovering

subgroupings composed of mutations with convergent downstream effects may guide efforts to

reposition existing pharmaceutical interventions to orthogonal scenarios that resemble approved

clinical indications. This approach thus allows us to construct a more comprehensive catalogue of

expression signatures associated with driver events in cancer, and illustrates that identifying sub-

sets of mutations with unique transcriptomic signatures can yield robust and actionable biological

insights.

ACKNOWLEDGEMENTS

The authors would like to thank all members of the Pathways+Omics Group at OHSU for their

support and suggestions related to this project, with particular gratitude to Joey Estabrook, Özgün
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SUPPLEMENTARY METHODS

Cohort data preparation

We used a total of 18 publicly available tumor cohorts in this study, which included 15 indi-

vidual cohorts from TCGA as well as METABRIC, Beat AML, and CCLE. These cohorts were

selected on the basis of the availability of all three of expression, variant, and copy number data

for the samples they contained (except for Beat AML, for which CNA calls were not made), as

well as sufficient size (at least 200 samples with all three data types collected). Cohorts such

as TCGA-COADREAD and TCGA-GBMLGG which are agglomerations of other cohorts were

omitted.

For TCGA cohorts, Illumina RNAseq RSEM-normalized expression calls and GISTIC2.0 copy

number calls were downloaded from the Broad Firehose portal (http://firebrowse.org/),

while TCGA variant calls were downloaded from the Synapse portal for the MC3 pan-cancer

analysis pipeline (https://www.synapse.org/#!Synapse:syn7214402). Expres-

sion, copy number, and variant data for the METABRIC and CCLE datasets were downloaded

from cBioPortal (https://www.cbioportal.org/).

We applied UMAP (version 0.3.10) to project the expression profiles of the samples in each

cohort into a two-dimensional space for easier interrogation of the global structures present within

the transcriptome. These projections were compared against annotations of known molecular

subtypes in cohorts where such annotations were available. We created sub-cohorts where UMAP

transcriptome clusters overlapped with these subtypes (see Figures S1 and S2 and Table S1). Cases

such as TCGA-SARC which initially passed the 200-sample threshold but had to be divided into

sub-cohorts that did not meet the threshold were omitted from further analysis. Molecular subtype

annotations for TCGA cohorts were provided by the Korkut Lab as part of the PCAWG Consor-

tium; for METABRIC these annotations were downloaded from cBioPortal.

Defining mutation subgroupings

Our mutation subgrouping method is based on organizing the genomic alterations present in a

cohort according to various properties that mutations can have in common. The particular proper-

31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2020. ; https://doi.org/10.1101/2020.06.02.128850doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.02.128850
http://creativecommons.org/licenses/by-nc-nd/4.0/


ties used in this study are:

• Exon The exon on which the mutation is located. The value ‘.’ was given to mutations such

as splice site deletions which are not assigned to a specific exon.

e.g. Exon = 5, Exon = 2

• Amino Acid Location The amino acid or acids affected by the mutation. The value ‘.’ was

given to mutations for which this property is not applicable, such as intronic mutations.

e.g. Location = 1047, Location = 274

• Amino Acid Substitution The specific protein substitution that takes place as a result of the

mutation.

e.g. H1047R, V600E

• Form The functional consequence of the mutation.

e.g. Missense, Nonsense, FrameShiftIns, InFrameDel

• Form(base) The same as “Form”, but with insertions and deletions for a given type of

mutation grouped together. For example, frameshift insertions and frameshift deletions are

merged together into frameshifts.

e.g. Missense, Nonsense, FrameShift, InFrame

• SMART Domain The SMART protein domain on which the mutation rests. Can also take

on the value “no overlapping domain”.

e.g. SM00233

• Pfam Domain The same as above but with Pfam protein domains.

e.g. PF00853

All annotation levels except those related to protein domains were inferred from the MAF

files listing the variant calls for each cohort. Protein domain data was downloaded from En-

sembl (http://grch37.ensembl.org/downloads.html) using the following parame-

ters, where domain refers to the SMART or Pfam databases as appropriate:

• Dataset Ensembl Genes 97 Human genes (GRCh37.p13)
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• Filters Gene type: protein coding, With domain ID(s): Only

• Attributes Gene stable ID Transcript stable ID, domain ID, domain start, domain end

A subgrouping is thus defined by a nested combination of values chosen for one or more of

these attributes. For example, a single hotspot mutation in PIK3CA can be represented by the sub-

grouping {AAsub = H1047R}. We can define the same subgrouping using additional properties:

{Exon = 21 : AAloc = 1047 : AAsub = H1047R}. These additional properties are redundant in

this case, as naturally all H1047R substitutions are located at amino acid 1047 and in turn all of the

alterations at this amino acid are located on the 21st exon of PIK3CA. Nevertheless, we can expand

this subgrouping to include other PIK3CA mutations which may or may not be functionally similar

to H1047R. Thus we could consider the subgrouping {Exon = 21 : AAloc = 1047 : AAsub =

(H1047R or H1047L)} to test the hypothesis that the particular amino acid that replaces the wild-

type at this hotspot does not have an impact on downstream effects. Likewise, the subgroupings

{Exon = 21 : (AAloc = 1047 : AAsub = H1047R) or (AAloc = 1049 : AAsub = G1049R)}

and {Exon = 10 : AAloc = 542 : AAsub = E542K or Exon = 21 : AAloc = 1047 :

AAsub = H1047R} can be used to compare hotspots at different loci within PIK3CA. We

can also choose other properties to construct the same subgrouping based on which attributes

of PIK3CA alterations we believe to be the most important in determining downstream effects:

{Form = Missense : AAsub = H1047R}, {Domain = SM00146 : AAsub = H1047R}, and

so on.

Enumeration of classification tasks in tumor cohorts

Cancer genes were identified using the OncoKB repository, with only genes included in at

least one of the “Vogelstein”, “SANGER CGC(05/30/2017)”, “FOUNDATION ONE”, and “MSK-

IMPACT” lists at https://oncokb.org/cancerGenes as of March 25th, 2019 being in-

cluded for further analysis. In each cohort we considered the grouping of all point mutations in

each such gene (referred to as the gene-wide task) and also sought to generate subgroupings of

mutations within these genes.

We pruned the subgrouping search space by only using the four ordered mutation property
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hierarchies listed below, with the reasoning that a sizeable proportion of biologically relevant

subgroupings of mutations could be generated using one of these combinations:

• Exon→ AA Location→ AA Substitution

• Form→ Exon

• SMART Domain→ Form(base)

• Pfam Domain→ Form(base)

To further prune our search space, we only used subgroupings corresponding to a single branch

containing at least twenty samples in one of these hierarchies as well as subgroupings correspond-

ing to two branches each with at least ten samples. Branches did not have to terminate at a leaf node

of the hierarchy. For example, using the combination Form→ Exon, we could test {PIK3CA :

Missense} as well as {PIK3CA : Missense : Exon = 10}, {PIK3CA : Missense :

Exon = 21}, and {PIK3CA : Missense : Exon = 21 or PIK3CA : Silent}, but not

{PIK3CA : Missense : Exon = (10 or 21) or PIK3CA : Silent or PIK3CA : Nonsense}.

To test the marginal benefit of relaxing this requirement, we also tested three-branch sub-

groupings with at least five samples in each branch and twenty samples in total in the case of

METABRIC(LumA). In all cases, subgroupings that contained all of the mutations of a gene in a

cohort were discarded as being equivalent to the gene-wide task, which occurred in cases where

the mutation hierarchy contained no more than two branches in total for a particular gene.

Construction of classification tasks

A classification task was created for each of these enumerated subgroupings in a given cohort.

To obtain a background distribution of predictive performance, we also added classification tasks

using sets of samples randomly chosen from the cohort. Four such sets were created for each

subgrouping already found, each of which contained the same number of samples as the number of

samples carrying a mutation in the subgrouping in question. Two of these “random” subgroupings

for each actual subgrouping chose samples from the entire cohort, while the other two only chose

from the set of samples containing any point mutation in the gene mutated for the subgrouping.

34

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2020. ; https://doi.org/10.1101/2020.06.02.128850doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.02.128850
http://creativecommons.org/licenses/by-nc-nd/4.0/


Further classification tasks were added by considering copy number alterations as identified

using discretized GISTIC 2.0 calls. For each of the non-random subgroupings described above,

we created two new subgroupings by adding the set of samples carrying deep amplifications (+2)

in the same gene as well as the set carrying deep deletions (-2). In cases where the given gene did

not have at least five samples carrying the CNA to be added to the subgrouping, the corresponding

subgrouping was excluded from further consideration. In genes where there were at least twenty

deep amplifications or twenty deep deletions, we created a classification task containing just these

CNAs of the gene.

Classification tasks were also constructed by dynamically discretizing PolyPhen and SIFT

scores wherever these scores were available in the MAF file for the cohort (i.e. in TCGA co-

horts). For each combination of mutated gene and variant significance metric, we enumerated

all possible thresholds of the metric observed over variants of the gene in a cohort that yielded

a unique subgrouping with at least twenty samples harbouring a mutation in the gene satisfying

the threshold value (in the positive direction in the case of PolyPhen and the negative direction in

the case of SIFT). For example, for AKT1 in TCGA-BRCA(LumA), we found the PolyPhen sub-

groupings >= 0.006 and >= 0.999 (and no SIFT subgroupings), while for TP53 in TCGA-STAD

we found 29 PolyPhen subgroupings (>= 0.002, >= 0.09, >= 0.275, . . . , >= 1.0) and 12 SIFT

subgroupings (<= 0.8, <= 0.13, <= 0.11, . . . , <= 0).

Training and evaluation of classifiers to identify transcriptomic signatures associated with

subgroupings

Expression and variant data in each cohort was filtered to only include protein-coding genes on

non-sex chromosomes prior to classifier training. Remaining expression data was then filtered to

exclude gene features in the bottom five percentiles according to average value across the cohort

before being log-normalized and then scaled using z-scores for each genetic feature. In each task

we further excluded expression features associated with genes on the same chromosome as the

gene containing the task’s subgrouping.

Each classification task consisted of predicting a vector of binary mutation labels using this

processed expression matrix for a given cohort. The label for each sample in a task was ‘True‘
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if and only if it harboured any mutation within the subgrouping, or if it was randomly chosen

from the set of cohort samples or the set of gene mutants as applicable for random background

subgroupings. Predictions were made using the following algorithms implemented in scikit-learn

(version 0.21.2), with any parameters not explicitly listed above being set to the default value:

• Ridge Regression sklearn.linear model.LogisticRegression

– tuning over eight values of C: [10−7, 106, 105, . . . , 100]

– solver = ‘liblinear’, penalty = ‘l2’, max iter = 200, class weight = ‘balanced’

• Support Vector Machine sklearn.svm.SVC

– tuning over eight values of C: [10−3, 10−2, 10−1, . . . , 104]

– kernel = ‘rbf’, gamma = ‘scale’, probability = True, cache size = 500, class weight =

‘balanced’

• Random Forests sklearn.ensemble.RandomForestClassifier

– tuning over eight values of min samples leaf : [1, 2, 3, 4, 6, 8, 10, 15]

– n estimators = 5000, class weight = ‘balanced’

• Ridge Regression (deeper tuning) sklearn.linear model.LogisticRegression

– tuning over C = [10−8.2, 10−7.8, 107.4, . . . , 104.2]

– solver = ‘liblinear’, penalty = ‘l2’, max iter = 200, class weight = ‘balanced’

Forty classifiers were fit for each task, corresponding to ten iterations of 4-fold cross-validation.

The samples in each cohort were partitioned into quarters at random ten times; each classifier

was thus tuned and trained on three such quarters before being asked to make predictions on the

remaining quarter of samples. The same forty training and testing sub-cohorts were used across

all tasks on a given cohort.

Each iteration of a classifier was tuned by training the classifier using each of the values in

the classifier’s hyper-parameter tuning grid on four randomly-chosen subsets consisting of 80%

of the training sub-cohort. The accuracy for each hyper-parameter tuning value was measured
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by taking the worst AUC across its four trained classifiers on the remaining 20% of the samples

in the training sub-cohort. The best hyper-parameter value according to this metric was then

used when training the classifier on the entire training sub-cohort before applying it to the entire

testing sub-cohort. Classifier task performance on these testing sub-cohorts was measured using

AUC as calculated by averaging predicted mutation scores for each cohort sample from all ten

folds, segregating scores for mutated samples and wild-type samples, and then calculating the

probability that a randomly-chosen mean score for a mutated sample was greater than a randomly-

chosen mean score for a wild-type sample across all possible such sample pairs.

We also created a bootstrapped population of downsampled AUCs by building a subset of

samples to which each sample in the cohort was assigned to with probability p = 0.5, recalculating

the AUC using the same method as above using just this subset, and repeating the process 500

times. This allowed us to estimate the robustness of our original AUCs with respect to variance

in the training population. It also allowed us to calculate a score measuring the confidence that an

AUC measured for one task was higher than that of another by calculating the probability that a

downsampled AUC for one task was higher than a downsampled AUC for the other task over all

250,000 possible such pairs. Thus two equivalent tasks would be expected to have a confidence

score of 0.5 in either direction, while a task with a significantly higher/lower AUC than another

would be expected to have a confidence score of 1/0 compared to the other. This “AUC of AUCs”

was especially useful when comparing the optimal subgrouping task found for a gene to its gene-

wide counterpart. The same 500 subsets of samples were used to construct this confidence score

in all classification tasks in a given training cohort.

Classifier task performance was further measured on each of the cohorts other than the one the

classifier was trained on by applying each of the forty trained classifier iterations to their processed

expression data. AUCs for these “transfer” experiments were calculated using the same sample-

average method as described in the within-cohort case, this time with forty classifier output values

for each sample.
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Measuring concordance between subgrouping classifier output and drug response

Summaries of cell line drug response observed within the CCLE cohort as measured by AUC50

were extracted from Table S4B downloaded from https://www.cancerrxgene.org/

gdsc1000/GDSC1000_WebResources/Home.html. Subgrouping classifiers trained on

TCGA and METABRIC cohorts were asked to make predictions for the CCLE cohort in the same

manner as described for the transfer experiment above. For each combination of drug and task, we

thus measured a correlation between subgrouping classifier output and drug response by calculat-

ing the Spearman rho between the AUC50 values and the average classifier predictions across the

subset of samples for which drug response was available.

Data and code availability

All of the code used for data preparation, machine learning analysis, and plot creation was writ-

ten in Python 3.6 and can be found at https://github.com/ohsu-comp-bio/dryad

and https://github.com/ohsu-comp-bio/HetMan. Assistance with the reproduction

of the results presented herein will be provided upon request.
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SUPPLEMENTARY FIGURES AND TABLES

A B

C D

FIG. S1. Clustering of cohort transcriptomes reveals profiles consistent with molecular subtypes.

We applied unsupervised learning to the expression data used for each cohort considered in this study in
order to remove unwanted variation associated with molecular subtypes from our alteration divergence anal-
ysis. In conjunction with information on known molecular subtypes present in these cohorts, we identified
cases such as (A) METABRIC and (B) TCGA-LGG in which these subtypes clearly overlapped with dis-
tinguishable transcriptomic profiles.
This contrasted with cohorts such as (C) TCGA-STAD in which subtypes were present but could not be un-
ambiguously linked with unique transcriptomic profiles, and those like (D) TCGA-LUSC in which neither
molecular subtypes nor expression clusters were present. The counts of cohort samples with each subtype
are listed in the subplot legends.
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FIG. S2. Subdividing cohorts yields more uniform training expression data.

In cohorts where molecular subtypes were found to have identifiable transcriptomic profiles we created
sub-cohorts that only included samples from a particular subtype or set of subtypes. Unsupervised learning
on these sub-cohorts’ transcriptomes revealed that they did not exhibit the large-scale clusters of samples
observed in the original cohorts and were thus much more suitable as input for our mutation classification
pipelines.
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Cohort Samples Cancer Genes Subgroupings CNA Subgroupings
METABRIC 1499

(nonbasal) 1231 42 1157 1123
(luminal) 1114 39 928 845
(Luminal A) 1017 38 853 530

TCGA-BLCA 403 66 477 533
TCGA-BRCA 1003

(nonbasal) 810 31 557 598
(Luminal A) 499 16 238 155

TCGA-CESC 276
(squamous carcinoma) 229 7 21 23

TCGA-HNSC 493
(HPV-) 415 33 611 361

TCGA-KIRC 363 5 237 241
TCGA-KIRP 279 1 0 0
TCGA-LGG 509

(IDHmut-non-codel) 248 2 105 0
TCGA-LIHC 351 8 73 63
TCGA-LUAD 508 80 839 822
TCGA-LUSC 479 72 875 687
TCGA-OV 205 1 118 0
TCGA-PRAD 490 5 20 27
TCGA-SKCM 363 163 2251 1330
TCGA-STAD 410 95 657 728
TCGA-THCA 482 2 8 0
Beat AML 398 14 132 n/a

TABLE S1. Cohorts used for mutation classifier training.

In each cohort meeting our selection criteria we found the cancer genes with point mutations in at least
twenty samples and enumerated their mutation subgroupings. Sub-cohorts identified using molecular sub-
types and unsupervised learning are listed where applicable.
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FIG. S3. Down-sampling derives confidence intervals for classification task AUCs.

For each prediction task we created a pool of 500 AUCs recalculated using randomly-chosen subsets of
samples in the given cohort. These populations of down-sampled AUCs allowed us to estimate the like-
lihood that the classification task associated with a subgrouping yielded better performance than the task
associated with all point mutations of its parent gene. For example, the down-sampled AUCs for the best
found subgrouping within genes identified as exhibiting divergence in METABRIC(LumA) (darker violin-
plots) tended to be higher than those recorded for the gene-wide tasks (lighter violins). The points within
each violin denote the original AUC measured for the task using all samples in the cohort. Each gene’s
panel is annotated with the probability that a down-sampled AUC for its best found subgrouping is greater
than a down-sampled AUC for its gene-wide task.
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FIG. S4. Subgrouping prediction tasks outperform cohort-specific and gene-specific random background
prediction tasks.

For each of the learning tasks completed in METABRIC(LumA) to predict the presence of an actual muta-
tion or subgrouping of mutations, four additional tasks were performed based on predicting a simulated set
of point mutations.
(A) Two of these sets were constructed by randomly selecting a group of samples from the entire cohort of
the same size as the group of samples affected by the original “real” mutation in the cohort. Tasks associated
with actual mutations had higher AUCs as a population than tasks associated with cohort-specific random
sets, and also when compared to random tasks with the same number of samples in the mutated set (B).
(C) The other two sets were constructed by randomly selecting size-matched groups from the set of sam-
ples carrying any point mutation of the gene in the cohort. The AUCs of these gene-specific tasks (grey
distributions) tended to be lower than the AUCs of subgroupings in genes that had been found to exhibit
alteration divergence (colorful distributions). The probability that a down-sampled AUC for the best found
subgrouping was greater than a down-sampled AUC for the best-performing of these random tasks created
for each gene is listed below the pair of distributions plotted for each gene.

43

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2020. ; https://doi.org/10.1101/2020.06.02.128850doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.02.128850
http://creativecommons.org/licenses/by-nc-nd/4.0/


A B

C

FIG. S5. Increasing computational complexity does not change or improve upon classification perfor-
mance.

We observed similar subgrouping classification performance in METABRIC(LumA) when we repeated our
prediction tasks with (A) a support vector machine classifier and (B) a random forest classifier in place
of the ridge regression classifier that was originally used. (C) Using these more computationally complex
classifiers did not result in improved classification performance across all non-random classification tasks.
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FIG. S6. Applying an expanded search space to subgrouping enumeration and classification in
METABRIC(LumA).

The task enumeration step in METABRIC(LumA) was modified to allow for subgroupings of up to three
branches each containing at least five samples for a total of at least twenty samples. This resulted in an
expanded search space of 7598 subgroupings. The AUCs of the optimal subgroupings found for each gene
are shown here in the same style as in Figure 1.
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FIG. S7. Adding copy number alterations to subgrouping classifiers in METABRIC(LumA).

We augmented our classification tasks in METABRIC(LumA) by adding deep amplifications and deep
deletions to each subgrouping where there were at least five of one of these two types of mutations present
in the corresponding gene within the cohort.
(A) Comparing the classification performance of the best found subgrouping containing CNAs (y-axis) to
the gene-wide task (x-axis) for each cancer gene with enumerated subgroupings in METABRIC(LumA).
(B-D) Comparing the performance for each subgrouping originally enumerated for GATA3, PIK3CA, and
AKT1 respectively in METABRIC(LumA) (x-axes) to the performance of the same subgrouping combined
with deep amplifications (y-axes). The point corresponding to the gene-wide classifier is marked with an
‘X’ in each panel.
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FIG. S8. Relative performance of subgrouping tasks replicates across breast cancer cohorts.

We compared the best-performing subgroupings found in METABRIC(LumA) to their corresponding gene-
wide tasks using AUCs measured when training and testing classifiers in TCGA-BRCA(LumA) (left) and
vice versa (right). This revealed that the particular subgroupings found to be most divergent tended to be
consistent between different cohorts from the same cancer context.
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FIG. S9. Subgrouping classification tasks preserve their efficacy when transferred across breast cancer
cohorts.

We asked the linear regression models trained to predict mutation subgroupings in METABRIC(LumA)
to make predictions using the TCGA-BRCA(LumA) expression data (top row), and likewise using trained
TCGA-BRCA(LumA) models and METABRIC(LumA) expression data (bottom row). These transferred
models were successful in recapitulating their performance relative to that which was observed in the cohort
within which they were trained (top-left and bottom-right) and relative to that which observed by models
trained on the cohort they were transferred to (bottom-left and top-right). Points in each panel correspond
to individual classification tasks, with colors chosen according to the mutated gene using the same color
scheme as above, and point areas proportional to the geometric mean of the frequency of the mutation
across the two cohorts as in Figure 2A.
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FIG. S10. Subgrouping divergence is preserved when classifiers are transferred across breast cancer
cohorts.

The performance of mutation classifiers trained to predict (A) GATA3 mutations and (B) AKT1 mutations
in the METABRIC(LumA) and TCGA-BRCA(LumA) cohorts was measured both in the original training
cohort and when transferred to the other breast cancer cohort. Points correspond to individual classification
tasks, with the gene-wide task highlighted with a colored ‘X’ in each panel, and point areas proportional to
the frequency of the mutation in the training cohort.
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FIG. S11. Subgrouping behaviour replicates across various choices of breast cancer expression datasets.

We observed subgrouping classification performance similar to that in METABRIC(LumA) and TCGA-
BRCA(LumA) when we repeated our prediction tasks using (A) kallisto TPM expression calls instead of
Firehose RSEMs in TCGA-BRCA(LumA), (B) all nonbasal subtypes present in TCGA-BRCA, (C) all
nonbasal subtypes present in METABRIC, and (D) both luminal subtypes present in METABRIC.
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FIG. S12. Divergent subgrouping behaviour is present in many cancer cohorts.

We repeated the subgrouping enumeration and classification experiment to characterize alteration diver-
gence in TCGA cohorts such as (A) BLCA, (B) HNSC(HPV-), (C) LUAD, and (D) LUSC.
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FIG. S13. Comparing cancer gene perturbome characteristics across tumor contexts.

The best subgroupings for (A) TP53, (B) PIK3CA, (C) NFE2L2, and (D) FOXA1 across the TCGA cohorts
considered in this study. Each pie chart in a panel represents a cohort in which subgrouping mutation
classifiers were trained and tested for the gene in question, with pie charts scaled and sliced according to
the same schema as in Figure 1. The best found subgrouping of a gene within a cohort is listed wherever its
down-sampled confidence score against the corresponding gene-wide classifier exceeded 0.8.
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FIG. S14. Transferring mutation signatures across disease contexts.

Models trained to predict the presence of mutations and their subgroupings in each cohort were applied to
every other cohort in which the corresponding mutation was also present.
(A) The AUC performance of gene-wide TP53 classifiers according to the training cohort (x-axis) and the
cohort they were transferred to (y-axis).
(B) The AUC performance of gene-wide PIK3CA classifiers according to training cohort and transfer cohort
as above.
(C) Transfer AUC performance of the optimal PIK3CA subgrouping found by aggregating downsampled
confidence scores between PIK3CA subgroupings and gene-wide tasks across all cohorts in which PIK3CA
subgroupings were enumerated.
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FIG. S15. NFE2L2 subgrouping divergence is consistent across transfer contexts.

Transfer performance of the optimal NFE2L2 subgrouping consisting of all mutations on the 2nd exon
relative to the transfer performance of the NFE2L2 gene-wide task. Each pie chart corresponds to an
instance of training the gene-wide and best found subgrouping classifiers in one TCGA cohort then asking
them to make predictions in another TCGA cohort. Pie charts are sized according to the proportion of
samples carrying any point mutation of NFE2L2 in the training cohort, with slices denoting the proportion
of NFE2L2 mutants belonging to the optimal subgrouping in the training cohort.
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FIG. S16. Cataloguing cancer genes where hierarchically-chosen subgroupings outperform subgroupings
chosen using variant significance metrics.

In each cancer cohort in which we looked for subgroupings we compared the performance of each gene’s
optimal subgrouping’s expression classifier against that of the best threshold subgrouping chosen by con-
sidering other metrics of mutation significance (PolyPhen and SIFT). To quantify the significance of the
difference between each pair of AUCs, we calculated the probability that a downsampled AUC for the best
found subgrouping was higher than a downsampled AUC for the best found PolyPhen/SIFT threshold mu-
tation subset. Results have been filtered to only include cases where the optimal subgrouping found using
our mutation property hierarchies outperforms the gene-wide classifier (downsampled AUC confidence of
at least 0.8 using the same approach).
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FIG. S17. Subgrouping classifier scores reveal relationships between subgroupings and other mutations
on the same gene.

For genes with divergent subgroupings in (A) METABRIC(LumA), (B) TCGA-BRCA(LumA), (C) TCGA-
HNSC(HPV-), and (D) TCGA-BLCA we considered the distributions of scores assigned by the best found
subgrouping’s classifier to samples with the subgrouping’s mutations (blue violins), samples with point
mutations on the same gene but not in the subgrouping (empty grey violins), and samples that are wild-type
for point mutations on the gene (filled grey violins).
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FIG. S18. Subgrouping classifier scores reveal relationships between mutations within cancer genes.

We dissected the scores returned by our mutation classifiers for mutations within (A) ARID1A in
METABRIC(LumA), (B) NFE2L2 in TCGA-BLCA, (C) NFE2L2 in TCGA-LUSC, (D) EGFR in TCGA-
LUAD, and (E) SF3B1 in METABRIC(LumA). Within each panel, rows correspond to classification tasks,
with the top row showing scores for the gene-wide task and the remaining rows showing the best found
subgroupings for the gene in question. Cohort samples are divided across the panel columns according to
the type of mutation on the gene they carry, if any. Points and violins with a dark outline denote samples and
populations of samples respectively that carried mutations the task had to predict; if a population contained
mutated samples that were in the subgrouping as well as samples that were not in it then the samples in the
subgrouping are plotted as points within the violin, which contains all samples in the population in every
case.
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FIG. S19. Subgrouping classifier scores reveal relationships between different classes of mutations within
NF1 and GATA3.

Scores returned by our mutation classifiers are plotted in the same style as in Figure S18 for mutations
within (A) NF1 in METABRIC(LumA), (B) GATA3 in METABRIC(LumA), and (C) GATA3 in TCGA-
BRCA(LumA).

58

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2020. ; https://doi.org/10.1101/2020.06.02.128850doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.02.128850
http://creativecommons.org/licenses/by-nc-nd/4.0/


REFERENCES

1 Douglas Hanahan and Robert A. Weinberg. The Hallmarks of Cancer. Cell, 100(1):57–70, January

2000.

2 Kornelia Polyak. Heterogeneity in breast cancer. The Journal of Clinical Investigation, 121(10):3786–

3788, October 2011.

3 Eric A. Collisson, Anguraj Sadanandam, Peter Olson, William J. Gibb, Morgan Truitt, Shenda Gu, Ja-

nine Cooc, Jennifer Weinkle, Grace E. Kim, Lakshmi Jakkula, Heidi S. Feiler, Andrew H. Ko, Adam B.

Olshen, Kathleen L. Danenberg, Margaret A. Tempero, Paul T. Spellman, Douglas Hanahan, and Joe W.

Gray. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nature

Medicine, 17(4):500–503, April 2011.

4 Anguraj Sadanandam, Costas A. Lyssiotis, Krisztian Homicsko, Eric A. Collisson, William J. Gibb,

Stephan Wullschleger, Liliane C. Gonzalez Ostos, William A. Lannon, Carsten Grotzinger, Maguy

Del Rio, Benoit Lhermitte, Adam B. Olshen, Bertram Wiedenmann, Lewis C. Cantley, Joe W. Gray,

and Douglas Hanahan. A colorectal cancer classification system that associates cellular phenotype and

responses to therapy. Nature Medicine, 19(5):619–625, May 2013.

5 Alison M. Schram and David M. Hyman. Quantifying the Benefits of Genome-Driven Oncology. Cancer

Discovery, 7(6):552–554, 2017.

6 John Marquart, Emerson Y. Chen, and Vinay Prasad. Estimation of the Percentage of US Patients With

Cancer Who Benefit From Genome-Driven Oncology. JAMA oncology, 4(8):1093–1098, 2018.

7 Daley S. Morera, Sarrah L. Hasanali, Daniel Belew, Santu Ghosh, Zachary Klaassen, Andre R. Jor-

dan, Jiaojiao Wang, Martha K. Terris, Roni J. Bollag, Axel S. Merseburger, Arnulf Stenzl, Mark S.

Soloway, and Vinata B. Lokeshwar. Clinical Parameters Outperform Molecular Subtypes for Predicting

Outcome in Bladder Cancer: Results from Multiple Cohorts, Including TCGA. The Journal of Urology,

203(1):62–72, 2020.

8 Keith T. Flaherty, Robert Gray, Alice Chen, Shuli Li, David Patton, Stanley R. Hamilton, Paul M.

Williams, Edith P. Mitchell, A. John Iafrate, Jeffrey Sklar, Lyndsay N. Harris, Lisa M. McShane, Larry V.

Rubinstein, David J. Sims, Mark Routbort, Brent Coffey, Tony Fu, James A. Zwiebel, Richard F. Little,

Donna Marinucci, Robert Catalano, Rick Magnan, Warren Kibbe, Carol Weil, James V. Tricoli, Brian

59

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2020. ; https://doi.org/10.1101/2020.06.02.128850doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.02.128850
http://creativecommons.org/licenses/by-nc-nd/4.0/


Alexander, Shaji Kumar, Gary K. Schwartz, Funda Meric-Bernstam, Chih-Jian Lih, Worta McCaskill-

Stevens, Paolo Caimi, Naoko Takebe, Vivekananda Datta, Carlos L. Arteaga, Jeffrey S. Abrams, Robert

Comis, Peter J. O’Dwyer, Barbara A. Conley, and NCI-MATCH Team. THE MOLECULAR ANAL-

YSIS FOR THERAPY CHOICE (NCI-MATCH) TRIAL: LESSONS for GENOMIC TRIAL DESIGN.

Journal of the National Cancer Institute, January 2020.

9 Young Kwang Chae, Alan P. Pan, Andrew A. Davis, Sandip P. Patel, Benedito A. Carneiro, Razelle

Kurzrock, and Francis J. Giles. Path toward Precision Oncology: Review of Targeted Therapy Studies

and Tools to Aid in Defining ”Actionability” of a Molecular Lesion and Patient Management Support.

Molecular Cancer Therapeutics, 16(12):2645–2655, December 2017.

10 Jonas Leichsenring, Peter Horak, Simon Kreutzfeldt, Christoph Heining, Petros Christopoulos, Anna-

Lena Volckmar, Olaf Neumann, Martina Kirchner, Carolin Ploeger, Jan Budczies, Christoph E. Heilig,

Barbara Hutter, Martina Frhlich, Sebastian Uhrig, Daniel Kazdal, Michael Allguer, Alexander Harms,

Eugen Rempel, Ulrich Lehmann, Michael Thomas, Nicole Pfarr, Ninel Azoitei, Irina Bonzheim, Ralf

Marienfeld, Peter Mller, Martin Werner, Falko Fend, Melanie Boerries, Nikolas von Bubnoff, Silke

Lassmann, Thomas Longerich, Michael Bitzer, Thomas Seufferlein, Nisar Malek, Wilko Weichert, Peter

Schirmacher, Roland Penzel, Volker Endris, Benedikt Brors, Frederick Klauschen, Hanno Glimm, Stefan

Frhling, and Albrecht Stenzinger. Variant classification in precision oncology. International Journal of

Cancer, 145(11):2996–3010, 2019.

11 Vinay Prasad, Tito Fojo, and Michael Brada. Precision oncology: origins, optimism, and potential. The

Lancet. Oncology, 17(2):e81–e86, February 2016.

12 Chandan Kumar-Sinha and Arul M. Chinnaiyan. Precision oncology in the age of integrative genomics.

Nature Biotechnology, 36(1):46–60, 2018.

13 Mehmet Gnen and Adam A. Margolin. Kernelized Bayesian Transfer Learning. In Twenty-Eighth AAAI

Conference on Artificial Intelligence, June 2014.

14 Gregory P. Way, Robert J. Allaway, Stephanie J. Bouley, Camilo E. Fadul, Yolanda Sanchez, and

Casey S. Greene. A machine learning classifier trained on cancer transcriptomes detects NF1 inacti-

vation signal in glioblastoma. BMC genomics, 18(1):127, 2017.

15 Ryan J. Davis, Mehmet Gnen, Daciana H. Margineantu, Shlomo Handeli, Jherek Swanger, Pia Hoeller-

bauer, Patrick J. Paddison, Haiwei Gu, Daniel Raftery, Jonathan E. Grim, David M. Hockenbery,

60

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2020. ; https://doi.org/10.1101/2020.06.02.128850doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.02.128850
http://creativecommons.org/licenses/by-nc-nd/4.0/


Adam A. Margolin, and Bruce E. Clurman. Pan-cancer transcriptional signatures predictive of onco-

genic mutations reveal that Fbw7 regulates cancer cell oxidative metabolism. Proceedings of the Na-

tional Academy of Sciences of the United States of America, 115(21):5462–5467, 2018.

16 Chunhui Cai, Gregory F. Cooper, Kevin N. Lu, Xiaojun Ma, Shuping Xu, Zhenlong Zhao, Xueer Chen,

Yifan Xue, Adrian V. Lee, Nathan Clark, Vicky Chen, Songjian Lu, Lujia Chen, Liyue Yu, Harry S.

Hochheiser, Xia Jiang, Q. Jane Wang, and Xinghua Lu. Systematic discovery of the functional im-

pact of somatic genome alterations in individual tumors through tumor-specific causal inference. PLoS

computational biology, 15(7):e1007088, 2019.

17 Gregory P. Way, Francisco Sanchez-Vega, Konnor La, Joshua Armenia, Walid K. Chatila, Augustin

Luna, Chris Sander, Andrew D. Cherniack, Marco Mina, Giovanni Ciriello, Nikolaus Schultz, Cancer

Genome Atlas Research Network, Yolanda Sanchez, and Casey S. Greene. Machine Learning Detects

Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas. Cell Reports, 23(1):172–180.e3,

2018.

18 Michael Schubert, Bertram Klinger, Martina Klnemann, Anja Sieber, Florian Uhlitz, Sascha Sauer,

Mathew J. Garnett, Nils Blthgen, and Julio Saez-Rodriguez. Perturbation-response genes reveal sig-

naling footprints in cancer gene expression. Nature Communications, 9(1):20, 2018.

19 Cyriac Kandoth, Michael D. McLellan, Fabio Vandin, Kai Ye, Beifang Niu, Charles Lu, Mingchao Xie,

Qunyuan Zhang, Joshua F. McMichael, Matthew A. Wyczalkowski, Mark D. M. Leiserson, Christo-

pher A. Miller, John S. Welch, Matthew J. Walter, Michael C. Wendl, Timothy J. Ley, Richard K. Wil-

son, Benjamin J. Raphael, and Li Ding. Mutational landscape and significance across 12 major cancer

types. Nature, 502(7471):333–339, October 2013.

20 Matthew H. Bailey, Collin Tokheim, Eduard Porta-Pardo, Sohini Sengupta, Denis Bertrand, Amila

Weerasinghe, Antonio Colaprico, Michael C. Wendl, Jaegil Kim, Brendan Reardon, Patrick Kwok-Shing

Ng, Kang Jin Jeong, Song Cao, Zixing Wang, Jianjiong Gao, Qingsong Gao, Fang Wang, Eric Minwei

Liu, Loris Mularoni, Carlota Rubio-Perez, Niranjan Nagarajan, Isidro Corts-Ciriano, Daniel Cui Zhou,

Wen-Wei Liang, Julian M. Hess, Venkata D. Yellapantula, David Tamborero, Abel Gonzalez-Perez,

Chayaporn Suphavilai, Jia Yu Ko, Ekta Khurana, Peter J. Park, Eliezer M. Van Allen, Han Liang, MC3

Working Group, Cancer Genome Atlas Research Network, Michael S. Lawrence, Adam Godzik, Nuria

Lopez-Bigas, Josh Stuart, David Wheeler, Gad Getz, Ken Chen, Alexander J. Lazar, Gordon B. Mills,

61

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2020. ; https://doi.org/10.1101/2020.06.02.128850doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.02.128850
http://creativecommons.org/licenses/by-nc-nd/4.0/


Rachel Karchin, and Li Ding. Comprehensive Characterization of Cancer Driver Genes and Mutations.

Cell, 173(2):371–385.e18, 2018.

21 Helen Davies, Graham R. Bignell, Charles Cox, Philip Stephens, Sarah Edkins, Sheila Clegg, Jon

Teague, Hayley Woffendin, Mathew J. Garnett, William Bottomley, Neil Davis, Ed Dicks, Rebecca

Ewing, Yvonne Floyd, Kristian Gray, Sarah Hall, Rachel Hawes, Jaime Hughes, Vivian Kosmidou, An-

drew Menzies, Catherine Mould, Adrian Parker, Claire Stevens, Stephen Watt, Steven Hooper, Rebecca

Wilson, Hiran Jayatilake, Barry A. Gusterson, Colin Cooper, Janet Shipley, Darren Hargrave, Katherine

Pritchard-Jones, Norman Maitland, Georgia Chenevix-Trench, Gregory J. Riggins, Darell D. Bigner,

Giuseppe Palmieri, Antonio Cossu, Adrienne Flanagan, Andrew Nicholson, Judy W. C. Ho, Suet Y.

Leung, Siu T. Yuen, Barbara L. Weber, Hilliard F. Seigler, Timothy L. Darrow, Hugh Paterson, Richard

Marais, Christopher J. Marshall, Richard Wooster, Michael R. Stratton, and P. Andrew Futreal. Muta-

tions of the BRAF gene in human cancer. Nature, 417(6892):949–954, June 2002.

22 Mark Steven Miller and Lance D. Miller. RAS Mutations and Oncogenesis: Not all RAS Mutations are

Created Equally. Frontiers in Genetics, 2:100, 2011.

23 Jessica L. L. Robinson, Kelly A. Holmes, and Jason S. Carroll. FOXA1 mutations in hormone-dependent

cancers. Frontiers in Oncology, 3:20, 2013.

24 Turgut Dogruluk, Yiu Huen Tsang, Maribel Espitia, Fengju Chen, Tenghui Chen, Zechen Chong, Vivek

Appadurai, Armel Dogruluk, Agna Karina Eterovic, Penelope E. Bonnen, Chad J. Creighton, Ken Chen,

Gordon B. Mills, and Kenneth L. Scott. Identification of Variant-Specific Functions of PIK3CA by

Rapid Phenotyping of Rare Mutations. Cancer Research, 75(24):5341–5354, December 2015.

25 Eran Kotler, Odem Shani, Guy Goldfeld, Maya Lotan-Pompan, Ohad Tarcic, Anat Gershoni, Thomas A.

Hopf, Debora S. Marks, Moshe Oren, and Eran Segal. A Systematic p53 Mutation Library Links Dif-

ferential Functional Impact to Cancer Mutation Pattern and Evolutionary Conservation. Molecular Cell,

71(1):178–190.e8, 2018.

26 Libing Shen, Qili Shi, and Wenyuan Wang. Double agents: genes with both oncogenic and tumor-

suppressor functions. Oncogenesis, 7(3):25, March 2018.

27 Eric Tran, Paul F. Robbins, Yong-Chen Lu, Todd D. Prickett, Jared J. Gartner, Li Jia, Anna Pasetto,

Zhili Zheng, Satyajit Ray, Eric M. Groh, Isaac R. Kriley, and Steven A. Rosenberg. T-Cell Transfer

Therapy Targeting Mutant KRAS in Cancer. The New England Journal of Medicine, 375(23):2255–

62

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2020. ; https://doi.org/10.1101/2020.06.02.128850doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.02.128850
http://creativecommons.org/licenses/by-nc-nd/4.0/


2262, December 2016.

28 K. Benabdeslem and Y. Bennani. Dendogram based SVM for multi-class classification. In 28th Inter-

national Conference on Information Technology Interfaces, 2006., pages 173–178, June 2006. ISSN:

1330-1012.

29 Ravinder Prajapati, Arnav Bhavsar, and Anil Sao. A hierarchical class-grouping approach, and a study

of classification strategies for leaf classification. In 2015 Fifth National Conference on Computer Vision,

Pattern Recognition, Image Processing and Graphics (NCVPRIPG), pages 1–4, December 2015.

30 Daniel Silva-Palacios, Csar Ferri, and Mara Jos Ramrez-Quintana. Improving Performance of Multiclass

Classification by Inducing Class Hierarchies. Procedia Computer Science, 108:1692–1701, January

2017.

31 Christina Curtis, Sohrab P. Shah, Suet-Feung Chin, Gulisa Turashvili, Oscar M. Rueda, Mark J. Dun-

ning, Doug Speed, Andy G. Lynch, Shamith Samarajiwa, Yinyin Yuan, Stefan Grf, Gavin Ha, Gho-

lamreza Haffari, Ali Bashashati, Roslin Russell, Steven McKinney, METABRIC Group, Anita Langerd,

Andrew Green, Elena Provenzano, Gordon Wishart, Sarah Pinder, Peter Watson, Florian Markowetz,

Leigh Murphy, Ian Ellis, Arnie Purushotham, Anne-Lise Brresen-Dale, James D. Brenton, Simon Tavar,

Carlos Caldas, and Samuel Aparicio. The genomic and transcriptomic architecture of 2,000 breast tu-

mours reveals novel subgroups. Nature, 486(7403):346–352, April 2012.

32 John N. Weinstein, Eric A. Collisson, Gordon B. Mills, Kenna R. Mills Shaw, Brad A. Ozenberger, Kyle

Ellrott, Ilya Shmulevich, Chris Sander, and Joshua M. Stuart. The Cancer Genome Atlas Pan-Cancer

analysis project. Nature Genetics, 45(10):1113–1120, October 2013.

33 Kyle Ellrott, Matthew H. Bailey, Gordon Saksena, Kyle R. Covington, Cyriac Kandoth, Chip Stewart,

Julian Hess, Singer Ma, Kami E. Chiotti, Michael McLellan, Heidi J. Sofia, Carolyn Hutter, Gad Getz,

David Wheeler, Li Ding, MC3 Working Group, and Cancer Genome Atlas Research Network. Scalable

Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines.

Cell Systems, 6(3):271–281.e7, 2018.

34 Jeffrey W. Tyner, Cristina E. Tognon, Daniel Bottomly, Beth Wilmot, Stephen E. Kurtz, Samantha L.

Savage, Nicola Long, Anna Reister Schultz, Elie Traer, Melissa Abel, Anupriya Agarwal, Aurora

Blucher, Uma Borate, Jade Bryant, Russell Burke, Amy Carlos, Richie Carpenter, Joseph Carroll, Bill H.

Chang, Cody Coblentz, Amanda dAlmeida, Rachel Cook, Alexey Danilov, Kim-Hien T. Dao, Michie

63

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2020. ; https://doi.org/10.1101/2020.06.02.128850doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.02.128850
http://creativecommons.org/licenses/by-nc-nd/4.0/


Degnin, Deirdre Devine, James Dibb, David K. Edwards, Christopher A. Eide, Isabel English, Jason

Glover, Rachel Henson, Hibery Ho, Abdusebur Jemal, Kara Johnson, Ryan Johnson, Brian Junio, Andy

Kaempf, Jessica Leonard, Chenwei Lin, Selina Qiuying Liu, Pierrette Lo, Marc M. Loriaux, Samuel

Luty, Tara Macey, Jason MacManiman, Jacqueline Martinez, Motomi Mori, Dylan Nelson, Ceilidh

Nichols, Jill Peters, Justin Ramsdill, Angela Rofelty, Robert Schuff, Robert Searles, Erik Segerdell,

Rebecca L. Smith, Stephen E. Spurgeon, Tyler Sweeney, Aashis Thapa, Corinne Visser, Jake Wag-

ner, Kevin Watanabe-Smith, Kristen Werth, Joelle Wolf, Libbey White, Amy Yates, Haijiao Zhang,

Christopher R. Cogle, Robert H. Collins, Denise C. Connolly, Michael W. Deininger, Leylah Drusbosky,

Christopher S. Hourigan, Craig T. Jordan, Patricia Kropf, Tara L. Lin, Micaela E. Martinez, Bruno C.

Medeiros, Rachel R. Pallapati, Daniel A. Pollyea, Ronan T. Swords, Justin M. Watts, Scott J. Weir,

David L. Wiest, Ryan M. Winters, Shannon K. McWeeney, and Brian J. Druker. Functional genomic

landscape of acute myeloid leukaemia. Nature, 562(7728):526–531, October 2018.

35 Leland McInnes, John Healy, and James Melville. UMAP: Uniform Manifold Approximation and Pro-

jection for Dimension Reduction. arXiv:1802.03426 [cs, stat], December 2018. arXiv: 1802.03426.

36 Therese Sorlie, Robert Tibshirani, Joel Parker, Trevor Hastie, J. S. Marron, Andrew Nobel, Shibing

Deng, Hilde Johnsen, Robert Pesich, Stephanie Geisler, Janos Demeter, Charles M. Perou, Per E.

Lnning, Patrick O. Brown, Anne-Lise Brresen-Dale, and David Botstein. Repeated observation of breast

tumor subtypes in independent gene expression data sets. Proceedings of the National Academy of Sci-

ences of the United States of America, 100(14):8418–8423, July 2003.

37 Aleix Prat and Charles M. Perou. Deconstructing the molecular portraits of breast cancer. Molecular

Oncology, 5(1):5–23, February 2011.

38 C. Ren Leemans, Peter J. F. Snijders, and Ruud H. Brakenhoff. The molecular landscape of head and

neck cancer. Nature Reviews. Cancer, 18(5):269–282, 2018.

39 Debyani Chakravarty, Jianjiong Gao, Sarah M. Phillips, Ritika Kundra, Hongxin Zhang, Jiaojiao Wang,

Julia E. Rudolph, Rona Yaeger, Tara Soumerai, Moriah H. Nissan, Matthew T. Chang, Sarat Chandarla-

paty, Tiffany A. Traina, Paul K. Paik, Alan L. Ho, Feras M. Hantash, Andrew Grupe, Shrujal S. Baxi,

Margaret K. Callahan, Alexandra Snyder, Ping Chi, Daniel Danila, Mrinal Gounder, James J. Harding,

Matthew D. Hellmann, Gopa Iyer, Yelena Janjigian, Thomas Kaley, Douglas A. Levine, Maeve Lowery,

Antonio Omuro, Michael A. Postow, Dana Rathkopf, Alexander N. Shoushtari, Neerav Shukla, Martin

64

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2020. ; https://doi.org/10.1101/2020.06.02.128850doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.02.128850
http://creativecommons.org/licenses/by-nc-nd/4.0/


Voss, Ederlinda Paraiso, Ahmet Zehir, Michael F. Berger, Barry S. Taylor, Leonard B. Saltz, Gregory J.

Riely, Marc Ladanyi, David M. Hyman, Jos Baselga, Paul Sabbatini, David B. Solit, and Nikolaus

Schultz. OncoKB: A Precision Oncology Knowledge Base. JCO precision oncology, 2017, July 2017.

40 Arthur E. Hoerl and Robert W. Kennard. Ridge Regression: Biased Estimation for Nonorthogonal

Problems. Technometrics, 12(1):55–67, February 1970.

41 Motoki Takaku, Sara A. Grimm, John D. Roberts, Kaliopi Chrysovergis, Brian D. Bennett, Page Myers,

Lalith Perera, Charles J. Tucker, Charles M. Perou, and Paul A. Wade. GATA3 zinc finger 2 mutations

reprogram the breast cancer transcriptional network. Nature Communications, 9(1):1059, March 2018.

42 Bin Guan, Min Gao, Chen-Hsuan Wu, Tian-Li Wang, and Ie-Ming Shih. Functional analysis of in-

frame indel ARID1A mutations reveals new regulatory mechanisms of its tumor suppressor functions.

Neoplasia (New York, N.Y.), 14(10):986–993, October 2012.

43 Jennifer N. Wu and Charles W. M. Roberts. ARID1A Mutations in Cancer: Another Epigenetic Tumor

Suppressor? Cancer discovery, 3(1):35–43, January 2013.

44 Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algorithm for optimal margin

classifiers. In Proceedings of the fifth annual workshop on Computational learning theory, COLT ’92,

pages 144–152, Pittsburgh, Pennsylvania, USA, July 1992. Association for Computing Machinery.

45 Leo Breiman. Random Forests. Machine Learning, 45(1):5–32, October 2001.

46 Nicolas L. Bray, Harold Pimentel, Pll Melsted, and Lior Pachter. Near-optimal probabilistic RNA-seq

quantification. Nature Biotechnology, 34(5):525–527, May 2016.

47 Bo Li and Colin N. Dewey. RSEM: accurate transcript quantification from RNA-Seq data with or without

a reference genome. BMC bioinformatics, 12:323, August 2011.

48 U. Hcker, U. Grossniklaus, W. J. Gehring, and H. Jckle. Developmentally regulated Drosophila gene

family encoding the fork head domain. Proceedings of the National Academy of Sciences, 89(18):8754–

8758, September 1992.

49 Elizabeth J. Adams, Wouter R. Karthaus, Elizabeth Hoover, Deli Liu, Antoine Gruet, Zeda Zhang, Hyun-

woo Cho, Rose DiLoreto, Sagar Chhangawala, Yang Liu, Philip A. Watson, Elai Davicioni, Andrea

Sboner, Christopher E. Barbieri, Rohit Bose, Christina S. Leslie, and Charles L. Sawyers. FOXA1 mu-

tations alter pioneering activity, differentiation and prostate cancer phenotypes. Nature, 571(7765):408–

412, July 2019.

65

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2020. ; https://doi.org/10.1101/2020.06.02.128850doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.02.128850
http://creativecommons.org/licenses/by-nc-nd/4.0/


50 Abhijit Parolia, Marcin Cieslik, Shih-Chun Chu, Lanbo Xiao, Takahiro Ouchi, Yuping Zhang, Xiaoju

Wang, Pankaj Vats, Xuhong Cao, Sethuramasundaram Pitchiaya, Fengyun Su, Rui Wang, Felix Y. Feng,

Yi-Mi Wu, Robert J. Lonigro, Dan R. Robinson, and Arul M. Chinnaiyan. Distinct structural classes of

activating FOXA1 alterations in advanced prostate cancer. Nature, 571(7765):413–418, July 2019.

51 Ivan A. Adzhubei, Steffen Schmidt, Leonid Peshkin, Vasily E. Ramensky, Anna Gerasimova, Peer Bork,

Alexey S. Kondrashov, and Shamil R. Sunyaev. A method and server for predicting damaging missense

mutations. Nature Methods, 7(4):248–249, April 2010.

52 Ngak-Leng Sim, Prateek Kumar, Jing Hu, Steven Henikoff, Georg Schneider, and Pauline C. Ng. SIFT

web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Research, 40(Web

Server issue):W452–457, July 2012.

53 Fran Supek, Beln Miana, Juan Valcrcel, Toni Gabaldn, and Ben Lehner. Synonymous mutations fre-

quently act as driver mutations in human cancers. Cell, 156(6):1324–1335, March 2014.

54 Yogita Sharma, Milad Miladi, Sandeep Dukare, Karine Boulay, Maiwen Caudron-Herger, Matthias Gro,

Rolf Backofen, and Sven Diederichs. A pan-cancer analysis of synonymous mutations. Nature Commu-

nications, 10(1):2569, June 2019.

55 Eleonore Lebeuf-Taylor, Nick McCloskey, Susan F. Bailey, Aaron Hinz, and Rees Kassen. The distri-

bution of fitness effects among synonymous mutations in a gene under directional selection. eLife, 8,

2019.

56 Martina Nemethova, Anna Bolcekova, Denisa Ilencikova, Darina Durovcikova, Katarina Hlinkova,

Anna Hlavata, Laszlo Kovacs, Ludevit Kadasi, and Andrea Zatkova. Thirty-nine novel neurofibromato-

sis 1 (NF1) gene mutations identified in Slovak patients. Annals of Human Genetics, 77(5):364–379,

September 2013.

57 Charlotte Philpott, Hannah Tovell, Ian M. Frayling, David N. Cooper, and Meena Upadhyaya. The NF1

somatic mutational landscape in sporadic human cancers. Human Genomics, 11(1):13, 2017.

58 Barbara Mair, Tomasz Konopka, Claudia Kerzendorfer, Katia Sleiman, Sejla Salic, Violeta Serra,

Markus K. Muellner, Vasiliki Theodorou, and Sebastian M. B. Nijman. Gain- and Loss-of-Function

Mutations in the Breast Cancer Gene GATA3 Result in Differential Drug Sensitivity. PLoS genetics,

12(9):e1006279, 2016.

59 Jordi Barretina, Giordano Caponigro, Nicolas Stransky, Kavitha Venkatesan, Adam A. Margolin,

66

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2020. ; https://doi.org/10.1101/2020.06.02.128850doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.02.128850
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sungjoon Kim, Christopher J. Wilson, Joseph Lehr, Gregory V. Kryukov, Dmitriy Sonkin, Anupama

Reddy, Manway Liu, Lauren Murray, Michael F. Berger, John E. Monahan, Paula Morais, Jodi Meltzer,

Adam Korejwa, Judit Jan-Valbuena, Felipa A. Mapa, Joseph Thibault, Eva Bric-Furlong, Pichai Raman,

Aaron Shipway, Ingo H. Engels, Jill Cheng, Guoying K. Yu, Jianjun Yu, Peter Aspesi, Melanie de Silva,

Kalpana Jagtap, Michael D. Jones, Li Wang, Charles Hatton, Emanuele Palescandolo, Supriya Gupta,

Scott Mahan, Carrie Sougnez, Robert C. Onofrio, Ted Liefeld, Laura MacConaill, Wendy Winckler,

Michael Reich, Nanxin Li, Jill P. Mesirov, Stacey B. Gabriel, Gad Getz, Kristin Ardlie, Vivien Chan,

Vic E. Myer, Barbara L. Weber, Jeff Porter, Markus Warmuth, Peter Finan, Jennifer L. Harris, Matthew

Meyerson, Todd R. Golub, Michael P. Morrissey, William R. Sellers, Robert Schlegel, and Levi A. Gar-

raway. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Nature, 483(7391):603–607, March 2012.

60 Moshe Talpaz, Neil P. Shah, Hagop Kantarjian, Nicholas Donato, John Nicoll, Ron Paquette, Jorge

Cortes, Susan O’Brien, Claude Nicaise, Eric Bleickardt, M. Anne Blackwood-Chirchir, Vishwanath Iyer,

Tai-Tsang Chen, Fei Huang, Arthur P. Decillis, and Charles L. Sawyers. Dasatinib in Imatinib-Resistant

Philadelphia ChromosomePositive Leukemias. New England Journal of Medicine, 354(24):2531–2541,

June 2006.

61 Erica L. Mayer, Jean-Francois Baurain, Joseph Sparano, Lewis Strauss, Mario Campone, Pierre Fu-

moleau, Hope Rugo, Ahmad Awada, Oumar Sy, and Antonio Llombart-Cussac. A phase 2 trial of dasa-

tinib in patients with advanced HER2-positive and/or hormone receptor-positive breast cancer. Clinical

Cancer Research: An Official Journal of the American Association for Cancer Research, 17(21):6897–

6904, November 2011.

62 Alberto Ocana, Marta Gil-Martin, Silvia Antoln, Mara Atienza, lvaro Montao, Nuria Ribelles, Ander Ur-

ruticoechea, Alejandro Falcn, Sonia Pernas, Javier Orlando, Juan Carlos Montero, Maria Jos Escudero,

Sara Benito, Rosala Caballero, Eva Carrasco, Federico Rojo, Atanasio Pandiella, and Manuel Ruiz-

Borrego. Efficacy and safety of dasatinib with trastuzumab and paclitaxel in first line HER2-positive

metastatic breast cancer: results from the phase II GEICAM/2010-04 study. Breast Cancer Research

and Treatment, 174(3):693–701, April 2019.

63 Patrick G. Morris, Selene Rota, Karen Cadoo, Stephen Zamora, Sujata Patil, Gabriella D’Andrea,

Theresa Gilewski, Jacqueline Bromberg, Chau Dang, Maura Dickler, Shanu Modi, Andrew D. Seidman,

67

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2020. ; https://doi.org/10.1101/2020.06.02.128850doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.02.128850
http://creativecommons.org/licenses/by-nc-nd/4.0/


Nancy Sklarin, Larry Norton, Clifford A. Hudis, and Monica N. Fornier. Phase II Study of Paclitaxel

and Dasatinib in Metastatic Breast Cancer. Clinical Breast Cancer, 18(5):387–394, 2018.

64 Ami Patel, Harika Sabbineni, Andrea Clarke, and Payaningal R. Somanath. Novel roles of Src in cancer

cell epithelial-to-mesenchymal transition, vascular permeability, microinvasion and metastasis. Life

Sciences, 157:52–61, July 2016.

65 Yoon-La Choi, Melanie Bocanegra, Mi Jeong Kwon, Young Kee Shin, Seok Jin Nam, Jung-Hyun Yang,

Jessica Kao, Andrew K. Godwin, and Jonathan R. Pollack. LYN is a mediator of epithelial-mesenchymal

transition and a target of dasatinib in breast cancer. Cancer Research, 70(6):2296–2306, March 2010.

68

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2020. ; https://doi.org/10.1101/2020.06.02.128850doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.02.128850
http://creativecommons.org/licenses/by-nc-nd/4.0/

