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Abstract 

The blood oxygenation level-dependent (BOLD) contrast mechanism allows someone to non-invasively probe 

changes in deoxyhemoglobin content. As such, it is commonly used in fMRI to study brain activity since levels of 10 

deoxyhemoglobin are indirectly related to local neuronal activity through neurovascular coupling. However, the 

BOLD signal is severely affected by physiological processes as well as motion. Due to this, several noise correction 

techniques have been developed through the years to correct for the associated confounds. This study sought to refine 

model-based techniques that utilize the photoplethysmograph (PPG) signal. RETROICOR, a technique commonly 

used to model fMRI fluctuations induced by cardiac pulsatility was compared with a new technique proposed here, 15 

named cardiac pulsatility model (CPM), that is based on convolution filtering. Further, this study investigated whether 

the variations in the amplitude of the PPG pulses (PPG-Amp) covary with variations in amplitude of pulse-related 

fMRI fluctuations as well as with systemic low frequency oscillations (SLFOs) present in the global signal (i.e. mean 

fMRI timeseries averaged across all voxels in gray matter). Capitalizing on 3T fMRI data from the Human 

Connectome Project, CPM was found to explain significantly more variance in fMRI compared to RETROICOR, 20 

particularly for subjects that presented high variance in heart rate during the scan. The amplitude of the fMRI pulse-

related fluctuations did not seem to covary with PPG-Amp. That said, PPG-Amp explained significant variance in 

the GS that did not seem to be attributed to variations in heart rate or breathing patterns. In conclusion, our results 

suggest that the techniques proposed here can model high-frequency fluctuations due to pulsation as well as low-

frequency physiological fluctuations more accurately than model-based techniques commonly employed in fMRI 25 

studies.   
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1. Introduction 

Functional magnetic resonance imaging (fMRI) is a powerful neuroimaging modality that provides measurements of 

brain activity with great spatial coverage and resolution   (Bandettini et al., 1992; Kwong et al., 1992; Ogawa et al., 

1990). It has been extensively used in behavioral experiments to study brain function associated to a specific task or 

condition but also even during resting condition to examine the intrinsic brain functional architecture (Biswal et al., 35 

1995; Van Dijk et al., 2010). The majority of fMRI experiments are based on the blood oxygen level dependent 

(BOLD) contrast that can detect changes in blood oxygenation, and specifically changes in concentration of 

deoxygenated hemoglobin (Hb). The main principle exploited in BOLD fMRI is that neuronal activity triggers 

changes in local cerebral blood flow (CBF) which, in turn, affects the concentration Hb (Iadecola, 2017; Kisler et al., 

2017). As such, due to its sensitivity to levels of Hb, the BOLD signal provides an indirect measure of the underlying 40 

neuronal activity. A main challenge, however, when analyzing fMRI data is that the BOLD signal consists also of 

physiological-induced fluctuations as well as fluctuations due to motion which, if not accounted for, can severally 

diminish the detection of neural-induced signals or lead to artificial associations (Birn, 2012; Chang and Glover, 

2009; Glasser et al., 2018; Power et al., 2015; Xifra-porxas et al., 2020). 

The fMRI confounds induced by physiological processes and motion fall into two categories: (1) purely physiological 45 

blood-borne signals also known as systemic low-frequency oscillations (SLFOs), and (2) acquisition artifacts. Blood-

borne signals are signals driven by changes in the levels of Hb in the sample being imaged which in principle can be 

influenced by several physiological factors. Experimentally, it has been shown that variations in heart rate (HR; 

Shmueli et al., 2007), levels of carbon dioxide (CO2; Prokopiou et al., 2019; Wise et al., 2004), breathing patterns 

(Birn et al., 2006), as well as arterial blood pressure (Whittaker et al., 2019) give rise to low-frequency (~0.1 Hz) 50 

fluctuations in fMRI presumably due to their effects on the levels of Hb (Caballero-Gaudes and Reynolds, 2017; Liu, 

2016; Murphy et al., 2013). On the other hand, acquisition artifacts are caused by any kind of motion that forces the 

imaged sample to move in space or perturbs the magnetic field, as these manipulations have a direct impact on the 

acquisition process (Caballero-Gaudes and Reynolds, 2017; Liu, 2016; Murphy et al., 2013). Acquisition artifacts 

may be related to bulk head motion and breathing-related chest expansion (Power et al., 2015) but also to cardiac 55 

contractions through vessel expansion in the brain vasculature and its associated tissue movement (Dagli et al., 1999). 

To account for the effects of physiological processes and motion, several data-driven techniques have been proposed 

(Caballero-Gaudes and Reynolds, 2017). An important class of data-driven techniques involves the decomposition 

of the fMRI data into components either using principal or independent component analysis (Behzadi et al., 2007; 

Pruim et al., 2015; Salimi-Khorshidi et al., 2014) and the removal of components that are likely due to physiological 60 

fluctuations or acquisition artifacts prior to further analysis. These techniques have been shown to perform fairly well 

in the context of whole-brain functional connectivity, particularly for acquisition artifacts (Ciric et al., 2017; 

Kassinopoulos and Mitsis, 2019a; Parkes et al., 2018; Xifra-porxas et al., 2020). However, their performance on task-

based studies or studies with limited field of view (e.g. Mitsis et al., 2009; Pattinson et al., 2009) has not been well 

addressed. Often the so-called global signal (GS), defined as the mean timeseries across all voxels in the brain (or 65 

gray matter (GM)), is removed from the data as it reflects to a large extent SLFOs (Birn et al., 2006; Chang and 

Glover, 2009; Falahpour et al., 2013; Kassinopoulos and Mitsis, 2019b; Shmueli et al., 2007). That said, this practice 

is been somewhat controversial as there is evidence that GS variations may also reflect neuronal activity (Liu et al., 

2017; Murphy and Fox, 2017; Power et al., 2017). Due to this, several methods have been proposed that assess the 

effect of global signal regression (GSR) on connectivity measures (Carbonell et al., 2014; Falahpour et al., 2018; 70 

Nalci et al., 2019b, 2019a) as well as alternative approaches that avoid some of the limitations of GSR (Aquino et al., 

2019; Carbonell et al., 2011; Glasser et al., 2018). 

As the effectiveness and reliability of data-driven techniques is yet to be determined, fMRI studies often employ 

model-based techniques that utilize concurrent external recordings (e.g. levels of CO2, continuous arterial blood 

pressure, etc) and, thus, are more certain to address a specific source of confound without the risk of removing signal 75 

of interest. The physiological recordings most commonly acquired are the photoplethysmograph (PPG) and the 

respiratory bellow signal due to the availability of the necessary equipment in the majority of MR units and due to 
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that the transducers are well tolerable for participants. PPG and the respiratory bellow capture cardiac and breathing 

activity, respectively, and are commonly used to account for high-frequency fMRI artifacts due to cardiac pulsatility 

(~1 Hz) and breathing motion (~0.3 Hz) using a technique named RETROICOR proposed by Glover et al. (2000). In 80 

addition, these two signals are often used with convolution models to account for SLFOs driven by variations in HR 

(Chang et al., 2009) and breathing patterns (Birn et al., 2008). 

In this study, we propose a refinement for the approach taken in RETROICOR for modelling cardiac pulsatility. 

Specifically, we propose the cardiac pulsatility model (CPM) that describes pulse-related fluctuations in fMRI as the 

convolution of a train of impulses located at the time of cardiac contractions and a cardiac pulsatility waveform 85 

(CPW). Using a cross-validation framework we compare RETROICOR with CPM in terms of variance explained in 

fMRI. We hypothesize that these two approaches yield similar performance when HR is relatively stable whereas 

CPM yields better model fit for subjects with high HR variability (HRV). Moreover, we examine whether the 

variations observed in the amplitude of the pulses in PPG (PPG-Amp) are also present in fMRI pulse-related 

fluctuations. Finally, we examine the association between PPG-Amp and the low-frequency fluctuations present in 90 

the GS. Previously, we have presented a framework for estimating scan-specific physiological response functions 

(PRFs) that are used to model the effect of HR and breathing pattern in SLFOs present in the GS (Kassinopoulos and 

Mitsis, 2019b). Doing so, someone can model SFLOs and use this timeseries as a nuisance regressor in the 

preprocessing of the fMRI data. Here, we investigate whether there is any benefit of considering PPG-Amp, in 

addition to HR and breathing activity, to model SLFOs present in the GS. Based on our results, CPM explains more 95 

variance than RETROICOR, particularly for subjects with high HRV. The amplitude of the cardiac-related pulses 

observed in fMRI does not covary with PPG-Amp. Our results suggest, however, that PPG-Amp explains variance 

in the GS not captured by measurements of cardiac or breathing activity. 

 

 100 
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2. Methodology 

Unless stated otherwise, the preprocessing and analysis described below were performed in Matlab (R2018b; 105 

Mathworks, Natick MA). 

 

2.1 Human Connectome Project (HCP) Dataset 

We used resting-state scans from the HCP S1200 release (Glasser et al., 2016; Van Essen et al., 2013). The HCP 

dataset includes, among others, T1-weighted (T1w) images and resting-state (eyes-open and fixation on a cross-hair) 110 

data from healthy young (age range: 22-35 years) individuals acquired on two different days. On each day, two 15-

minute scans were collected, one with a left-right phase encoding (PE) direction and one with a right-left PE direction. 

fMRI acquisition was performed with a multiband factor of 8, spatial resolution of 2 mm isotropic voxels, and a 

repetition time (TR) of 0.72 s (Glasser et al., 2013). 

The minimal preprocessing pipeline for the resting-state HCP dataset is described in (Glasser et al., 2013). In brief, 115 

the pipeline included gradient-nonlinearity-induced distortion correction, motion correction, EPI image distortion 

correction and non-linear registration to MNI space. The motion parameters are included in the database for further 

correction of motion artifacts. 

In the present work, we used the minimally-preprocessed data along with T1w images provided in volumetric 

MNI152 space. We considered 100 subjects which included good quality signals of photoplethysmograph (PPG) and 120 

breathing activity (respiratory bellow) in all four scans, as assessed by visual inspection. The 41 subjects considered 

in (Kassinopoulos and Mitsis, 2019b) were excluded from this study to examine whether some of the previous 

findings can be replicated in a different subset of HCP subjects. 

 

2.2 Preprocessing and analysis of physiological signals 125 

The detection of all peaks in PPG with good time accuracy was important for the techniques examined in this study. 

The timings of the peaks in PPG were used to model either the high-frequency (~1 Hz) cardiac pulsatility artifacts in 

fMRI or low-frequency (~0.1 Hz) physiological artifacts due to variations in HR reflected on the GS. In addition, the 

amplitudes of the peaks in PPG were used to model low-frequency artifacts that in principle may be unrelated to HR 

variations. Therefore, to facilitate the detection of peaks, PPG was initially band-pass filtered with a 2nd order 130 

Butterworth filter between 0.3 and 10 Hz. The minimum peak distance specified for peak detection varied between 

0.5 and 0.9 s depending on the subject’s average HR and was chosen based on visual inspection of the HR that results 

for a specific minimum peak distance value. For a given set of detected peaks, the HR signal was computed in beats-

per-minute (bpm) by multiplying the inverse of the time differences between pairs of adjacent peaks with 60, and 

evenly resampled at 10 Hz. The amplitudes of the peaks, referred to later as photoplethysmographic amplitude (PPG-135 

Amp), were also evenly resampled at 10 Hz. The resampling of HR and PPG-Amp was done using linear 

interpolation. Note that several subjects in HCP demonstrated a constant HR of 48 bpm which is likely due to 

erroneous PPG recording. None of these subjects was considered in our study. That said, many scans considered here 

illustrated HR traces with outliers at different timepoints. The values of HR at the timepoints of outliers were 

corrected using linear interpolation (for more information see Methods in (Kassinopoulos and Mitsis, 2019b)). 140 

The breathing signal was detrended linearly and corrected for outliers using a median filter in a similar manner with 

(Kassinopoulos and Mitsis, 2019b). Subsequently, the breathing signal was low-pass filtered at 5 Hz with a 2nd order 

Butterworth filter and z-scored. 
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2.3 Preprocessing of fMRI data 145 

fMRI data as well as 16 nuisance regressors were first high-pass filtered at 0.008 Hz. The nuisance regressors 

consisted of the 6 motion parameters along with their derivatives and 4 regressors related to breathing motion (i.e. 

2nd order RETROICOR). Subsequently, the nuisance regressors were removed from the fMRI data. To extract the GS 

of each scan, first we performed tissue segmentation on the T1w images at the MNI152 space using FLIRT in FSL 

5.0.9 that generated probabilistic maps for the gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) 150 

compartments (Zhang et al., 2001). Afterwards, the GS was calculated by estimating the mean timeseries across all 

voxels with probability above 0.25 to belong to GM. The choice of the threshold value was done based on visual 

inspection while overlaying the probabilistic map of GM on the T1w images. 

 

2.4 High-frequency cardiac fluctuations 155 

2.4.1 RETROICOR 

RETROICOR stands for RETROspective Image-based CORrection and is a technique proposed by Glover et al. 

(2000) for removing high-frequency fluctuations due to cardiac pulsatility and breathing motion. While similar steps 

are performed to remove the aforementioned confounds, different mechanisms underly them. In this study we 

compared the variance explained in fMRI data with RETROICOR and with respect to CPM which is a physiologically 160 

plausible model for pulsatility artifacts. Therefore, if not explicitly stated, by RETROICOR we refer to the steps 

related to the cardiac fluctuations. 

To obtain the pulse-related RETROICOR regressors we followed the following three steps: 

1.  The cardiac phase was first defined based on the timings of the PPG peaks using the relation: 

where 𝑇𝑝(𝑡) and 𝑇𝑓(𝑡) indicate the time of the nearest peaks from past and future timepoints, respectively. 165 

2. A basis set of cosines and sines was created as follows: 

where 𝑚 is the order of the Fourier basis set. Typically, a 2nd order of RETROICOR is employed which 

corresponds to four nuisance regressors. It has been suggested that while higher orders improve the fit they carry 

the risk of overfitting the data (Harvey et al., 2008). However, as the optimal order may depend on parameters of 

the fMRI pulse sequence, such as the duration of scan and TR, one of the goals of this study was to determine the 170 

optimal order for RETROICOR and CPM when applied to the resting-state fMRI data of HCP (see Section 2.6). 

3.  Finally, the nuisance regressors cos𝑚(𝑡) and sin𝑚(𝑡) were downsampled to match the fMRI acquisition rate 

yielding the regressors cos𝑚[𝑛] and sin𝑚[𝑛]. Note that we use parentheses and brackets to distinguish the high 

and low-sampled timeseries, and not for distinguishing continuous and discrete signals. 

The yielded nuisance regressors were used in the design matrix of the general linear model (GLM) in order to model 175 

the pulse-related artifacts in each voxel timeseries. Through linear regression in GLM, each nuisance regressor is 

assigned with a beta parameter 𝛽. In the case that only cardiac-related regressors are included in the design matrix, 

the voxel timeseries can be represented as: 

 𝜑(𝑡) = 2π
𝑡−𝑇𝑝(𝑡)

𝑇𝑝(𝑡)−𝑇𝑓(𝑡)
 , [1] 

 cos𝑚(𝑡) = cos(𝑚𝜑) 

sin𝑚(𝑡) = sin(𝑚𝜑) 
[2] 
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where 휀[𝑛] corresponds to random Gaussian error. Section 2.6 describes how the fit of RETROICOR regressors on 

the data was assessed and compared with CPM. Note that the beta parameters essentially define the cardiac pulsatility 180 

waveform (CPW) during a cardiac cycle. Specifically, CPW is obtained using the relation: 

 

2.4.2 Cardiac pulsatility model (CPM) 

Here, we propose an alternative model for capturing pulse-related artifacts in fMRI, named cardiac pulsatility model 

(CPM). CPM assumes that pulse-related artifacts can be modelled as the output of a causal linear time-invariant (LTI) 185 

system where the input is a train of pulses corresponding to cardiac contractions. Therefore, to describe these artifacts 

we employed the convolution representation: 

where 𝜒(𝑡) is the input of the model reflecting the cardiac contractions and 𝐶𝑃𝑊(𝑡) is the cardiac pulsatility 

waveform and has the role of an impulse response. The timepoints of the cardiac contractions were considered to 

coincide with the timings of the PPG peaks. Two different inputs were examined, one input referred to as 𝑥𝐶𝐴(𝑡) 190 

which indicates that all pulses had a constant amplitude of one, and one input referred to as 𝑥𝑉𝐴(𝑡) where the 

amplitudes of the pulses was equal to the amplitudes of the PPG peaks. Both inputs were defined at a sampling rate 

of 10 Hz. The pulses consisted of one sample duration each with a constant (unit value) or varying amplitude 

depending on the kind of input examined (i.e. 𝑥𝐶𝐴(𝑡) or 𝑥𝑉𝐴(𝑡)) and all remaining samples were equal to zero. The 

impulse response 𝐶𝑃𝑊(𝑡) was defined as a linear combination of modified Fourier basis functions of one cycle 195 

length as shown below: 

The fundamental period 𝑇 varied on a scan basis and was equal to the average cardiac cycle duration within a scan 

(i.e. average time difference across pairs of adjacent PPG peaks). The cosine terms were subtracted by one so that all 

basis functions begin and end at zero. This mathematical manipulation ensures the physiological plausibility of the 

model as it leads to impulse responses that have zero amplitude at time zero and at times larger that 𝑇. 200 

 Note that based on the properties of convolution, Eq. 5 can also be expressed as: 

 

𝑦[𝑛] = ∑ 𝛽𝑐𝑜𝑠,𝑚 cos𝑚[𝑛] + 𝛽𝑠𝑖𝑛,𝑚 s𝑖𝑛𝑚[𝑛]

𝑀

𝑚=1

+ 휀[𝑛] [3] 

 𝐶𝑃𝑊(𝜑) = ∑ 𝛽𝑐𝑜𝑠,𝑚 𝑐𝑜𝑠(𝑚𝜑) + 𝛽𝑠𝑖𝑛,𝑚sin(𝑚𝜑)
𝑀
𝑚=1            𝜑 ∈ [0,2𝜋] [4] 

 

𝑦(𝑡) = ∫ 𝐶𝑃𝑊(𝑡 − 𝜏)𝑥(𝜏)

𝑇

𝜏=0

𝑑𝜏 = 𝑥(𝑡) ∗ 𝐶𝑃𝑊(𝑡) [5] 

 

𝐶𝑃𝑊(𝑡) = ∑ 𝛽𝑐𝑜𝑠,𝑚𝐿𝑐𝑜𝑠,𝑚(𝑡) + 𝛽𝑠𝑖𝑛,𝑚𝐿𝑠𝑖𝑛,𝑚(𝑡)

𝑀

𝑚=1

 

 

where𝐿𝑐𝑜𝑠,𝑚(𝑡) = 1 − 𝑐𝑜𝑠 (
2𝑚𝜋𝑡

𝑇
) 𝑓𝑜𝑟0 ≤ 𝑡 ≤ 𝑇 

= 0𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒 

and𝐿𝑠𝑖𝑛,𝑚(𝑡) = sin (
2𝑚𝜋𝑡

𝑇
) 𝑓𝑜𝑟0 ≤ 𝑡 ≤ 𝑇 

= 0𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒 

[6] 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.06.01.128306doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.01.128306
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

As in RETROICOR, nuisance regressors were extracted from the CPM that were subsequently downsampled to the 

fMRI acquisition timeline and used in the design matrix of GLM. 

 

2.4.3 Time alignment of pulse-related regressors and fMRI data 205 

When the heart contracts a pulse pressure wave propagates from the heart through the vasculature to the whole body 

giving rise to cardiac pulses in the arteries that are captured, among other hemodynamic signals, in the PPG. The 

vascular path between heart and finger where PPG is typically recorded may differ in terms of travelling distance 

compared to the path between heart and arteries in the brain vasculature. As a result, a pulse originated from the heart 

may reach the finger at a different time compared to an artery in the brain. This time difference should be ideally 210 

incorporated in the analysis when extracting pulse-related regressors. To examine whether there is a time difference 

in HCP fMRI data that can improve the performance of the examined models, we repeated the analysis with each of 

the models considered in this study for lag times varying from -2 s to 2 s in steps of 0.1 s. In practice, to account for 

a specific lag time, the PPG signal depending on the lag time examined was shifted towards negative or positive times 

before extracting the pulse-related regressors. Section 2.6 describes how RETROICOR and the two variants of CPM 215 

(i.e. using either input 𝑥𝐶𝐴(𝑡) or 𝑥𝑉𝐴(𝑡)) were compared as well as how the optimal lag time was determined for each 

of the models. 

 

2.5 Systemic low-frequency physiological oscillations (SLFOs) 

Apart from removing high-frequency cardiac and breathing fluctuations, physiological recordings can also be used 220 

to yield nuisance regressors that account for the effect of SLFOs (Tong et al., 2019). A common approach for 

removing SLFOs is to use convolution models where the inputs are the HR and a breathing-related variable (e.g. 

respiration volume per time; RVT) and the impulse responses are the so-called cardiac (CRF) and respiration (RRF) 

response functions (Birn et al., 2008; Chang et al., 2009). The outputs of these convolutions are subsequently used 

as nuisance regressors in the GLM. Falahpour et al. (2013) first demonstrated that the GS of a scan can be used as 225 

the model output for estimating subject-specific PRFs. Specifically, the authors showed that nuisance regressors 

extracted using subject-specific PRFs explain significantly more variance in fMRI data compared to regressors 

extracted with canonical PRFs. In a recent study, we proposed a new framework for estimating PRFs based on the 

GS and provided evidence that the PRFs vary significantly even across scans within a subject (Kassinopoulos and 

Mitsis, 2019b). 230 

Apart from fluctuations to HR and breathing pattern, the GS has been recently shown to be linked, during sleep, to 

fluctuations in PPG-Amp (Özbay et al., 2019, 2018). However, as PPG-Amp is affected by various physiological 

processes such as breathing, cardiac activity and arterial blood pressure (Reisner et al., 2008), it is unclear whether 

fluctuations of PPG-Amp explain unique variance in the GS compared to HR and breathing pattern variations. 

In this study, we conducted a cross-correlation analysis to better understand the relation between the physiological 235 

sources (HR, breathing patterns and PPG-Amp) and the GS during resting conditions. Fluctuations in breathing 

patterns were quantified using the respiration volume (RV) measure which is defined as the standard deviation of the 

breathing signal on a sliding window of 6 s (Chang et al., 2009). The GS was upsampled to 10 Hz to match the 

sampling rate of physiological variables before proceeding with the cross-correlation analysis. 

In addition, we employed the framework proposed in (Kassinopoulos and Mitsis, 2019b) to examine whether a 240 

convolution model associated to PPG-Amp variations may explain variance in the GS not attributed to HR and 

 

𝑦(𝑡) = ∑ 𝛽𝑐𝑜𝑠,𝑚𝐿𝑐𝑜𝑠,𝑚(𝑡) ∗ 𝑥(𝑡) + 𝛽𝑠𝑖𝑛,𝑚𝐿𝑠𝑖𝑛,𝑚(𝑡) ∗ 𝑥(𝑡)

𝑀

𝑚=1

 [7] 
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breathing variations. Specifically, we examined whether considering a PRF associated to PPG-Amp variations, 

(referred to later as PPG-Amp response function; PARF) along with the components related to HR and breathing 

pattern variations can improve the variance explained on the GS compared to the standard approach of considering 

only HR and breathing pattern. The nuisance regressors related to HR, PPG-Amp and RV were defined as follows: 245 

 𝑋𝐻𝑅(𝑡) = 𝐻𝑅 ∗ 𝐶𝑅𝐹, [8] 

 𝑋𝑃𝐴(𝑡) = 𝑃𝐴 ∗ 𝑃𝐴𝑅𝐹, and [9] 

 𝑋𝑅𝑉(𝑡) = 𝑅𝑉 ∗ 𝑅𝑅𝐹 [10] 

where 𝑃𝐴 is the PPG-Amp. We considered the double gamma function (i.e., the sum of two gamma functions) as the 

structure basis of the 𝑃𝑅𝐹 curves. The gamma function was defined as: 

 
𝛤(𝜏, 𝛿, 𝑡) = 𝑎(𝜏, 𝛿) ∙  𝑡

√𝜏

𝛿  ∙ 𝑒
−

𝑡

𝛿√𝜏  [11] 

where the parameters 𝜏 and 𝛿 indicate the (approximate) time of peak and dispersion of the function, and the 

parameter 𝛼 is a scaling factor which normalizes the peak value of the gamma function to 1. The 𝑃𝑅𝐹 curves were 

defined as follows: 250 

 𝐶𝑅𝐹(𝑡) = 𝛽1,𝑐 ∙ 𝛤(𝜏1,𝑐 , 𝛿1,𝑐 , 𝑡) + 𝛽2,𝑐 ∙ 𝛤(𝜏2,𝑐, 𝛿2,𝑐 , 𝑡), 

𝑃𝐴𝑅𝐹(𝑡) = 𝛽1,𝑝 ∙ 𝛤(𝜏1,𝑝, 𝛿1,𝑝, 𝑡) + 𝛽2,𝑝 ∙ 𝛤(𝜏2,𝑝, 𝛿2,𝑝, 𝑡), and 

𝑅𝑅𝐹(𝑡) = 𝛽1,𝑟 ∙ 𝛤(𝜏1,𝑟, 𝛿1,𝑟, 𝑡) + 𝛽2,𝑟 ∙ 𝛤(𝜏2,𝑟, 𝛿2,𝑟, 𝑡) 

[12] 

The procedure for estimating scan-specific PRFs is described in detail in (Kassinopoulos and Mitsis, 2019b). In brief, 

the parameters of the PRFs for a given scan were first estimated using a genetic algorithm (GA) implemented in 

Matlab R2018b’s Global Optimization Toolbox. The parameter vectors 𝝉 (𝜏1,𝑐 , 𝜏2,𝑐 , 𝜏1,𝑝, 𝜏2,𝑝, 𝜏1,𝑟, 𝜏2,𝑟) and 𝜹 

(𝛿1,𝑐 , 𝛿2,𝑐 , 𝛿1,𝑝, 𝛿2,𝑝, 𝛿1,𝑟, 𝛿2,𝑟) were bounded between 0-20 seconds and 0-3 seconds, respectively. A stopping 

criterion of 100 generations was set, as it was found to be adequate for convergence. GA searches in the parameter 255 

space defined by the boundaries to estimate the parameters that maximize the objective function (i.e. a Pearson 

correlation coefficient) yielded through the following steps: 1. for a set of given parameters, the three 𝑃𝑅𝐹 curves 

are constructed. Subsequently, 2. the HR, PPG-Amp and RV signals (sampled at 10 Hz) are convolved with 𝐶𝑅𝐹, 

𝑃𝐴𝑅𝐹 and 𝑅𝑅𝐹, respectively, to extract the corresponding nuisance regressors and then downsampled to match the 

fMRI acquisition rate. 3. The beta parameters are estimated through linear regression (GLM) whereby the GS is the 260 

dependent variable and the three nuisance regressors are the three explanatory variables. 4. Finally, the Pearson 

correlation coefficient between the GS and the model prediction is calculated. The estimated parameters of the GA 

were subsequently refined using the interior-point gradient-based algorithm with a stopping criterion of 100 

maximum iterations (implemented in Matlab R2018 as well). 

 265 

2.6 Model comparison 

In the case of high-frequency physiological fluctuations, the goodness-of-fit for a given model was assessed on each 

individual voxel using the Pearson correlation between the output of the model and the voxel timeseries. Then, the 

correlation was averaged across all voxels in the brain. In contrast, when examining low-frequency physiological 

fluctuations, the goodness-of-fit for a given model was assessed on the GS using the Pearson correlation between the 270 

output of the model and the GS. 

To compare the performance across models a 3-fold cross-validation framework was employed as the models differed 

in flexibility and, inevitably, risk of overfitting due to a different number of parameters. When modelling low-

frequency physiological fluctuations, the GS of each scan was partitioned into three segments of about 5 min each. 

One segment was used as the validation set for assessing the performance of the model and the remaining two 275 
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segments were used as the training dataset. This step was repeated three times with each of the three segments used 

exactly once as the validation data. In each fold, scan-specific PRFs and beta parameters were estimated from the 

training dataset and, subsequently, used in the validation dataset to model the SLFOs. The goodness-of-fit was 

assessed based on the correlation between the GS and estimated SLFOs in the validation dataset. Finally, the mean 

correlation across the three folds was calculated. To compare the standard with the proposed model, the mean 280 

correlations of the four scans of each subject were first averaged and, then, a paired t-test was performed based on 

the mean correlation values of the 100 subjects for the two models. The 3-fold cross-validation and model comparison 

was also performed in a similar manner for the high-frequency physiological fluctuations. 

With regards to high-frequency cardiac pulsatility oscillations, three models were examined, namely RETROICOR, 

the CPMCA and the CPMVA (see Section 2.4). The two last models only differed on whether the input signal was 285 

𝑥𝐶𝐴(𝑡) or 𝑥𝑉𝐴(𝑡). Apart from the model type, we also examined the optimal model order of Fourier series and the 

optimal lag time as these two parameters may have significant impact on the performance. Therefore, the model 

performance was initially assessed for each of the three model types for model order varying from 1 to 8 and lag time 

varying from -2 s to 2 s in steps of 0.1 s. The comparison of the three models was subsequently done using for each 

model the order and lag time that yielded the best performance across all subjects. To illustrate how well the three 290 

models capture cardiac pulsatility and how their waveforms may differ between them, we also repeated the 

comparison considering the PPG raw signal as the output target rather than the voxel timeseries. 

To assess regional variability in the performance of the pulse-related models statistical maps were generated. For 

visualization purposes, maps shown here were overlaid on structural images after being transformed to MNI152 space 

(1 mm spatial resolution) with FSL’s FLIRT registration tool (Jenkinson and Smith, 2001) as incorporated in the 295 

MANGO software (Lancaster, Martinez; www.ric.uthscsa.edu/mango). 

With respect to the low-frequency noise (Section 2.5), we compared two models for extracting the SLFOs using the 

GS. The standard model estimates SLFOs presented in the GS using only the variations in HR and breathing patterns 

whereas the proposed model estimates SLFOs using HR, breathing patterns and PPG-Amp. The two models can be 

expressed as follows: 300 

 Standard model:  𝐺𝑆 = 𝑆𝐿𝐹𝑂𝑠 + 휀 = 𝐻𝑅 ∗ 𝐶𝑅𝐹 + 𝑅𝑉 ∗ 𝑅𝑅𝐹 + 휀 [13] 

 Proposed model: 𝐺𝑆 = 𝑆𝐿𝐹𝑂𝑠 + 휀 = 𝐻𝑅 ∗ 𝐶𝑅𝐹 + 𝑅𝑉 ∗ 𝑅𝑅𝐹 + 𝑃𝐴 ∗ 𝑃𝐴𝑅𝐹 + 휀 [14] 

 

2.7 Cardiac pulsatility waveforms (CPW) 

Various MRI techniques have been proposed to measure intracranial CPWs such as phase-contrast and magnetic 

resonance encephalography as these waveforms are considered a useful biomarker in certain cerebrovascular diseases 

(Bianciardi et al., 2016; Wagshul et al., 2011) and are often studied in order to understand the role of intracranial 305 

cardiac pulsatility in the glymphatic activity (Fultz et al., 2019; Kiviniemi et al., 2016). With this in mind, here we 

sought to investigate whether the CPM applied in BOLD fMRI data may provide an alternative technique for 

measuring intracranial pulsatility. Specifically, we sought to investigate the consistency of CPWs across subjects. 

To extract CPWs averaged across subjects we followed the following steps for the two variants of CPM separately: 

For a given scan, we derived the CPW in each voxel based on Eq. 6 using the beta parameters estimated in the GLM. 310 

Note that when reconstructing the CPW, a cardiac cycle duration 𝑇 of 1 s was used for all subjects and a time-step of 

0.025 s. Subsequently, the CPW in each voxel was normalized to a maximum absolute value of one and multiplied 

by the correlation coefficient related to the variance explained with CPM in the associated voxel. Finally, the CPWs 

were averaged across subjects considering only scans from the first session and the same PE direction. This way, 

CPWs in regions that were prone to pulse-related fluctuations had larger amplitudes than other regions.  315 
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3. Results 

3.1 High-frequency cardiac fluctuations 

All three models examined for pulse-related oscillations were able to model the cardiac pulsatility in the PPG quite 

well. When considering a 3-fold cross-validation framework, the three models showed improved performance for 

higher orders of Fourier series reaching a plateau at about the 4th order. Considering the highest examined (8th) order 320 

which demonstrated the best performance, we observed a maximum cross-correlation averaged across subjects at 

time lags between -0.1 s and -0.5 s (Suppl. Fig. 1a). RETROICOR, CPMCA and CPMVA yielded maximum cross-

correlation values of 0.900, 0.901 and 0.934, respectively.  CPMVA which, in contrast to RETROICOR and CPMCA, 

takes into account variations in PPG-Amp, demonstrated significantly higher performance compared to the other two 

models (p<10-31), while RETROICOR and CPMCA yielded similar performance. Fig. 1 shows the goodness-of-fit for 325 

the three models when applied on the PPG of a subject that illustrated strong variations in HR (the 3-fold cross 

validation framework was omitted for this figure). As we can see, all three models explained fairly well the variations 

Fig. 1. Model fit of pulse-related models on PPG for a subject with high heart rate variability (HRV; S159138-R1LR). (a) Trace of 

HR during a 30 s time segment with strong fluctuations. (b)-(d) Model fit of RETROICOR, CPMCA and CPMVA on the PPG timeseries. All 

three models captured the high-frequency (~1 Hz) fluctuations related to cardiac pulsatility. However, only CPMVA that incorporates in its 

input the low-frequency (~0.1 Hz) fluctuations in PPG-Amp was able to represent these fluctuations on the model output.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.06.01.128306doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.01.128306
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

 

in the PPG signal, although only CPMVA was able to capture the low-frequency fluctuations of the PPG-Amp. Apart 

from the absent of low-frequency fluctuations in the case of RETROICOR and CPMCA, we were not able to visually 

observe any other differences in the waveforms across the three models. That said, as shown later, when examining 330 

fMRI data, RETROICOR and CPMCA exhibited better performance compared to RETROICOR. Due to this, we 

Fig. 2. Performance of pulse-related models on fMRI data. (a)-(c) Cross-correlation averaged across subjects for RETROICOR, CPMCA 

and CPMVA, respectively. Colors vary from blue to yellow indicating performance for higher model orders of Fourier series. For all three 

models a unimodal curve was observed with highest mean correlations for lag times between -0.4 and -0.9 s. The optimal lag time in each 

model was consistent across model orders. (d) Mean correlation with respect to model order for optimal lag time of -0.4 s for RETROICOR 

and -0.9 s for the two variants of CPM. All models yielded a maximum mean correlation for a 6th model order. In contrast to the performance 

on the PPG, when examining fMRI data, incorporating the low-frequency fluctuations of PPG-Amp in the input signal was found to harm 

the model fit (i.e.  CPMCA vs CPMVA). (e) Relative percentage (%) improvement with respect to HRV when comparing the proposed model 

CPMCA with RETROICOR. The stronger were the fluctuations in HR the larger was the improvement achieved with CPMCA compared to 

RETROICOR (p<10-11). 
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further tested in the analysis with the PPG as output whether scans with high HRV showed relative improvement 

with CPMCA compared to RETROICOR (for this test 8th order was used with the optimal lag time for each model). 

HRV was defined as the standard deviation of HR. Indeed, when examining the goodness-of-fit on the PPG, scans 

with high HRV were characterized by higher relative improvement (Suppl. Fig. 1b; r=0.32, p<0.001). 335 

Fig. 2a-c shows the cross-correlation averaged across subjects (and across all voxels and scans in each subject) for 

the three models when output target were the fMRI timeseries. As many voxels are not prone to pulse-related 

fluctuations the correlation values averaged across all voxels were relatively low. In all model orders examined, 

RETROICOR exhibited a peak in cross-correlation at lag time of -0.4 s whereas the two CPM models exhibited a 

peak at lag time of -0.9 s (a negative lag time indicates that the PPG signal was shifted backward in time). As such, 340 

Table 1. Comparison of pulse-related models in terms of variance explained in fMRI data 

A/A Model type: Order Lag time: 
Mean correlation 

(SD): 

P-value of 

improvement: 

M1 RETROICOR 2nd 0 s 0.082 (0.019) - 

M2 RETROICOR 2nd -0.4 s 0.085 (0.019) P(M2>M1) < 10-24 

M3 RETROICOR 6th -0.4 s 0.097 (0.023) P(M3>M2) < 10-29 

M4 CPMCA 6th -0.9 s 0.100 (0.023) P(M4>M3) < 10-8 

 

Fig. 3. Correlation maps for pulse-related 

models averaged across all subjects (N=100; 

only scans with left-right PE directions from 

the first sessions were included here). The first 

and second columns show the variance explained 

using RETROICOR and the proposed model 

CPMCA, respectively, while the third column 

shows t-stat maps indicating the areas with 

significant differences in correlation values 

between the two models (p<0.01). The 

correlation threshold value was chosen arbitrarily 

so that only the regions more susceptible to 

cardiac pulsatility are presented. Both 

RETROICOR and CPMCA found regions close to 

the basilar and vertebral arteries, in the 4th 

ventricle, in the superior sagittal sinus, in the 

lateral sulcus and in the occipital lobe to be more 

prone to pulse-related oscillations. However, 

based on the t-stat map, CPMCA explained 

significantly larger fraction of variance than 

RETROICOR in the occipital cortex, the lateral 

sulcus and superior sagittal sinus. The statistical 

maps shown in this figure are available on: 

https://neurovault.org/collections/DHFETQTN/. 
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to ease the comparison between models, Fig. 2d shows the mean correlation for all models along with the associated 

standard error when considering the optimal lag time of each model type. We observe that, in contrast to the analysis 

that had the PPG as target output, the CPMVA yielded poorer performance compared to RETROICOR and CPMCA. 

Moreover, for all three models the highest performance was achieved with a 6th order Fourier series whereas higher 

orders yielded slightly lower mean correlations. 345 

Table 1 summarizes the performance of four specific models in order to illustrate the main steps that can lead to an 

improvement in the variance explained in the fMRI data. Model M1 corresponds to the 2nd order RETROICOR that 

is commonly employed in fMRI studies without considering any lag time whereas model M2 differs in that it 

considers the optimal lag time of RETROICOR (i.e. -0.4 s). Based on a paired t-test, considering a lag time when 

extracting the nuisance regressors led to a significant improvement in the variance explained (p<10-24). Moreover, 350 

employing a 6th instead of a 2nd order Fourier series resulted also in an additional improvement (p<10-29). Finally, 

when optimal model order and lag time were considered, further improvement was achieved when modelling cardiac 

pulsatility using the CPMCA model proposed here rather than RETROICOR (p<10-8). As hypothesized, when 

comparing RETROICOR (6th order and -0.4 s lag time) and CPMCA (6th order and -0.9 s) the higher was the HRV the 

larger was the relative improvement achieved (Fig. 2e; r=0.63; p<10-11). 355 

Fig. 3 shows correlation maps averaged across subjects (only scans with left-right PE direction from the first session 

were included) as obtained with RETROICOR and CPMCA when considering 6th order Fourier series and the optimal 

lag time of each model (i.e. -0.4 s and -0.9 s for RETROICOR and CPMCA, respectively). It also shows t-score maps 

derived with paired t-test indicating brain regions with significant differences in goodness-of-fit between the two 

models. As expected, both RETROICOR and CPMCA explained significant variance in areas with CSF (e.g. areas 360 

around the brainstem, in the 4th ventricle and superior sagittal sinus) as well as in lateral sulcus and occipital cortex. 

CPMCA demonstrated better performance in terms of variance explained, particularly in the occipital cortex, lateral 

sulcus and superior sagittal sinus, while none of the regions illustrated better fit with RETROICOR than with CPMCA. 

In an earlier studied we sought to investigate the role of physiological processes in fMRI connectome-based subject 

discriminability (Xifra-porxas et al., 2020). One of our findings was that the connectome signature driven by cardiac 365 

pulsatility differs between left-right and right-left PE direction (see for example Fig. 5 in Xifra-porxas et al. (2020)). 

To shed light on this phenomenon, here we compared the variance explained with CPMCA for scans with left-right vs 

right-left PE direction including only scans from the first session of each subject. Interestingly, in the third column 

of Fig. 4 that corresponds to t-scores of correlations for left-right vs right-left PE direction we observe antisymmetric 

patterns with respect to the anterior-posterior axis (see specifically the first three rows corresponding to axial slices). 370 

In other words, if for example a region in the left hemisphere was more prone to pulse-related oscillations for left-

right PE direction compared to right-left PE direction, then the contralateral region in the right hemisphere was more 

prone to these oscillations for right-left PE direction. Moreover, we observe that the regions that show this PE 

direction dependence are not necessarily the regions more susceptible to pulse-related oscillations. 

Moreover, we investigated the regional variability of the CPWs. As described in Methods (Section 2.4.2), the beta 375 

parameters associated to the CPM nuisance regressors define the temporal waveforms of the impulse responses used 

in the CPM, referred to here as CPWs (cardiac pulsatility waveforms). Based on the beta parameters estimated with 

the GLM, we inspected the temporal evolution of the CPWs both at the individual (subject) and group (averaged 

across subjects considering only scans with the same PE direction from the first session) level. For this analysis, a 6th 

order CPMCA with a lag time of -0.9 s was considered as the cross-validation analysis presented earlier showed that 380 

this choice of parameters yields the best performance. At the individual level we were not able to observe any clear 

pattern apart from discontinuities in adjacent slices that were likely due to time acquisition differences across slices. 

Note that we did not incorporate any slice-timing correction in our analysis because this is not a trivial task for the 

multi-band fMRI data examined here. However, at the group level (N=100), we were able to see smooth 

spatiotemporal patterns without discontinuities in adjacent slices. Videos showing the temporal evolution of CPWs 385 

in a mid-sagittal plane for left-right and right-left PE direction are available on repository 

https://doi.org/10.6084/m9.figshare.c.4946799 (Kassinopoulos and Mitsis, 2020). In addition, Suppl. Fig. 2 shows 
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the CPWs at five timepoints of a cardiac cycle for the left-right PE direction. Similar dynamics were observed 

between the two PE directions. While some regions demonstrated an increase in the BOLD fMRI signal after the 

onset of a cardiac contraction (e.g. regions in the posterior cingulate cortex) other regions showed the opposite trend 390 

(e.g. third ventricle and regions in the anterior cingulate cortex). Interestingly, the temporal dynamics shown in the 

video revealed patterns that may relate to some fluid movements. Particularly, we observed along the cerebral 

aqueduct that connects the 3rd with the 4th ventricle  two spatial layers with opposite temporal responses that peaked 

at about the middle of the cardiac cycle. 

  395 

Fig. 4. The effect of phase encoding (PE) direction on pulse-related 

fluctuations. The first and second columns show the variance explained 

using CPMCA averaged across all subjects for scans with left-right and 

right-left PE direction, respectively (N=100; only scans from the first 

session were included here). The third column shows t-stat maps 

indicating the areas with significant differences between the two PE 

directions (p<0.01). The correlation threshold value was chosen arbitrarily 

so that only the regions more prone to cardiac pulsatility are presented 

(note that the cross-validation framework was omitted here as we do not 

compare models rather than examining the effect of PE direction, hence 

the higher correlation values compared to Fig. 3). As it can be seen from 

the axial slices, the regions with significant differences between the two 

PE directions were characterized by antisymmetric patterns with respect 

to the anterior-posterior axis. For instance, if a brain area in the left 

hemisphere was more prominent to fluctuations due to cardiac pulsatility 

for a left-right PE direction compared to a right-left PE direction, then the 

homologues area in the opposite hemisphere was more prominent to these 

physiological fluctuations for a right-left PE direction. Furthermore, the 

areas that showed the aforementioned PE direction dependence for pulse-

related fluctuations were not necessarily the areas that were strongly 

affected by these pulse-related fluctuations. The statistical maps shown in 

this figure are available on: 

 https://neurovault.org/collections/DHFETQTN/. 
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3.2 Systemic low-frequency physiological oscillations (SLFOs) 

Fig. 5 presents the results of the cross-correlation analysis that was used to investigate the relation between physiological 

variables (RV, HR and PPG-Amp) and the fMRI GS during resting conditions. Note that cross-correlation is often used 

to estimate the impulse response for a given input and output. However, this strategy is only suitable for input signals 

with zero-mean white noise signal. Since in this work we are dealing with physiological variables that are sluggish, we 400 

use cross-correlation to get a rough idea of whether timeseries share covariance between them, either with the same or 

opposite polarity, and whether there is a significant lag time between them. 

As can be seen in the diagonal of the diagram, all timeseries exhibited a somewhat monotonic decrease in autocorrelation 

for increasing (absolute) lag times with the autocorrelation approximating zero for lag times between 10 and 20 s. This 

trend is expected considering the sluggishness of the examined signals. Looking at the non-diagonal plots we observe 405 

that, despite the low correlation values, all three physiological variables demonstrated interactions between them that 

were consistent across subjects. Increase in breathing activity as quantified with RV was accompanied by concurrent 

increase in HR and decrease in PPG-Amp. However, PPG-Amp, apart from the decrease, exhibited also a positive peak 

Fig. 5. Cross-correlation between physiological variables and fMRI global signal (GS) averaged across subjects (n=100). The value of cross-

correlation between row x and column y at lag time τ indicates the correlation of the corresponding signals when signal of row x is shifted forward 

in time by τ. A way we can interpret the observed curves is as follows: if we consider for example the case of HR and GS, the fact that the maximum 

absolute correlation is at +1.9 s lag time and has a positive correlation indicates that HR maximizes its covariance with the GS when is shifted 

forward in time by 1.9 s (a negative correlation would indicate that HR should be inverted to maximize the covariance). Overall, we observe that 

all physiological signals share covariance with each other as well as with the GS. Note that diagonal plots correspond to autocorrelations (i.e. cross-

correlation of a signal with itself). Shaded areas indicate the standard deviation across subjects. 
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about 13 s after the peak in RV. PPG-Amp showed a similar bimodal trend with respect to HR increases event though 

with different dynamics. Specifically, PPG-Amp demonstrated a negative peak at about 2.5 s after the increase in HR 410 

followed by a positive peak, albeit with a smaller amplitude, at a lag time of 10 s. 

In addition, GS was found to share covariance with all physiological variables. Perhaps not surprisingly, the cross-

correlation of GS with RV and HR somewhat resemble, respectively, the CRF and RRF reported in an earlier study 

(Kassinopoulos and Mitsis, 2019b). As the main trend of the corresponding cross-correlations suggests, an increase in 

RV and HR leads to an increase in the GS followed by a negative undershoot. An opposite trend was observed in the 415 

cross-correlation between PPG-Amp and GS. Specifically, the GS exhibited a strong negative peak at -1 s lag time as 

well as a positive peak at 8 s lag time with respect to the PPG-Amp increase. 

The strong association observed between PPG-Amp and GS in the cross-correlation analysis (Fig. 5) raised the question 

whether considering PPG-Amp variations in addition to RV and HR variations may provide additional information when 

modelling SLFOs in the GS. To address this question, we compared the standard approach for modelling SLFOs (i.e. 420 

considering only HR and RV) with the extended model that accounts also PPG-Amp variations, using a 3-fold cross-

validation framework (for more information see Section 2.5). The cross-validation framework was necessary for this 

comparison due to the larger number of parameters in the extended model. Our results revealed a significant improvement 

in terms of variance explained in the GS when considering PPG-Amp variations. Specifically, the correlation between 

GS and predicted SLFOs exhibited a statistically significant increase from 0.65 (±0.10) to 0.66 (±0.10) when taking into 425 

account PPG-Amp variations (𝑝 < 10−4). 

Suppl. Fig. 3a shows the estimated PRFs averaged across all subjects, namely the cardiac (CRF), PPG-Amp (PARF) and 

respiration (RRF) response functions. Cross-validation was omitted when estimating the PRFs presented in Suppl. Fig. 

3a. To obtain the main trend of PRFs observed across subjects, the estimated PRFs were averaged across scans using 

Fig. 6. Estimated physiological response functions (PRFs) when considering the 5 s shifted PPG-Amp (PA5). (a) PRFs averaged across all 

subjects and scans using weighted average with the correlation between GS and the predicted output of the model (i.e. SLFOs) for each scan as a 

weighted coefficient. (b) Correlation between nuisance regressors (i.e. 𝑋𝑅𝑉 , 𝑋𝐻𝑅 and 𝑋𝑃𝐴) and GS, averaged across all scans. The lower-diagonal 

elements correspond to correlations whereas the upper-diagonal elements correspond to partial correlations. The partial correlations between pairs 

of the three nuisance regressors did not control for GS variations as GS is not considered to affect the three associated physiological variables. 

Note that as in this analysis we do not compare models, the cross-validation framework was omitted. CRF and RRF exhibited a positive peak at 

around 2 s followed by a negative peak at 8 s for CRF and 13-14 s for RRF. PARF was characterized by a negative peak at 4.3 s followed by a 

positive peak at 12.5 s. All PRFs demonstrated a slow decay that approximated zero at around 40 s. While the nuisance regressors demonstrated 

relatively low correlations between them ranging from 0.03 to 0.17, all of them exhibited high correlation with the GS (≥0.39). Similar observations 

were made for the partial correlations. 
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weighted average where the correlation between GS and the associated nuisance regressors (𝑋𝐻𝑅 , 𝑋𝑃𝐴 and 𝑋𝑅𝑉) was used 430 

as the weighted coefficient. Both CRF and RRF exhibited smooth bimodal curves with a positive peak followed by a 

negative peak and agreed in terms of dynamics with the PRFs reported in Kassinopoulos and Mitsis (2019a). In contrast, 

PARF demonstrated a sharp negative peak at 0.2 s followed by a slow positive overshoot. 

The sharp negative peak in the PARF (Suppl. Fig. 3a) combined with the minimum peak observed at negative lag time 

in the cross-correlation between GS and PPG-Amp (Fig. 5) suggested that fluctuations in GS may precede fluctuations 435 

in PPG-Amp. As this may be indeed the case, to examine whether incorporating a time difference in the model could 

lead to further improvement, we also examined the extended model for SLFOs with the timeseries of PPG-Amp shifted 

back in time by 5 and 10 s. Later we refer to the original and the 5 s and 10 s shifted variants of PPG-Amp as PA0, PA5 

and PA10, respectively. Using the cross-validation framework, PA5 was found to yield the highest mean correlation of 

0.67 (±0.09) which was statistically higher than the mean correlation (0.66) achieved with the original timeseries (PA0;  440 

𝑝 < 10−4). Fig. 6a shows the PRFs averaged across subjects when using the PPG-Amp shifted back in time by 5 s (i.e. 

PA5). As we can see, PARF exhibited again a bimodal curve with a negative peak at 4.3 s followed by a positive peak at 

12.5 s. Due to the time shift of PPG-Amp, the negative peak of the PARF was smoother compared to the negative peak 

observed with the original PPG-Amp timeseries (Suppl. Fig. 3a). We also notice that the time shift of PPG-Amp did not 

have any effect on CRF and RRF. Similar to our previous study (Kassinopoulos and Mitsis, 2019b), we observed 445 

variability in the estimated curves across scans for all types of PRFs, with the CRF being the most consistent (the 

estimated PRFs from all scans examined here can be found on https://doi.org/10.6084/m9.figshare.c.4946799 

(Kassinopoulos and Mitsis, 2020). 

Fig. 6b shows the correlation averaged across all scans between the GS and the nuisance regressors extracted with the 

PRFs (𝑋𝑅𝑉, 𝑋𝐻𝑅 and 𝑋𝑃𝐴). As we can see, the nuisance regressors did not show high mean correlations between them. 450 

However, looking at individual scans, we often observe pairs of nuisance regressors (𝑋𝑅𝑉 vs 𝑋𝐻𝑅, 𝑋𝑅𝑉 vs 𝑋𝑃𝐴 and 𝑋𝐻𝑅 

vs 𝑋𝑃𝐴) to be highly correlated.  Moreover, in Fig. 6b we see that all three nuisance regressors were strongly associated 

with the GS, with 𝑋𝑅𝑉 exhibiting the highest mean correlation (0.52) and 𝑋𝑃𝐴 the weakest one (0.39). As the original 

physiological variables exhibited strong interactions between them, we also considered partial correlations to quantify 

the fraction of variance explained on the GS from each physiological variable when controlling for the variance explained 455 

from the other two. Similar observations were made for partial correlation (Fig. 6b). Fig. 7 shows the performance of the 

extended model for a scan where the nuisance regressors extracted from HR, PPG-Amp and RV were very similar and 

also explained fairly well the low-frequency oscillations in the GS. 

While the contribution of PPG-Amp variations on the GS was on average lower compared to the contribution of HR and 

RV variations, several subjects exhibited stronger relation of GS with PPG-Amp than with HR or RV. To shed light on 460 

this subject variability, we examined whether the partial correlation between PPG-Amp and GS depends on the body 

type and blood properties of the participants. Specifically, among the measures collected from participants in HCP, we 

considered the body weight, body mass index, height, systolic and diastolic pressure as well as hematocrit. In addition, 

we considered the HRV (i.e. standard deviation of HR) and standard deviation of RV as estimated from the physiological 

recordings. We chose these measures due to their strong relation to hemodynamic properties such as blood viscosity and 465 

total peripheral resistance in the blood circulation. Among the eight tests performed, at a significance level of 0.05, only 

HRV and hematocrit were strongly associated to the partial correlation between GS and PPG-Amp (Fig. 8). Specifically, 

both HRV and hematocrit exhibited a strong positive relation to the partial correlation between GS and PPG-Amp 

(p<0.001). Based on this observation, we also examined the relation between hematocrit and HRV. However, we did not 

find any relation between them (p=0.67). 470 

Finally, consistent to previous studies, variations in HR and breathing pattern had a strong effect across widespread 

regions in the gray matter (Birn et al., 2006; Kassinopoulos and Mitsis, 2019b; Shmueli et al., 2007). The same regions 

were found to be also strongly associated with variations in PPG-Amp (Suppl. Fig. 4). 
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Fig. 7. Demonstration of the estimated SLFOs in the GS for scan S103818-R2RL. (a), (c) and (e) show, respectively, the traces of HR, PPG-Amp and RV during the scan, whereas (b), (d) and 

(f) show the fit of the nuisance regressors extracted from the physiological variables (orange color) on the GS (blue color). (g) Scan-specific PRFs estimated using the framework proposed in 

Kassinopoulos and Mitsis (2019a). (h) Model fit of predicted output (i.e. SLFOs) on the fMRI GS. For the purposes of visualization, the HR in (a) was smoothed using a moving average filter of 

3 s. For this particular scan, all three nuisance regressors obtained from HR, PPG-Amp and RV explained a large fraction of variance in the GS. The corresponding figures for the remaining of the 

scans can be found on https://doi.org/10.6084/m9.figshare.c.4946799 (Kassinopoulos and Mitsis, 2020). 
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 475 

  

Fig. 8. Scatterplots of the variance explained on the GS with PPG-Amp across subjects with respect to (a) HRV and (b) hematocrit. The 

hematocrit was measured for 87 out of the 100 subjects. For subjects that had two measures of hematocrit, we used the mean value. The variance 

explained on the GS from PPG-Amp was based on the partial correlation of GS with the nuisance regressor 𝑋𝑃𝐴 averaged across the four scans 

of a subject. Similarly, HRV was averaged across scans within a subject. Interestingly, the higher was the HRV or hematocrit of a subject, the 

larger was the fraction of variance in the GS explained with PPG-Amp. 
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4. Discussion 

In this study, we have revisited techniques commonly employed in the fMRI literature for modelling low- and high-

frequency physiological-related fluctuations and proposed refinements and extensions. Furthermore, we sought to answer 

whether the low-frequency (~0.1 Hz) oscillations observed in the PPG recordings, referred to here as PPG-Amp, carry 480 

important information in the context of physiological noise modelling. 

4.1 High-frequency cardiac fluctuations 

With regards to high-frequency oscillations induced by cardiac pulsatility, we considered RETROICOR which is a 

widely used technique proposed by Glover et al. (2000) implemented in various fMRI preprocessing toolboxes such as 

the physiological noise modelling (PNM) toolbox of FSL (Jenkinson et al., 2012) and the PhysIO SPM toolbox  (Kasper 485 

et al., 2017). RETROICOR assumes that the pulse-related oscillations are phase-locked to the cardiac cycles. The cardiac 

cycles are assumed to start and end at time intervals indicated by adjacent peaks in a PPG recording or adjacent R-waves 

in an electrocardiograph (ECG). RETROICOR essentially uses a Fourier series of order M to define a CPW for each 

voxel timeseries which is repeated in each cardiac cycle. Depending on how long the period of a cardiac cycle is the 

CPW is extended or shrinked in time in order to begin and end along with that cycle. 490 

From a systems theory perspective, RETROICOR assumes that the pulse-related oscillations are described by a non-

causal system as it requires knowledge of future input values (i.e. the timing of the following peak in PPG) to estimate 

the output at a specific timepoint. However, as the idea of considering a causal system that depends only on current and 

past input values may sound more physiologically plausible, we examined the feasibility of a convolution model to 

capture pulse-related oscillations in fMRI. As in RETROICOR, a Fourier series was used to construct a CPW for each 495 

voxel. The CPW in the proposed model plays essentially the role of an impulse response function consistent with the 

notion of  hemodynamic response function that has been adopted in the fMRI literature (Boynton et al., 2012). The input 

signal is defined as a train of pulses located at the timings of PPG peaks. Two variants of input signals were considered, 

one with all pulses having equal amplitude (value of one) and a second one where the amplitudes of the pulses matched 

the amplitudes of the PPG peaks. Note that the peaks observed in PPG are slightly delayed with respect to cardiac 500 

contractions due to pulse transit time effects (Allen, 2007). However, this time difference was implicitly accounted for 

when comparing RETROICOR and CPM by considering for each model the time shift that yielded the best performance. 

To compare the performance of the proposed model CPM with RETROICOR, we employed a 3-fold cross-validation 

framework. In addition, we sought to optimize the model order and determine whether incorporating some time shift in 

the PPG recordings can improve the performance in terms of variance explained in the voxel timeseries. Indeed, the time 505 

shifts of -0.4 s for RETROICOR and -0.9 s for CPM were found to significantly increase the variance explained in fMRI 

(Fig. 2a-c, Table 1). In the case of RETROICOR, the time shift of -0.4 s is likely related to the fact that we considered 

the onset of an fMRI volume as the acquisition time for all slices in the volume. In the HCP fMRI data examined here, 

the TR which corresponds to the time interval between volumes was 0.72 s. However, as the slices of an fMRI volume 

were being acquired at different times during this time interval, we could consider that the effective time acquisition of 510 

a volume (i.e. the time that deviates the least from the acquired times of all slices) was the time indicated by the analog 

trigger shifted by half TR forward. If we had accounted for the aforementioned effective time acquisition then the optimal 

time shift needed for RETROICOR would be almost zero. With respect to the half second difference in optimal time 

shift observed between CPM and RETROICOR, this difference may be related to the fact that the basis functions used 

in CPM were slighted altered compared to the basis functions used in RETROICOR (specifically, the cosines were 515 

subtracted by one) so that the CPWs used in the convolution models, by design, started and ended at zero. Note that the 

two models showed a similar difference in optimal time shift when used to model the fluctuations on the PPG timeseries 

itself (Suppl. Fig. 1a).  

Significant improvement in the variance explained was also observed when using higher orders of Fourier series than the 

2nd order typically used in the literature (Fig. 2d, Table 1). Specifically, for both RETROICOR and CPM, the 6th model 520 

order yielded the best goodness-of-fit. Model orders higher than the 6th demonstrated a small decreasing trend suggesting 
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that higher orders may be prone to overfitting and, thus, carry the risk of removing signal of interest. While our results 

demonstrated the superiority of the 6th model order compared to lower order, we acknowledge that the optimal order may 

vary across datasets, and particularly across datasets with different pulse sequence parameters that determine the degrees 

of freedom in the data such as the TR and duration of scan. Furthermore, while we did not examine variability of optimal 525 

order across brain regions, we speculate that the optimal model order may by higher in regions prone to pulse-related 

artifacts such as regions close to large arteries, ventricles and venous sinuses.  

Among the three models examined in this work for pulse-related fMRI fluctuations, the proposed model CPMCA exhibited 

the best performance (Fig. 2). As hypothesized, CPMCA performed better than RETROICOR for subjects with high HRV 

(above ~5 bpm), whereas the performance of the two models was similar for subjects with low HRV. Bear in mind that 530 

RETROICOR and CPMCA differ only in that the former assumes a CPW that is phase-locked to the cardiac cycle whereas 

the latter assumes a CPW of constant duration. Therefore, in the case of a constant HR we would expect the two models 

to perform equally well. 

The rationale for examining the model CPMVA that incorporates the low-frequency fluctuations in the PPG-Amp was to 

examine whether the varying amplitude of cardiac pulses observed in the PPG (i.e. PPG-Amp) is also present in the 535 

BOLD fMRI signal. Compared to RETROICOR and CPMCA, CPMVA explained significantly less variance in the fMRI 

timeseries suggesting that cardiac pulses measured in the brain with fMRI do not have the same amplitude as the pulses 

measured on the finger with PPG. We believe that the differences in amplitude variations observed between fMRI and 

PPG are not due to the different recording sites rather than differences in the physical principles underlying each 

modality. PPG is based on near-infrared spectroscopy (NIRS) whereby a biological tissue is illuminated with near-540 

infrared light from a laser diode and the light detected by a receiver in a nearby site is analyzed in order to provide 

information about the compounds present in the illuminated tissue (Delpy and Cope, 1997; Pellicer and Bravo, 2011; 

Scheeren et al., 2012). Based on the Beer-Lambert law, the attenuation of the light that is measured with PPG depends 

on the concentrations of oxyhemoglobin (HbO) and deoxyhemoglobin (Hb) as well as on their absorption coefficient for 

the wavelength of the incident light. Due to that HbO and Hb are characterized by different absorption spectra, it is very 545 

likely the a single-wavelength PPG shows different sensitivity to changes of HbO compared to Hb. Therefore, the 

variations observed in PPG-Amp may be the result of variations in the relative fractions of HbO and Hb without 

necessarily any changes in the total hemoglobin (i.e. sum of HbO and Hb). On the other hand, while BOLD fMRI is 

considered to reflect changes in Hb it is also very prone to motion artifacts. Therefore, the pulses in fMRI may originate 

mainly from vessel expansion and tissue movement due to the propagating blood pressure waves in the arteries rather 550 

than fluctuations in Hb. If this is indeed the case then we would expect the pulse waveforms to be independent of the 

exact composition of blood (in other words, any fluid with similar viscosity to the blood could lead to the same 

fluctuations) and, therefore, independent of the relative changes in HbO and Hb. Another possible explanation for the 

differences in pulse amplitude between PPG and fMRI is that while in PPG the signal is linearly proportional to the levels 

of HbO and Hb, and subsequently to the total hemoglobin and blood volume, in fMRI the signal may present a non-linear 555 

relation to blood volume changes. Therefore, variations in PPG-Amp due to changes in blood volume may be reflected 

differently in fMRI. 

In an earlier study we demonstrated that cardiac pulsatility induces systematic biases in FC that to some extent depend 

on whether the PE direction is left-right or right-left (Xifra-porxas et al., 2020). Here, we provided evidence that the 

regional sensitivity of fMRI data to cardiac pulsatility depends partly on PE direction (Fig. 4) which may explain why 560 

biases in FC due to cardiac pulsatility have this dependence as well. Note that dependence to PE direction was also 

reported for breathing motion fMRI artifacts by Raj et al. (2001). Based on simulations and experimental data, Raj et al. 

suggested that magnetic susceptibility variations, caused likely by the expansion of lungs, induce variations in the static 

magnetic field within the brain being sampled (Raj et al., 2001, 2000). As a result, the spatial encoding during fMRI 

acquisition is unavoidably affected leading to a shift of the reconstructed image in the PE direction as well as distortion 565 

of voxel timeseries with artifact waveforms that depend on both the phase of the breathing cycle and the location of each 

voxel with respect to the PE direction. In our study, the amplitude of the pulse-related fluctuations varied across voxels 

depending on their location with respect to the PE direction which may suggest that, similar to breathing motion, the 
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mechanism by which pulsatility-induced vessel expansion gives rise to fluctuations in fMRI is partly through local 

variations in static magnetic field. Note though that as vessel expansion causes also fluid and tissue movement, spin-570 

history effects are also thought to be another source of  fluctuations (Caballero-Gaudes and Reynolds, 2017; Murphy et 

al., 2013). 

One can use the proposed model CPMCA to remove fMRI fluctuations due to cardiac pulsatility and facilitate the detection 

of neural-related activity. However, another potential application of this model is to visualize blood flow pulsatility in 

cerebral arteries as well as pulsatility-induced CSF movement. There is accumulating evidence that altered cardiac 575 

pulsatility in the brain is associated with neurodegenerative diseases such as Alzheimer’s disease (Harrison et al., 2018; 

Iliff et al., 2013; Mestre et al., 2018; Schley et al., 2006). As such, there is a growing interest in developing non-invasive 

techniques for measuring intracranial pulsatility. When we examined the CPWs (i.e. waveforms of the pulse-related 

fMRI fluctuations) extracted with CPMCA, we were able, at the group level, to observe patterns that resembled somewhat 

CSF movement, particularly in areas along the cerebral aqueduct  (Suppl. Fig. 2, a video with the temporal dynamics is 580 

available on https://doi.org/10.6084/m9.figshare.c.4946799 (Kassinopoulos and Mitsis, 2020)). This finding suggests 

that CPMCA, combined with a suitably designed fMRI pulse sequence, may be a potential tool for studying the pulsating 

brain. 

4.2 Systemic low-frequency physiological oscillations (SLFOs) 

Using a cross-correlation analysis we showed that the low-frequency fluctuations (~0.1 Hz) of GS were preceded by 585 

changes in physiological variables, namely the RV, HR and PPG-Amp (Fig. 5). In addition, these three physiological 

variables were, to some degree, associated to each other. When we considered convolution models to quantify their 

contributions on the GS, GS was found to share unique variance with each of the three variables with RV being the most 

influential factor and PPG-Amp the weakest one (Fig. 6b). 

The curves of the estimated RRFs and CRFs exhibited significant variability across scans. However, the main trend was 590 

similar to the trend reported in our earlier study (Fig. 6a; Kassinopoulos and Mitsis, 2019). Both CRF and RRF illustrated 

a positive peak at around 2 s followed by a negative peak at 8 s for CRF and 13-14 s for RRF. With regards to the shape 

of the CRF, as has been suggested in our previous study, the abrupt positive peak may reflect the increase in the blood 

flow that accompanies the HR increase whereas the negative peak followed a few seconds later may reflect a regulatory 

feedback mechanism, potentially mediated by a decrease in stroke volume, that aims to bring the blood flow back to its 595 

baseline, despite the changes in HR. On the other hand, the early positive peak in RRF may indicate that an increase in 

breathing activity, either due to increase in breathing rate or breathing volume, leads to an abrupt increase in levels of 

HbO which eventually results to an increase in the BOLD signal. However, increased breathing activity leads also to a 

decline in levels of CO2. And as CO2 is a strong vasodilator, its decrease leads to a somewhat delayed vasoconstriction 

which, in turn, reduces the blood flow and also the BOLD signal. 600 

Inspired by the earlier studies of Birn et al. (2008) and Chang et al. (2009), here we introduced an impulse response 

function, termed photoplethysmographic amplitude response function (PARF), that relates PPG-Amp variations to 

changes in GS. However, an important note with respect to this convolution model is that the PPG-Amp had to be shifted 

backward by 5 s to achieve the best fit on the GS. A negative time-shift for RV and HR would not be considered when 

modelling the SLFOs in the GS as the cardiac and breathing activity are processes thought to drive the fluctuations in 605 

the GS and, therefore, cannot be preceded by it. On the other hand, the PPG signal collected from the participant’s finger, 

as with the BOLD signal, can be seen as a hemodynamic signal whose fluctuations are controlled, among others, by the 

cardiac and breathing activity. Therefore, the -5 s time shift needed for the PPG signal may suggest that the blood pumped 

by the heart to the aorta first arrives at the brain vasculature and then (through a different branch) at the finger. 

The shape of the estimated PARF averaged across all subjects exhibited a somewhat opposite trend compared to CRF 610 

and RRF. Specifically, it presented a negative peak at 4.3 s followed by a positive peak at 12.5 s (Fig. 6a). The shape of 

PARF cannot be easily interpreted as PPG-Amp reflects several processes. Consistent with previous studies (Özbay et 

al., 2019, 2018), PPG-Amp was found to exhibit an almost instantaneous drop when HR increased (Fig. 5) which may 
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be associated to decreased stroke volume. Moreover, PPG-Amp was found in our data to be reduced during inhalation, 

a phenomenon well-documented in the literature that has been attributed to changes in intrathoracic pressure resulting 615 

also in reduced stroke volume (Meredith et al., 2012). In addition, as PPG is sensitive to changes in HbO and Hb, it also 

captures slower effects of cardiac and breathing activity related to changes in blood oxygenation and volume. While 

PARF may be lacking a clear physiological interpretation, the cross-validation analysis conducted in this study revealed 

that the inclusion of PPG-Amp convolved with PARF in the model of SLFOs substantially improves the goodness-of-fit 

on the GS compared to considering only HR and RV. Specifically, in the cross-validation analysis the mean correlation 620 

increased from 0.65 to 0.67 which was found to be statistically significant (p<10-7), while when the model was trained 

and tested on the same dataset the mean correlation increased from 0.73 to 0.76 (p<10-26). 

The contribution of PPG-Amp on the GS illustrated variability across subjects with partial correlation between PPG-

Amp and GS, when controlling for HR and RV, ranging between 0.15 and 0.57. Subjects with higher HRV presented 

stronger relationship between GS and PPG-Amp (Fig. 8a; p<0.001) supporting the notion that PPG-Amp explains 625 

variance on the GS induced partly by HR changes. Furthermore, we observed that the higher was the hematocrit of a 

subject the larger was the contribution of PPG-Amp on the GS (Fig. 8b; p<0.001). Hematocrit which is defined as the 

proportion of red blood cells in the blood is considered as one of the factors determining the amplitude of the PPG signal 

even though its exact effect is still not very clear (Fine, 2014; Jubran, 2015; Ochoa and Ohara, 1980). The strong 

relationship between hematocrit and contribution of PPG-Amp to the GS can be explain as follows: higher levels of 630 

hematocrit lead to stronger weighting of HbO and Hb to the PPG signal compared to other compounds. As a result, PPG 

is more sensitive to changes in oxygenation; hence the increased variance explained in the GS using the amplitude of the 

PPG pulses for subjects with high hematocrit levels. Note that a positive linear relationship has been previously reported 

between the amplitude of task-induced BOLD responses and hematocrit (Gustard et al., 2003; Levin et al., 2001) which 

would suggest that the mean or standard deviation of the GS may differ between subjects with different hematocrit. 635 

However, when we examined the mean and standard deviation in the GS, we did not find any strong association with 

hematocrit (results not shown). 

The capability of PPG-Amp to remove SLFOs from fMRI data was first demonstrated by Van Houdt et al. (2010) who 

showed that removing these fluctuations facilitates the detection of the epileptogenic zone in epileptic patients. Van 

Houdt et al. reported a low negative correlation between RVT (a measure of breathing activity similar to the measure 640 

RV used here) with PPG-Amp (-0.08±0.09) even though the two variables yielded similar spatial maps with regions 

associated to variations to RVT and PPG-Amp. While we also found similar low values in the cross-correlation analysis, 

the trends were consistent across subjects (Fig. 5). Importantly, consistent with Van Houdt et al. (2010), we found that 

the group-level correlation maps with areas associated to HR, RV and PPG-Amp exhibited same spatial patterns 

(Kassinopoulos and Mitsis, 2019;  Suppl. Fig. 4). This may not be surprisingly as we expect physiological processes to 645 

affect areas close to the vasculature, and particularly close to draining veins, such as in the occipital cortex, where the 

concentration of Hb varies the most. That said, the three variables seem to consist of shared but also unique variance, 

hence the increased variance explained when considering all variables in the analysis. 

A main difference between the analysis employed here and the analysis in Van Houdt et al. (2010) is that we accounted 

for the dynamics for the effects of physiological processes on fMRI data using convolutional models and basis expansion 650 

techniques. By doing so, we ensured the plausibility of the estimated PRFs while also keeping the flexibility of the model 

low. In contrast, Van Houdt et al. (2010) considered 10 lagged versions of the PPG-Amp in the GLM to account for the 

underlying dynamics. This multi-lagged approach reduces degrees of freedom in the data, particularly in the frequency 

range where we expect neuronal-related activity (Bright et al., 2017) and, therefore, is prone to removing signal of 

interest. On a related note, in an earlier study we found that there was no benefit in allowing variability in the shape of 655 

the PRFs across voxels (Kassinopoulos and Mitsis, 2019b). This finding suggests that one can reduce the potential of 

removing signal of interest by modeling the SLFOs in the GS and, subsequently, use the model fit as a nuisance regressor 

for denoising of the fMRI timeseries as done in  (Kassinopoulos and Mitsis, 2019a; Xifra-porxas et al., 2020).  

The results of this study were inconsistent with two recent studies from Özbay et al. (2019, 2018) that investigated the 

role of PPG-Amp in fMRI during sleep. While our data showed a significant negative (cross-)correlation between GS 660 
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and PPG-Amp at -1 s lag time and a positive correlation at 8 s (Fig. 5), Özbay et al. (2019, 2018) found only a positive 

correlation at about 5-6 s. Moreover, in our data, regions in GM exhibited a negative correlation with PPG-Amp at zero 

lag and only a few regions in the CSF around the brainstem presented positive correlations, albeit with very low values 

(Suppl. Fig. 4). In contrast, Özbay et al. (2019, 2018) reported positive correlations in GM and negative correlations in 

WM. While we find these results puzzling, the inconsistency between the two studies may be somehow explained by the 665 

fact that the PPG signal is driven by several physiological processes (e.g. HRV) which in turn exhibit different trends 

across stages of sleep and wakefulness (Elsenbruch et al., 1999). As the role of PPG-Amp in fMRI has been somewhat 

neglected in the literature, further research is needed in order to shed light on the mechanisms that may determine the 

relation between PPG-Amp and GS and how this relation may vary between stages of sleep and wakefulness. 

In this study, we have thoroughly studied the pulsatile component of PPG as well as the variations in its amplitude. This 670 

component, referred to in the NIRS literature as AC component, is commonly used to obtain measurements of HR and 

breathing rate (Charlton et al., 2018). However, another important component of the PPG that is not well-documented in 

the fMRI literature is the variable DC baseline of the PPG signal appeared at frequencies below 0.2 Hz. As a matter of 

fact, this DC component is typically removed from the MRI pulse oximeters using a high-pass filter to facilitate the 

visualization of cardiac pulses (this is also likely the case with the PPG signals in HCP as they are lacking low-frequency 675 

content). Pulse oximeters considering the full spectrum of the PPG signal and that also illuminate at more than one 

wavelengths can provide additional physiological variables compared to single-wavelength PPG signals, such as 

variations in relative changes of HbO and Hb, as well as oxygen saturation (Delpy and Cope, 1997). Due to these 

properties, the DC baseline in PPG is of great importance in clinical cardiovascular monitoring (Jubran, 2015). Note also 

that the two-wavelength PPG signal is the fundamental signal exploited in functional NIRS (fNIRS) for the study of 680 

brain activity (Tachtsidis and Scholkmann, 2016). 

Although fMRI studies do not typically consider the low-frequency (<0.2 Hz) fluctuations of PPG, its potential in 

physiological noise correction was demonstrated a while ago by Tong and Frederick (2010). Specifically, Tong and 

Frederick (2010) demonstrated that the low-frequency fluctuations in HbO and Hb, obtained from peripheral NIRS, 

explained a significant variance in fMRI while in a subsequent study they provided evidence that the variables HbO and 685 

Hb explained significantly higher variance compared to nuisance regressors related to HR and breathing patterns (Hocke 

et al., 2016). As the authors stated, this result may not be surprising as HbO and Hb measured with NIRS are factors 

directly related to the BOLD signal. While the levels of HbO and Hb measured from the finger are affected by cardiac 

and breathing activity they are also affected by other processes such as fluctuations in blood pressure and activity of 

autonomic nervous system that are non-trivial to be measured, especially in the MR environment. Therefore, 690 

measurements from peripheral NIRS are in principle able to account for several factors apart from HR and breathing 

pattern variations. With regards to our results, it is very likely that the unique variance explained by PPG-Amp in the GS 

could also be captured, if not even better, with the low-frequency fluctuations in NIRS. However, in case that only the 

PPG is available then the PPG-Amp could be considered in addition to the effects of HR and breathing pattern. 

5. Conclusion 695 

Here, we examined noise correction techniques that utilize the PPG signal in order to account for low- and high-frequency 

physiological fluctuations in fMRI. The CPMCA model was proposed as a physiologically plausible refinement of the 

commonly used technique RETROICOR. CPMCA employs a convolution framework in a similar manner neural-induced 

BOLD responses are typically modelled in the fMRI literature (i.e. through convolution with the hemodynamic response 

function). As initially hypothesized, CPMCA performed equally well with RETROICOR for subjects with relatively stable 700 

HR and outperformed the latter for subjects with high variability in HR. The variations in PPG-Amp (i.e. pulse amplitude 

observed in the PPG) did not seem to covary with the amplitude in the fMRI pulse-related fluctuations. However, PPG-

Amp was found to explain a significant amount of variance in SLFOs present in the GS, in addition to variance explained 

by fluctuations in HR and breathing patterns. Overall, the pulsatile component of the PPG signal explained a large 

fraction of variance in fMRI related to both low- and high-frequency physiological fluctuations. Scripts for the techniques 705 

proposed here are available on git repository https://github.com/mkassinopoulos/Noise_modeling_based_on_PPG.  
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Suppl. Fig. 2. Cardiac pulsatility waveforms (CPWs) averaged across all subjects (N=100; only scans with left-right PE direction from 

the first session were included). Several areas such as the 3rd ventricle and the cerebral aqueduct as well as areas in the anterior and posterior 

cortex exhibited similar CPWs across subjects. A video presenting these waveforms induced by cardiac pulsatility in BOLD fMRI can be found 

on https://doi.org/10.6084/m9.figshare.c.4946799 (Kassinopoulos and Mitsis, 2020). Intriguingly, these CPWs reconstructed with CPMCA 

revealed different dynamics across regions which may be related in some way to fluid movements. 

Suppl. Fig. 1. Performance of pulse-related models with respect to variance explained in the PPG. (a) Cross-correlation averaged across 

subjects for RETROICOR, CPMCA and CPMVA. CPMVA exhibited significantly better performance compared to the other two models as it 

accounted for the low-frequency fluctuations of PPG. Note that while RETROICOR and CPMCA exhibited similar maximum mean cross-

correlation, the peak of the latter was broader (~0.5 s) compared to the peak of the former (~0.1 s). (b) Relative percentage (%) improvement 

with respect to HRV when comparing the proposed model CPMCA with RETROICOR. The stronger were the HR variations within a scan the 

larger was the improvement achieved with CPMCA compared to RETROICOR (p<0.001). The comparison was performed between these two 

models as these models exhibited better performance than RETROICOR when considering the variance explained in the fMRI data (Fig. 3). 
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Suppl. Fig. 3. Estimated physiological response functions (PRFs) when considering the original PPG-Amp (PA0). (a) PRFs averaged across 

all subjects and scans using weighted average with the correlation between GS and the predicted output of the model (i.e. SLFOs) for each scan 

as a weighted coefficient. (b) Correlation between nuisance regressors (i.e. 𝑋𝑅𝑉 , 𝑋𝐻𝑅 and 𝑋𝑃𝐴) and GS, averaged across all scans. The lower-

diagonal elements correspond to correlations whereas the upper-diagonal elements correspond to partial correlations. The partial correlations 

between pairs of the three nuisance regressors did not control for GS variations as GS is not considered to affect the three associated physiological 

variables. Note that as in this analysis we do not compare models, the cross-validation framework was omitted. CRF and RRF exhibited a positive 

peak at around 2 s followed by a negative peak at 8 s for CRF and 13-14 s for RRF. PARF was characterized by a negative peak at 0.2 s followed 

by a positive peak at 6.5 s. All PRFs demonstrated a slow decay that approximated zero at around 40 s. While the nuisance regressors demonstrated 

relatively low correlations between them ranging from 0.03 to 0.15, all of them exhibited high correlation with the GS (≥0.36). Similar 

observations were made for the partial correlations. 
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Suppl. Fig. 4. Contribution of PPG-Amp variations in fMRI 

averaged across all subjects. (1st column) Correlation maps related 

to the original PPG-Amp variable. (2nd column) Correlation maps 

related to the nuisance regressor 𝑋𝑃𝐴 extracted by shifting the PPG-

Amp back in time by 5 s and convolving it with the PARF. The 

correlation maps were estimated on fMRI data corrected for head and 

breathing motion as well as cardiac pulsatility (6th order of CPM). 

We observe that both the original PPG-Amp variable and its 

associated nuisance regressor explained variance in widespread 

regions across GM. However, as we can see, in the case of the 

nuisance regressor, the correlation values were significantly higher. 
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