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Abstract

moderate computational power and execution time.

One of the aims of mathematical modeling is to understand and simulate the effects of biological perturbations
and suggest ways to intervene and reestablish proper cell functioning. However, it remains a challenge,
especially when considering the dynamics at the level of a cell population, with cells dying, dividing and
interacting. Here, we introduce a novel framework for the dynamical modelling of cell populations packaged
into a dedicated tool, UPMaBoSS. We rely on the preexisting tool MaBoSS, which enables probabilistic
simulations of cellular networks, and add a novel layer to account for cell interactions and population
dynamics. We illustrate our methodology by means of a case study dealing with TNF-induced cell death.
Interestingly, the simulation of cell population dynamics with UPMaBoSS reveals a mechanism of resistance
triggered by TNF treatment. This appoach can be applied to diverse models of cellular networks, for example
to study the impact of ligand release or drug treatments on cell fate decisions, such as commitment to
proliferation, differentiation, apoptosis, etc. Relatively easy to encode, UPMaBoSS simulations require only

To ease the reproduction of simulations, we provide several Jupyter notebooks that can be accessed within a
new release of the CoLoMoTo Docker image, which contains all required software and the example models.
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Introduction

Signaling pathways are organized in complex net-
works encompassing numerous cross-talks and feed-
backs. Hence, the deregulation of one specific path-
way often leads to non-intuitive effects. Mathematical
modeling of such complex and intricate networks can
help to understand and predict experimental results
[1, 2, 3, 4, 5]. The choice of the mathematical formal-
ism is made on the basis of the biological question, and
the available data [6], and the nodes contained in the
network correspond to genes or proteins whose activ-
ity shows an impact on the altered pathways and the
biological responses [1].

It is well known that the micro-environment plays
a key role in many pathologies, including cancer [7]
and auto-immune diseases [8]. Hence, it is important
to explore the dynamics of each cell type taking into
account their micro-environment: how each cell type
replicates, dies, and interacts with other cells. This
requires a proper computational description of hetero-
geneous interacting cell populations.
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To date, most existing mathematical models focus
on the description of signaling networks at the level
of individual cells. These networks are often depicted
as wiring diagrams (or graphs), which describe the in-
teractions and influences between genes and proteins
inside the cells or in response to external cues (inputs
of the network). However, the fate of individual cells
will impact the fate of the population. It is thus im-
portant to consider cells dying, cells dividing and cells
interacting or differentiating to fully understand the
population dynamics.

Some modeling approaches have tackled this issue
using an agent-based formalism: each agent corre-
sponds to a cell, whose activity depends on that of
its neighbors [9, 10] (i.e., CellSys [11], PhysiCell [12]
). Attempts to explicitly include regulatory networks
into these agents [13] have shown that this can eas-
ily become computationally costly or would increase
considerably the number of parameters to tune (e.g.,
PhysiBoSS [14]). Other applications rely on cellular
automata, e.g., Epilog [15], or yet on the Potts model,
which can be also considered as an agent-based ap-
proach [16]. Finally, some works (e.g., BooleanNet [17],
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or [18]) apply stochastic and probabilistic simulations
but on non-interacting populations of cells.

All these different methodologies have their own ap-
plications, e.g. CellSys, PhysiCell and PhysiBoSS for
tumor growth, Epilog for spatial patterning, Potts
models for vascularisation and angiogenesis [19], and
are very promising to explore the effects of pertur-
bations at the level of individual cells and understand
how these perturbations impact cell populations. They
constitute a first step towards the use of multi-scale
modeling for clinical applications [20, 21].

Here, we present a modeling framework that con-
sists of gathering all pathways in a single and unique
model, even if they belong to different cell types, us-
ing a Boolean formalism. Throughout the article, we
will refer to this idea with the term ” MetaCell dynam-
ics”, which cannot be considered as an agent-based
model. The software tool UPMaBoSS (Update Popu-
lation MaBoSS) was created to simulate the popula-
tion dynamics of different interacting cell types keep-
ing track of the individual gene/protein activity. UP-
MaBoSS uses MaBoSS grammar as a basis for the up-
date of the Boolean values [22, 23].

The idea behind the ”MetaCell dynamics” is to con-
sider the whole micro-environment as a unique ”cell”,
or a meta-cell, which includes all the different cell types
present in the population. It relies on a qualitative
model of intra-cellular signaling networks built in Ma-
BoSS (more details below), which enables probabilistic
simulations of cellular models. UPMaBoSS alternates
the simulation of intra-cellular models with regular up-
dates of estimates of cell population size and environ-
mental signals. These updates are based on the values
of key network nodes (e.g., receptors and ligands) and
processes accounting for cell division, cell death, and
cell-cell interactions. The MetaCell dynamics can be
considered as an heterogeneous cell population, with
different cell types, or cells in different states. The ex-
tension of pathway model(s) constructed in MaBoSS
is easy, and the computational cost is only slightly
larger than for MaBoSS original model(s). UPMaBoSS
enables the description of complex cellular networks
encompassing relatively large numbers of components
(up to a few hundreds).

UPMaBoSS can be used for any biological questions
that involve interactions between cell types. We antic-
ipate that the framework could be applicable to new
technologies such as single cell or CRISPR/Cas9 data.
For single cell data, the parameters could be adjusted
to the proportions of some cell types observed in dif-
ferent experimental conditions, or the increasing or
decreasing probabilities of proliferating or dying cells
could be verified for the CRISPR/Cas9 results.

We illustrate here our modeling scheme with a toy
model and a case study dealing with the effect of TNF
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(Tumor Necrosis Factor) on cell fate decision following
death receptor engagement.

To allow reproducibility of the results, we provide
several notebooks as supplemental materials, with ex-
amples of models in MaBoSS language or in standard
format such as SBML-Qual [24]. For the latter, the
models need to be adapted to account for cell death
and division, as well as for cell-cell interactions.

Materials and methods

Boolean logic

A network describing the interaction within an indi-
vidual cell can be defined as an activity flow in SBGN
standard (Systems Biology Graphical Notation [25])
and can be referred to as a regulatory graph or an
influence network. In such networks, nodes represent
molecular entities (genes, proteins, complexes) or pro-
cesses, while edges denote the influence of source nodes
onto target nodes. Any component of this cellular
network can further influence the micro-environment
by releasing signals (output nodes), while the micro-
environment is sensed via receptors (input nodes). Our
modeling scheme is based on Boolean networks which
consist in discrete sets of Boolean variables: each vari-
able (corresponding to the node of the network) has
a Boolean state; a metwork state is, by definition, a
Boolean vector representing the Boolean state of each
node.

MaBoSS description

Our modeling scheme relies on the previous develop-
ment of MaBoSS [22, 23]. MaBoSS is a C++ software
enabling the simulation of continuous/discrete time
Markov processes, applied on a Boolean network. More
precisely, a MaBoSS model is a set dynamical rules
defining the requirements and the rates of each target
node transition depending on the status of the source
nodes. MaBoSS algorithm considers network states,
i.e., Boolean vectors representing the Boolean state of
each node, and applies a probabilistic scheme to this
set of network states. In addition to the set of dy-
namical rules, a MaBoSS simulation requires an initial
condition (an initial probability distribution over net-
work states) and constructs a continuous time Markov
chain. In practice, from an initial probability distri-
bution, MaBoSS estimates the time-dependent prob-
abilities of network states. These trajectories can be
interpreted as a non-interacting desynchronized homo-
geneous cell population of a unique cell type, which en-
tails important limitations when trying to describe the
tumor micro-environment and the response to treat-
ments. In practice, running MaBoSS requires two text
files: 1) a file containing the description of the Boolean
model of the cellular network to simulate (with a bnd
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extension, for boolean network description); 2) a file
containing the parameters of the simulation (with a
cfg extension, for configuration), including the specifi-
cation of the initial state.

MaBoSS generates text files recapitulating simula-
tion results, such as a list of fixed points, trajectories,
time evolution of model state probabilities and sta-
tionary distributions (for more details, we refer the
reader to the reference card of MaBoSS available at
https://maboss.curie.fr).

UPMaBoSS

In a simulation of a MaBoSS model, cells do not
communicate, and at the end of the simulation, the
cells can reach a "division” state (e.g., with a marker
for proliferation ON) or a "dying” state (e.g., with a
marker for apoptosis ON). To implement cell division
and death explicitly in the simulations, we built UP-
MaBoSS that allows interactions between cells through
the environment (with ligand-receptor interactions),
and that can remove cells that are dying and double
cells that are dividing. To encode this information, a
new text file (with extension upp needs to be created
and the MaBoSS files (bnd and cfg) need to be modi-
fied accordingly.

New nodes accounting for division and death are in-
cluded in the MaBoSS bnd file and declared in the
upp file. The status of the receptors depends on that
of the environment. The receptors, initially considered
as inputs of the MaBoSS model, inform on the micro-
environment status and are updated according to Ma-
BoSS external variables, whose update rule is given in
the upp file and its initial value is given in the cfq file.

In MaBoSS, an external variable is, by definition, a
variable that can be controlled externally and whose
value is defined in cfy file. It is represented by a name
starting with a $, and can be used anywhere in a tran-
sition rate formula (corresponding to the condition al-
lowing the update of a node). In practice, receptor
activation and/or inhibition rule(s) contain MaBoSS
external variables defined in the cfy file; these exter-
nal variables are updated by a specific formula that
contains ligand probabilities, specified in the upp file.
To summarize, two new nodes are added to account
for death and division of cells, and the receptors are
dynamically defined and are dependent on the avail-
ability of ligands in the environment. The initial con-
dition ,i.e., the initial probability distribution over the
network states, is set up in the cfy file.

The population size is initially set to the arbitrary
value 1. A MaBoSS simulation is run for a time length
defined by the parameter max_time in the cfyg file. At
the end of the first run, network state probabilities are
updated: a) if the network state has the active death
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node, its probability is set to 0; b) if the network state
has the active division node, its probability is doubled.
These updated probabilities are re-scaled so that the
sum of all network state probabilities remains equal
to 1, and the population size is updated accordingly.
These updated and re-scaled probabilities define a new
probability distribution, used to update the external
variables accounting for ligand-receptor interactions.
This new probability distribution is injected as the ini-
tial condition for the next run (Figure 1). The process
is repeated n times, where n is the number of steps
defined in the upp file. A detailed description of the
algorithm is provided in the supplementary material.

Usage

UPMaBoSS is an executable file than can be run
in a unix environment in which MaBoSS is ac-
cessible. A Python package (integrated in ”pyma-

boss”) has been developed and is available within
the CoLoMoTo interactive notebook. [26, 27]. In
practice, there are four ways to simulate a popula-
tion model dynamics using UPMaBoSS: (1) using a
Docker image, which necessitates to install Docker
locally; (2) creating a conda environment and then
using a jupyter notebook or launching UPMaBoSS
directly with a command line; (3) running the note-
books directly in the browser via binder (instructions
are in the GitHub of UPMaBoSS, see below); and
(4) using MaBoSS 2.0 environment (UPMaBoSS be-
longs to the tools in MaBoSS package that can be
downloaded at https://maboss.curie.fr/UPMaBoSS).
All details and commands are provided in the sup-
plementary material and in the GitHub repository:
https://github.com/sysbio-curie/ UPMaBoSS-docker.

Results
Definition of a MetaCell
A model is a set of variables (one for each of the nodes
of the regulatory network describing the interactions
between genes, proteins or complexes) and the value
of each of these variables is controlled by a logical rule.
In the MetaCell (a model "beyond” a simple cell
model), as we define it, we consider that all signal-
ing pathways of interest are gathered in a unique cell
model, thus possibly mixing different cell types, which
considers that, all pathway components are potentially
present in each cell. The MetaCell idea consists in rep-
resenting different cell states as different configurations
of values of these components. The biological focus of
a model of the MetaCell is to describe the interactions
between signaling pathways that lead to the activation
of markers of proliferation (e.g., transcription factors
of the cell cycle as E2F1, E2F3 or the cyclin/CDK
complexes), apoptosis (e.g., pb3 or the caspases), or
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other phenotypes such as senescence (e.g., p16), angio-
genesis (e.g., VEGF). In particular, MetaCell model-
ing can reveal how perturbations of a normal condition
may affect the activity of these markers, knowing that
the activation of the signaling pathways inside a cell
may depend on the micro-environment and the status
of its neighbors.

The advantage of this framework is that it can model
different interpretations of the impact of the micro-
environment on individual cell fates and on the pop-
ulation dynamics. This can be exemplified by the two
following different points of view. The first one hypoth-
esizes that all cell types are already known, that the
cells have already differentiated. In this case, we sim-
ply merge the cell types into a model of a MetaCell
(Figure 2, A). The second point of view is that we can
consider undifferentiated cells with all possible signal-
ing pathways inside each cell. As the cells differentiate,
some will activate some pathways, other will activate
other pathways (Figure 2, B).

To allow some flexibility in the simulation of different
cell conditions, we suggest to add a node that represent
the cell type and that will allow the components of
this cell type to be active or not in a simulation. For
the first point of view (Figure 2, A), these nodes are
static variables, for the second point of view (Figure
2, B), they are dynamical variables. For instance, if
in a MetaCell, T cells and tumor cells are included,
we can add two nodes T_cell and Tumor linked to all
components of the pathways of the corresponding cell
type. If one simulation represents the fate of a cell
type, both cell types cannot be initially set to 1 at the
same time. The population will be a mixture of T cells
and of tumor cells. But, both cell types will be able
to communicate, die or divide. Of course, a MetaCell
can mix these two points of view: some cell types may
change over time and other may not.

One difficulty may arise when pathways that are
gathered inside a MetaCell have common parts. This
situation could not be solved by an automatic algo-
rithm, because biological knowledge should be used
for fusing pathways: if two pathways have common
nodes that are, in fact, different entities, these com-
mon nodes need to be renamed; if the common nodes
are indeed the same entities, dynamical rules that up-
date these nodes should be modified accordingly. See
below (”The dynamics of a MetaCell in UPMaBoSS”)
for some hints.

The dynamics of a MetaCell in UPMaBoSS

The UPMaBoSS (for Update Population MaBoSS)
framework enables the exploration of the dynamics
of a MetaCell and produces time-dependent probabil-
ities of states for each cell type, together with time-
dependent population size, allowing an interpretation
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of the dynamics at the level of the cell population,
considering that:

(ND of cells in state S) = (Nb of cells) x (Probability of S)

UPMaBoSS is a modified and extended version of
MaBoSS software [22, 23]. In the model definition, two
nodes are added: one node accounting for cell divi-
sion, and another one for cell death. The pathways
in the MetaCell are described in MaBoSS framework
according to the following rules: each node of the net-
work represents a gene, protein, complex, phenotype
or cell type; the nodes can only have one Boolean
value; every MetaCell state is represented by a set of
Boolean values associated with the set of nodes (in-
cluding the division node, the death node, the ligand
and the receptors, cell type nodes); the logical con-
nections between nodes are described by two transi-
tion rates (activation/inhibition) associated with ev-
ery node, formulated in the language of MaBoSS; for
autocrine/paracrine loops, the rates associated with
the update of the state of the receptors should contain
term(s) that depend on the MetaCell state probabili-
ties. The setting of initial conditions is the same as for
MaBoSS. As described above, all pathways are gath-
ered in a single model.

If pathways share common nodes, biological knowl-
edge should be used to do this fusion correctly: a) if
the common nodes are different entities, they should
be renamed properly; b) if the common nodes are
activated/inhibited in different situation correspond-
ing to different differentiated cell types, the respec-
tive rates of transitions should be linked to the re-
spective cell type node and fused into a single rule
(eg rate_up = (NodeTypeA?ValueAInTypeA : 0) +
(NodeTypeB?ValuelntypeB : 0)); c) if the common
nodes do not belong to the two cases above (e.g., cell
types in the process of differentiation), the rates of
transition should be combined in a more complicated
manner, based on the biological knowledge, using the
flexibility of MaBoSS language for transition rates.

The outputs obtained with UPMaBoSS include time-
dependent relative population sizes (that are compared
to the population size at t = 0), MetaCell state prob-
abilities including the status of death, division, cell
types (Figure 3).

UPMaBoSS launches several consecutive MaBoSS
runs (defined by the user). At the end of each run,
the population is updated synchronously: new model
states are produced according to the parameters influ-
encing the population status (death, division, receptor
activity), setting a new initial condition for the next
MaBoSS run (see Material and Methods).
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To properly simulate the population dynamics, there
are important parameters to define, which can be sep-
arated into two families: the ones that have a biological
interpretation and the ones that are used for the sim-
ulations.

The first family of parameters include the rates
of activation or inactivation of a wvariable, which
can be derived from experiments. They can corre-
spond to the time necessary to achieve transcrip-
tion, (de)phosphorylation, synthesis or degradation,
when the information is available. The transition rates
can also be separated into fast or slow variables. If
the information is not known, the default value 1.0
is used. Other parameters can account for the ini-
tial conditions or the length of the experiment (to-
tal time of simulation is reached when (total time) =
(number of steps) x (length of MaBoSS run)).

The second family of parameters informs on the
number of trajectories to include in the computation,
or the length of one MaBoSS run (to ensure, in some
cases, that transitory behaviors are observable, see an
example below).

An exhaustive list of these parameters is provided in
supplementary material, including default values and
hints for choosing the values of these parameters. In
some cases, a sensitivity analysis might be helpful to
search for the appropriate range of parameter values.
An example of varying the length of one MaBoSS run
maz_time) and its impact on the expected results is
studied in a dedicated python notebook (supplemen-
tary material).

Case studies

We illustrate the use of UPMaBoSS with two exam-
ples, the first one is a toy model of cell-cell interactions,
and the second one is based on a published model of
cell fate decision process in response to death receptor
activation [28].

Toy model

As a first application, we present a toy model to high-
light that different dynamics can be obtained if either
a unique cell or a MetaCell are considered. The model
illustrates a differentiation process into two cell types,
T1 and T2. The differentiation is initiated by a trigger
T. A part of the signal goes through a ligand L that ac-
tivates the receptor R. A single model to simulate both
cases is defined and shows the results of the simulation
first when considering a unique cell (or a population
of independent cells), and then taking into account
the status of the population with cell-cell interaction
(ligand to receptor). The MaBoSS external variable
$innerOn is used to distinguish between the two cases:
in the case of the unique cell when $innerOn =1, R
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can be activated by L directly inside the cell; in the
case of the MetaCell, when $innerOn = 0, R activa-
tion rate is proportional to the probability of active L,
through the update function of $outerL described in
the upp file (Figure 4A).

When the unique cell is considered, T2 cell pheno-
types can never be reached because A is always present
when R is active and thus, inhibits T2 (Figure 4B, up-
per panel). When the population model is considered,
R is updated according to the population state of L;
consequently, R can be activated in some cells that do
not have active A, producing the differentiation in T2
cell type with a non-zero probability (Figure 4B, lower
panel).

A jupyter notebook is provided for this example and
shows not only the UPMaBoSS model with the three
files but also a way to build a population model from
a standard model format (here a bnet format[29]).

TNF treatment

This case study illustrates how a cell population re-
sponds to different protocols of a drug treatment. For
that, the model needs to encompass pathways regard-
ing cell proliferation and death, because these pheno-
types act directly on the cell population size.

Description of the cell fate decision model

We focus here on a model initially built to under-
stand how cell death receptors engagement can lead
to three different cell phenotypes: survival with the
activation of NFxB pathway, necrosis, and apoptosis
with the cleavage of caspase 3 [28]. The original anal-
ysis explored which components contribute to each
phenotype, as well as the interplay between the three
pathways. In particular, the three pathways exhibit
mutual inhibitions, thereby ensuring that the corre-
sponding cell fates occur exclusively from each other.
A slightly modified version of the model is available
on the MaBoSS web page (https://maboss.curie.
fr) and on the GINsim repository (http://ginsim.
org/sites/default/files/CellFate_multiscale.

zginml), with the parameter choices described in the
supplementary material.

In the present study, we aim at completing this anal-
ysis by considering the impact of the timing and dura-
tion of TNF treatments. For this analysis, the model
was extended by adding a feedback from NFxB path-
way to TNFa (Figure 5, A). Indeed, it has been showed
that TNFa is a target of NFxB, and that constitu-
tive activation of NFkB leads to systemic inflamma-
tion through TNF« activation ([30], and in primary
macrophages [31, 32, 33]). We further decided to focus
on the role of TNFa and thus kept Fas OFF for all our
simulations.
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We explored the effect of sequential treatments of
TNFa at a cell population level. Interestingly, several
studies showed that prolonged treatments of low doses
of TNF lead to resistance in prostate patients [34], and
that TNF exhibits a dual role in tumor progression: at
low doses, it triggers angiogenesis [35], whereas at high
doses, it induces cell death, mainly through necrotic
effects [36].

Biological questions

We simulated the model for a period corresponding to
48h of cell culture (unit time set to one hour). Ex-
perimentally, there is no consensus for time duration
of TNF effect in wvitro; nevertheless, some effects need
more that 24 hours to appear [37], which justifies the
choice of 48 hours. This is confirmed by the simulations
within MaBoSS and UPMaBoSS below (Figure 5) be-
cause stability is reached after 48 hours. For transient
activation of TNF, we considered a TNF half-life of
4 hours (degradation rate of 1/4). As TNF degrada-
tion rate varies extensively depending on experimental
conditions, we select four hours as a reasonably small
interval within 48h.

This simulation is particularly important to define
the time step for each MaBoSS run when using UPMa-
BoSS. Indeed, the chosen time window (i.e., max_time)
must be such that the population is in a transient
state. The MaBoSS run indicates that the best value
for the parameter max_time needs to be set to 1 hour
(just before the peak of activation of (Figure 5, B). To
simulate the population dynamics, we thus proceed to
compute 48 MaBoSS runs with max_time equal to 1 for
each run. We explored the effect of choosing a different
value in the supplementary material (jupyter notebook
TimeStep Dependency.ipynb).

During the MaBoSS simulation, we noticed that non-
apoptotic cell death first decreases before increasing
to reach a steady state solution after t = 15. This dy-
namics is due to the activity of ATP, itself dependent
of that of RIP1. RIP1 increases until CASPS8 is acti-
vated and able to inhibit it. It takes longer to activate
CASP8 than RIP1. This behaviour is typical of inco-
herent feedforward loops [38].

For this biological application, we focused on two
questions:

1  What is the effect of the feedback from NFxB to
TNFa at the population level when treated by a
transient activation of TNFa?

2 What is the effect of TNFa sequential treatments
on the population dynamics?

Two model variants were thus considered: with and
without the NFkappaB — TNF paracrine loop, with a
transient TNF treatment (Figure 5, C). For the model
with the paracrine loop, we further studied the follow-
ing scenarios (Figure 6) where cells are treated with:
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(a) a transient TNF treatment at time 0, followed by a
constitutive TNF treatment at 48 hours (”Pulse TNEF”
+ ?TNF”); (b) no TNF treatment at time 0, followed
by a constitutive TNF treatment at 48 hours ("No
Pulse TNF” + ?TNF”); (c) a transient TNF treat-
ment at time 0, followed by no TNF treatment at 48
hours ("Pulse TNF” 4+ ”"No TNF”); and (d) no TNF
treatment at time 0, followed by no TNF treatment at
48 hours ("No Pulse TNF” + ?No TNF”).

TNF treatments in wild type conditions

Simulations of the temporal evolution of cell popula-
tions are displayed in Figures 5(C) in presence or ab-
sence of the feedback and in Figure 7 for two different
TNF treatment scenarios.

In Figure 5(C), following a pulse of TNF at t = 0, the
comparison of population growth curves in the absence
(blue curve) or in the presence (black curve) of the
feedback from NFxB to TNFa indicates that the TNF
paracrine loop leads to a decrease of the population
size (from 0.43% to 0.20% of the initial population
size of 100%).

Remarkably, when a sustained treatment is applied,
the impact on the population size differs depending
on whether the population has already been treated
or not, in a non-intuitive way. Indeed, as shown in
Figure 7, after 48 hours, the population initially un-
treated (referred to as "noTNF” + "TNE”, blue +
green curves) decreases faster than the cell popula-
tion initially treated with a pulse of TNF (referred to
as "TNFPulse” + "TNF”, black + red curves). This
difference could be interpreted as a resistance mech-
anism: cells that have already been exposed to TNF,
even transiently, do not respond as well to a second
TNF treatment compared to cells that have never been
treated with TNF. Noteworthy, this ”resistance” re-
sults purely from network dynamics, in the absence of
any genetic modifications.

TNF treatments in mutant conditions
The analysis was done on the wild type conditions, but
in cancers, the many different mutations found in pa-
tients may affect the efficacy of the response to some
treatments. To explore the potential roles of the differ-
ent model components in the observed TNF resistance,
we simulated the effects of all possible single mutants,
following the in silico protocol illustrated in Figure 6.
For each single mutant, we measured the population
ratio at t = 96 hours for the four scenarios: ”No TNF”
+ "TNFE”, ”Pulse of TNF” + ”"No TNF”, ”No TNE”
+ ”"No TNF” and ”Pulse of TNF” + "TNF”.

All single mutants were computed (Jupyter note-
book CellFateModel_upmaboss in supplementary ma-
terial). We illustrate here the results for three genetic
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backgrounds: wild type, IKK knock-down, and RIP1K
knock-down (Figure 8) with the four protocols (Fig-
ure 6 focusing on the period between t = 48 to t = 96.
We only focus on the response after t = 48 hours for
simplicity, and to improve the comparison, we normal-
ized the population ratio found in Figure 7. Note that
two conditions were added to those shown on Figure 7,
where only two of the four protocols were simulated,
i.e., we added the cases when there is no treatment
after 48 hours, no matter what the cells receive at t =
0 (dashed lines).

The wild type model clearly exhibits a resistance:
when the cells have received a treatment, they do not
respond whether they receive a second treatment or
not (red curves representing increasing population ra-
tio), whereas the plain green curve decreases (Figure 8
A). Note that the dashed green curve corresponds to
the population of wild type cells without treatment (no
signal) normalized to 1. The resistance effect observed
in wild type is lost for IKK knock-down (Figure 8 B),
as the two second treatments have no effect on the pop-
ulation ratios (plain and dashed lines coincide). For
the RIP1K knock-down, the population reduction by
TNF is not as strong as for wild type model, but the
resistance mechanism is still observed (Figure 8 C).

IKK belongs to the NFxB pathway that induces sur-
vival. This pathway participates in a positive feedback
at the cell population level, which may explain why
IKK knock-down shuts down the resistance to TNF
by shutting down this feedback loop. RIP1K induces
non-apoptotic cell death by blocking ATP, which ex-
plains RIP1K knock-down reduces the apoptotic effect
of TNF (see CellFateModel_upmaboss).

Similarly, the effect of double mutations could also
be studied. Note that the computation time is signifi-
cantly longer when simulating the four protocols for all
the double mutations. For our example, double mutant
simulations do not result in additional insight because
the single mutations are already informative, but it
might be the case for more comprehensive models.

All results and figures of this analysis can be repro-
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More specifically, a logical model is constructed from
the fusion of signaling pathways, which may belong
to different cell types, integrated into a single model
description (referred to as MetaCell here) within Ma-
BoSS language; cell-cell interactions, conditions for cell
division and for cell death are added on top of the reg-
ular MaBoSS model.

Because UPMaBoSS ignores the spatial dimension,
computational cost does not increase a lot compared to
prior MaBoSS signaling models: because UPMaBoSS
is made of consecutive MaBoSS runs, it is only the up-
dating algorithm between each MaBoSS run that adds
computational cost. We notice that the latter is small.
Indeed, MaBoSS constructs more than ten thousands
trajectories, as the updating algorithm just parses and
writes probability distributions.

Using a simple toy model, we showed that the re-
sults of the simulations are different if we consider a
homogeneous non-interacting cell population or if we
consider that cells can communicate.

We applied our approach to a model of TNF induced
cell fate. We show that the paracrine loop through
NFkappaB enhances the death of cells through TNF
effect. Surprisingly, this model shows a resistance
mechanism to TNF treatment: once the cells have been
treated by TNF transiently, they do not die upon a
second treatment; and this effect is not due to (epi-
)genetic selection.

UPMaBoSS framework produces results that can
be validated experimentally by different techniques:
the probabilities of the nodes corresponding to pro-
teins/mRNA can be compared by experimental con-
centration (measured by western blot, immunofluores-
ence, qPCR, etc.). The probabilities of network states
can be compared with the different techniques regard-
ing cell populations: after labeling some proteins by
fluorescent antibodies, flow cytometry or microscopic
images can be used; the new single cell technologies
could, in principle, be applied, by matching the popu-
lation size to the different cell types.

We expect that our approach is suitable for model-
ing the effect of the micro-environment on cell fate for

duced with the Jupyter notebook CellFateM odel,uppmabogy./ fphfrfppons: an casy implementation on top of the con-

which is provided as supplementary material, and can
also be found in the folder wusecases in the CoLo-
MoTo Docker image, and or yet the address: https:
//maboss.curie.fr/UPMaBoSS/).

Discussion

UPMaBoSS is a new a modeling framework enabling
the exploration of cell population dynamics. It consid-
ers the division, the death and interactions of popula-
tions of cells. It is run using a stochastic approach but
updated at regular intervals.

struction of single cell type(s) model(s), and a low com-
putational cost. Indeed, once pathways for individual
cell types have been properly translated in MaBoSS
language, they are gathered in a single model descrip-
tion. Then, the user needs to set up conditions for cell
division and cell death, and for ligand-receptor interac-
tions. The setting of the heterogeneous cell population
description and proportion can be handled from the
proper definition of initial conditions. For this case, we
suggest to add nodes that represent cell types: when
these nodes are initially set to 1, the cell type can be
considered present, with the desired proportion.
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We think that this approach is appropriate to model
many processes in cell biology, including cell differenti-
ation, innate/adaptive immune system activation, can-
cer micro-environment, tissue homeostasis, etc. The
fact that the spatial dimension is not taken into ac-
count here might appear as a limiting factor in clini-
cal applications. However, as a counter-example, some
works have shown that the presence, more than the
precise localization, of immune infiltrates in tumors
constitute good prognostic biomarkers [39]. The im-
portant part lies in the translation of inter-cellular
communication in terms of the ligand-receptor de-
scription used in UPMaBoSS. The implementation in
docker or conda environment makes its use easy and
flexible, as presented in the TNF treatment example
within a Jupyter notebook.

One limitation of our approach is the somewhat ar-
tificial setting of population update time. However,
the case study presented here suggests that results
are moderately sensitive to changes of this parameter
within a reasonable interval.

Another limitation is that UPMaBoSS is designed
for signaling pathways, not for metabolic ones. How-
ever, the dynamics of metabolites could be added,
if they play a role in the signaling pathways. For
that, metabolites are represented by Boolean nodes,
the level of metabolite(s) are therefore discretized and
then ”Booleanized” (transforming a multi-level node
by multiple Boolean nodes) for MaBoSS format. The
translation in MaBoSS will require some considera-
tions about the timing and the dynamics of these
metabolites, e.g., the consumption of reactants will be
translated by an ultra fast degradation rate of a reac-
tant induced by its products.

In summary, we provide a tool enabling the simula-
tion an interacting heterogeneous population of cells
allowing to take into account the influence of the
micro-environment on the fate of a cell population.
The quantitative output of UPMaBoSS facilitates the
comparison to experimental observations and the con-
sequent tuning of the parameters, which ultimately
will provide finer model predictions.

Competing interests
The authors declare that they have no competing interests.

Author’s contributions

GS and EV conceived the algorithm and the tool. VN, EV and AN
participated in the development of the tool. GS, AN, DT and LC worked on
the examples. DT, EB, GK, GS, LS designed and supervised the study. GS
and LC wrote the article but all co-authors contributed to the writing and
agree on the content.

Acknowledgements

We would like to thank |. Martins. GK is supported by the Ligue contre le
Cancer (équipe labellisée); Agence National de la Recherche (ANR) —
Projets blancs; ANR under the frame of E-Rare-2, the ERA-Net for
Research on Rare Diseases; AMMICa US23/CNRS UMS3655; Association

Page 8 of 10

pour la recherche sur le cancer (ARC); Association “Le Cancer du Sein,
Parlons-en!"; Cancéropdle lle-de-France; Chancelerie des universités de
Paris (Legs Poix), Fondation pour la Recherche Médicale (FRM); a
donation by Elior; European Research Area Network on Cardiovascular
Diseases (ERA-CVD, MINOTAUR); Gustave Roussy Odyssea, the European
Union Horizon 2020 Project Oncobiome; Fondation Carrefour; Institut
National du Cancer (INCa); Inserm (HTE); Institut Universitaire de France;
LeDucq Foundation; the LabEx Immuno-Oncology (ANR-18-IDEX-0001);
the RHU Torino Lumiere; the Seerave Foundation; the SIRIC Stratified
Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE);
and the SIRIC Cancer Research and Personalized Medicine (CARPEM).

Author details

YEquipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de
Recherche des Cordeliers, INSERM U1138, Universite de Paris, Sorbonne
Universite, Paris, France. 2Metabolomics and Cell Biology Platforms,
Gustave Roussy Cancer Campus, Villejuif, France. 3Institut de Biologie de
I’'ENS (IBENS), Département de biologie, Ecole normale supérieure, CNRS,
INSERM, Université PSL, 75005 Paris, France. *Institut Curie, Université
PSL, INSERM, U900, F-75005 Paris, France. °Sysra, Yerres, France. ©
gautier.stoll@upmc.fr.

References

1. Cohen, D., Kuperstein, |., Barillot, E., Zinovyev, A., Calzone, L.: From
a biological hypothesis to the construction of a mathematical model.
Methods Mol. Biol. 1021, 107-125 (2013)

2. Ferrell, J.E.: Bistability, bifurcations, and waddington’s epigenetic
landscape. Curr Biol 22, 11 (2015). doi:10.1016/j.cub.2012.03.045

3. Remy, E., Rebouissou, S., Chaouiya, C., Zinovyev, A., Radvanyi, F.,
Calzone, L.: A modelling approach to explain mutually exclusive and
co-occurring genetic alterations in bladder tumorigenesis. Cancer
research, 0602 (2015)

4. Kolch, W., Halasz, M., Granovskaya, M., Kholodenko, B.N.: The
dynamic control of signal transduction networks in cancer cells. Nature
Reviews Cancer 15, 515 (2015). doi:10.1038/nrc3983

5. Abou-Jaoudé, W., Traynard, P., Monteiro, P.T., Saez-Rodriguez, J.,
Helikar, T., Thieffry, D., Chaouiya, C.: Logical modeling and
dynamical analysis of cellular networks. Frontiers in Genetics 7, 94
(2016). doi:10.3389/fgene.2016.00094

6. Le Novere, N.: Quantitative and logic modelling of molecular and gene
networks. Nature Reviews Genetics 16(3), 146-158 (2015).
doi:10.1038/nrg3885

7. Anderson, A.R.A., Weaver, A.M., Cummings, P.T., Quaranta, V.:
Tumor morphology and phenotypic evolution driven by selective
pressure from the microenvironment. Cell 127, 905 (2006).
doi:10.1016/].cell.2006.09.042

8. EI-Badri, N.S., Hakki, A., Ferrari, A., Shamekh, R., Good, R.A.:
Autoimmune disease: is it a disorder of the microenvironment?
Immunologic Research 41(1), 79 (2007).
doi:10.1007 /s12026-007-0053-8

9. Bonabeau, E.: Agent-based modeling: Methods and techniques for
simulating human systems. Proceedings of the National Academy of
Sciences 99(suppl 3), 7280-7287 (2002)

10. Altinok, A., Gonze, D., LA@vi, F., Goldbeter, A.: An automaton
model for the cell cycle. Interface Focus 1(1), 36-47 (2011).
doi:10.1098/rsfs.2010.0009

11. Drasdo, D., Hoehme, S.: A cell-based simulation software for
multi-cellular systems. Bioinformatics 26(20), 26412642 (2010).
doi:10.1093 /bioinformatics/btq437.
http://oup.prod.sis.lan/bioinformatics/article-
pdf/26,/20/2641/16895015/btq437.pdf

12. Ghaffarizadeh, A., Heiland, R., Friedman, S.H., Mumenthaler, S.M.,
Macklin, P.: Physicell: An open source physics-based cell simulator for
3-d multicellular systems. PLOS Computational Biology 14(2), 1-31
(2018). doi:10.1371/journal.pcbi.1005991

13. Clairambault, J.: Physiologically based modelling of circadian control
on cell proliferation. Conf Proc IEEE Eng Med Biol Soc 1, 173-176
(2006)

14. Letort, G., Montagud, A., Stoll, G., Heiland, R., Calzone, E.B.A.Z.L.,
Macklin, P.: Physiboss: a multi-scale agent-based modelling framework


http://dx.doi.org/10.1016/j.cub.2012.03.045
http://dx.doi.org/10.1038/nrc3983
http://dx.doi.org/10.3389/fgene.2016.00094
http://dx.doi.org/10.1038/nrg3885
http://dx.doi.org/10.1016/j.cell.2006.09.042
http://dx.doi.org/10.1007/s12026-007-0053-8
http://dx.doi.org/10.1098/rsfs.2010.0009
http://dx.doi.org/10.1093/bioinformatics/btq437
http://oup.prod.sis.lan/bioinformatics/article-pdf/26/20/2641/16895015/btq437.pdf
http://oup.prod.sis.lan/bioinformatics/article-pdf/26/20/2641/16895015/btq437.pdf
http://dx.doi.org/10.1371/journal.pcbi.1005991
https://doi.org/10.1101/2020.05.31.126094

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.31.126094; this version posted June 1, 2020. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Stoll et al.

integrating physical dimension and cell signalling. Bioinformatics 35,

Page 9 of 10

24(16), 1709-1717 (2010)

1188-1196 (2018). doi:10.1093/bioinformatics/bty766 31. Drouet, C., Shakhov, A.N., Jongeneel, C.V.: Enhancers and

15. Varela, P., Ramos, C., Monteiro, P., Chaouiya, C.: Epilog: A software transcription factors controlling the inducibility of the tumor necrosis
for the logical modelling of epithelial dynamics [version 2; peer review: factor-alpha promoter in primary macrophages. J. Immunol. 147(5),
3 approved]. F1000Research 7(1145) (2019). 1694-1700 (1991)
doi:10.12688/f1000research.15613.2 32. Shakhov, A.N., Collart, M.A., Vassalli, P., Nedospasov, S.A.,

16. Osborne, J.M.: Multiscale model of colorectal cancer using the cellular Jongeneel, C.V.: Kappa B-type enhancers are involved in
potts framework. Cancer Informatics 14s4, 19332 (2015). lipopolysaccharide-mediated transcriptional activation of the tumor
doi:10.4137 /CIN.S19332. https://doi.org/10.4137/CIN.S19332 necrosis factor alpha gene in primary macrophages. J. Exp. Med.

17. Albert, I., Thakar, J., Li, S., Zhang, R., Albert, R.: Boolean network 171(1), 35-47 (1990)
simulations for life scientists. Source Code for Biology and Medicine 33. Liu, H., Sidiropoulos, P., Song, G., Pagliari, L.J., Birrer, M.J., Stein,
3(1), 16 (2008). doi:10.1186/1751-0473-3-16. Accessed 2020-04-29 B., Anrather, J., Pope, R.M.: TNF-alpha gene expression in

18. Shmulevich, I., Dougherty, E.R., Kim, S., Zhang, W.: Probabilistic macrophages: regulation by NF-kappa B is independent of c-Jun or
Boolean networks: a rule-based uncertainty model for gene regulatory C/EBP beta. J. Immunol. 164(8), 4277-4285 (2000)
networks. Bioinformatics 18(2), 261-274 (2002). 34. Smyth, M.J., Cretney, E., Kershaw, M.H., Hayakawa, Y.: Cytokines in
doi:10.1093/bioinformatics/18.2.261. Publisher: Oxford Academic. cancer immunity and immunotherapy. Immunol. Rev. 202, 275-293
Accessed 2020-04-29 (2004)

19. Scianna, M., Bassino, E., Munaron, L.: A cellular potts model 35. Wang, Y., Xu, J., Zhang, X., Wang, C., Huang, Y., Dai, K., Zhang,
analyzing differentiated cell behavior during in vivo vascularization of a X.: Tnf-alpha-induced Irgl promotes angiogenesis and mesenchymal
hypoxic tissue. Computers in biology and medicine 63, 143-156 (2015) stem cell migration in the subchondral bone during osteoarthritis. Cell

20. Wolkenhauer, O., Auffray, C., Brass, O., Clairambault, J., Deutsch, A., Death Dis 8 (2017). doi:10.1038/cddis.2017.129
Drasdo, D., Gervasio, F., Preziosi, L., Maini, P., Marciniak-Czochra, 36. Bertazza, L., Mocellin, S.: The dual role of tumor necrosis factor
A., Kossow, C., Kuepfer, L., Rateitschak, K., Ramis-Conde, I., Ribba, (TNF) in cancer biology. Curr. Med. Chem. 17(29), 3337-3352 (2010)
B., Schuppert, A., Smallwood, R., Stamatakos, G., Winter, F., Byrne, 37. Udommethaporn, S., Tencomnao, T., McGowan, E.M.,

H.: Enabling multiscale modeling in systems medicine. Genome Med Boonyaratanakornkit, V.: Assessment of anti-tnf-«v activities in
6(3), 21 (2014) keratinocytes expressing inducible tnf-a:: a novel tool for anti-tnf-a

21. Viceconti, M., Hunter, P.: The Virtual Physiological Human: Ten drug screening. PloS one 11(7) (2016)

Years After. Annu Rev Biomed Eng 18, 103-123 (2016) 38. Jin, G.: In: Dubitzky, W., Wolkenhauer, O., Cho, K.-H., Yokota, H.

22. Stoll, G., Viara, E., Barillot, E., Calzone, L.: Continuous time boolean (eds.) Feed Forward Loop, pp. 737-738. Springer, New York, NY
modeling for biological signaling: application of gillespie algorithm. (2013). doi:10.1007/978-1-4419-9863-7-463.

BMC systems biology 6(1), 116 (2012) https://doi.org/10.1007 /978-1-4419-9863-7-463

23. Stoll, G., Caron, B., Viara, E., Dugourd, A., Zinovyev, A., Naldi, A., 39. Baxevanis, C.N., Sofopoulos, M., Fortis, S.P., Perez, S.A.: The role of
Kroemer, G., Barillot, E., Calzone, L.: Maboss 2.0: an environment for immune infiltrates as prognostic biomarkers in patients with breast
stochastic boolean modeling. Bioinformatics 33(14), 2226-2228 cancer. Cancer Immunology, Immunotherapy 68(10), 1671-1680
(2017) (2019). doi:10.1007/s00262-019-02327-7

24. Chaouiya, C., Berenguier, D., Keating, S.M., Naldi, A., van lersel,

M.P., Rodriguez, N., Drager, A., Bachel, F., Cokelaer, T., Kowal, B., Figures

25.

26.

27.

Wicks, B., Goncalves, E., Dorier, J., Page, M., Monteiro, P.T., von
Kamp, A., Xenarios, |., de Jong, H., Hucka, M., Klamt, S., Thieffry,
D., Le Novere, N., Saez-Rodriguez, J., Helikar, T.: SBML qualitative
models: a model representation format and infrastructure to foster
interactions between qualitative modelling formalisms and tools. BMC
Systems Biology 7(1), 135 (2013). doi:10.1186/1752-0509-7-135

Le Novere, N., Hucka, M., Mi, H., Moodie, S., Schreiber, F., Sorokin,
A., Demir, E., Wegner, K., Aladjem, M.l., Wimalaratne, S.M.,
Bergman, F.T., Gauges, R., Ghazal, P., Kawaji, H., Li, L., Matsuoka,
Y., Villeger, A., Boyd, S.E., Calzone, L., Courtot, M., Dogrusoz, U.,
Freeman, T.C., Funahashi, A., Ghosh, S., Jouraku, A., Kim, S.,
Kolpakov, F., Luna, A., Sahle, S., Schmidt, E., Watterson, S., Wu, G.,
Goryanin, |., Kell, D.B., Sander, C., Sauro, H., Snoep, J.L., Kohn, K.,
Kitano, H.: The Systems Biology Graphical Notation. Nat. Biotechnol.
27(8), 735-741 (2009)

Naldi, A., Monteiro, P.T., Missel, C., for Logical Models, C., Tools,
Kestler, H.A., Thieffry, D., Xenarios, |., Saez-Rodriguez, J., Helikar, T.,
Chaouiya, C.: Cooperative development of logical modelling standards
and tools with colomoto. Bioinformatics 31(7), 1154-1159 (2015)
Naldi, A., Hernandez, C., Levy, N., Stoll, G., Monteiro, P.T.,
Chaouiya, C., Helikar, T., Zinovyev, A., Calzone, L., Cohen-Boulakia,
S., et al.: The colomoto interactive notebook: accessible and

Figure 1 UPMaBoSS simulation (A) An example of the
MetaCell dynamics approach: A can activate B and release L
(ligand) outside the cell, which activates R (receptor) on the
membrane of the same cell; R can, on one hand, activate
signaling pathways leading to cell death, and on the other
hand, trigger pathways leading to cell division and inhibition of
death through the entity B. (B) For the model shown in (A),
UPMaBoSS algorithm applies several times the three following
consecutive steps. Step 1: MaBoSS is run for a given initial
condition and time length (only some selected model states
are shown here: the state [A+,B+,L-,R-] means that only A
and B are at 1 and L and R are at 0, the size of the pie
portion corresponds to its probability); for some states, this
leads to the activation of the nodes division or death. Step 2:
After the MaBoSS run, state probabilities are updated by
removing those that have the death node active and doubling
those that have the division node active; the size of the

population is multiplied by the sum of these new probabilities,
which are then normalized. Step 3: The transition rates of the

receptors are updated with the newly computed probabilities;
the next MaBoSS run starts with the normalized probabilities
as initial condition. The number of runs n is defined by the
user and this sequence of three steps is thus repeated n times.
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Figure 2 The MetaCell A network of a MetaCell is Figure 8 Population ratio at from t = 48 to 96 hours for
constructed by regrouping all the signaling pathways that can three models Population ratios for the four conditions
be activated in different cell types, including ligand-receptor described in the in silico experiments (Figure 6 in (A) wild
interactions. Two cases are considered: (A) when the cell type, (B) IKK knock-down, and (C) RIP1K knock-down
types are already known and integrated into a single network,

and (B) when the cell is initially undifferentiated and gets
differentiated into different cell types (note that it is not
explicitly shown in the figure but one given pathway could be - )
activated into two different cell types, see text). In both cases, Additional file 3.

cells can die, divide or interact through ligand-receptor Jupyter notebook TimeStepDependency.ipynb.
interactions.

Figure 3 Inputs and Outputs for UPMaBoSS (A) Inputs
needed for a simulation with UPMaBoSS: transition rates for
nodes of the MetaCell, Formulas for updating receptors rates
values, and initial conditions. The colors correspond to the cell
types presented in Figure 2. (B) Ouputs of UPMaBoSS:
time-dependent probabilities of cell types (example of cell type
Il from Figure 2, and of the corresponding model states, and
time-dependent relative population size.

Figure 4 Toy model (A) Definition of the toy model with
logical rules (upper panel) and conditional rule for R
depending on the value of the external parameter innerOn. If
innerOn is equal to 1, then A is able to activate L in all cells
(middle panel). If innerOn is set to 0, then the value of R will
depend on the population status of L (lower panel). (B) Model
simulations of the two cases: when innerOn=1, only T1 cell
type can be reached; when innerOn=0, a proportion of cells
can differentiate into T2 cell type.

Figure 5 Cell fate model for TNF resistance (A) The
model has been slightly modified from [28]. Some nodes
representing the mRNA of clAP, ROS and XIAP family
members have been added. The circle nodes represent genes,
mRNA, proteins, or complexes, and rectangular nodes account
for the activity of phenotypes. Green and red arrows represent
positive and negative influences, respectively. The thick green
arrows denote activating interactions added to the initial
model: a feedback from NFxB to TNFa encodes the
ligand-receptor activation, while the " Division” and "Death”
nodes have been introduced specifically for UPMaBoSS
population updates. (B) Simulation of the cell fate model with
MaBoSS for a length equivalent to 48 hours. (C) Simulation
of the model with UPMaBoSS: relative population size with
(black) and without (blue) the TNF paracrine signaling.

Figure 6 Simulation scenarios for the study of TNF
resistance

Figure 7 Growth curves for different TNF treatment
scenarios One scenario corresponds to the simulation of cells
initially treated by a pulse of TNF (black segment), followed
by a constitutive TNF treatment at t = 48 hours (red
segment). The other scenario corresponds to the simulation of
cells initially untreated (blue segment), but receiving a
constitutive TNF treatment at t = 48 hours (green segment).
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Transition rates for nodes:
Node K {rate_up = C * SReceptor_rate . ;...}
Node L {rate_up =K & M; ...}

Formulas for updating receptor rate values:
SReceptor_ratey, . ; u= Prob[(X,T_I) = (1,1)]
SReceptor_ratey, . , u= Prob[(C,T_II) = (1,1)]

Initial states:
Prob[T_I+,T _II-,T_lll-,A+,B+,C-K-,L- ,M-,N-,T-, ...] =0.2
Prob[T_I-,T_ll+,T_lll-, K+,L-,M-, N+,A-,B-,C-, ..] = 0.3

>
1 -------------------------
Probability[K+,L-,M-,N+]
0 >
relative population siz
1 ----------------------
ot >
0 total
time
B

Figure 3
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Figure 4

T=input A=T

T1=A&IT2

Model simulations

L=A T2=R& A
If SInnerOn =1
Node R {
rate_up =1L
}

Cher iz}

If SiInnerOn =0
Node R {

rate_up=Soutert

|

where :
SouterL u=5*p[(L) = i
(1)] 5

| --A-L-R--T1
B |--A-L-R--T2
Others (0.01%)
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Figure 5
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Figure 6
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Figure 7
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Figure 8
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