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Abstract  

Genetic variation in response to the environment is fundamental in biology and has 
been described as genotype-by-environment interaction (GxE), reaction norm or 
phenotypic plasticity. In the genomic era, there has been increasing interest in 
estimating GxE, using genome-wide SNPs, e.g. a whole-genome reaction norm 
model (RNM) that can estimate unbiased genome-wide GxE. However, the existing 
approach is computationally demanding and infeasible to handle large-scale biobank 
data. Here we introduce GxEsum, a model for estimating GxE based on GWAS 
summary statistics, which can be applied to a large sample size. In simulations, we 
show that GxEsum can control type I error rate and produce unbiased estimates in 
general. We apply GxEsum to UK Biobank to estimate genome-wide GxE for BMI 
and hypertension, and find that the computational efficiency of GxEsum is thousands 
of times higher than existing whole-genome GxE methods such as RNM. Because of 
its computational efficiency, GxEsum can achieve a higher precision (i.e. power) 
from a larger sample size. As the scale of available resources has been increased, 
GxEsum may be an efficient tool to estimate GxE that can be applied to large-scale 
data across multiple complex traits and diseases.  
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Introduction 

 

The success of the human genome project has led to a paradigm-shift in the 
complex trait analysis that focuses on the genome-wide association studies (GWAS) 
1. GWAS have been incredibly successful to identify genome-wide significant single 
nucleotide polymorphisms (SNPs) that are associated with causal variants 
underlying complex traits 2,3.  Moreover, whole-genome approaches, using all 
common SNPs across the genome, have been useful to dissect the genetic 
architecture of complex traits, e.g. SNP-based heritability and genetic correlation 4. 
However, the analytical modelling used in GWAS and whole-genome approaches 
usually assumes that there is no genotype-environment interaction (GxE), which can 
be often violated against the true genetic architecture of complex traits. Indeed, 
interaction is fundamental in biology and there has been increasing interest in 
estimating GxE, using genome-wide SNPs 5-7.  

Current state-of-the-art whole genome methods for estimating GxE include 
genotype-covariate interaction genomic restricted maximum likelihood (GREML) and 
random regression GREML 8. Recently, a multivariate reaction norm model (RNM) 
has been introduced, which can disentangle GxE from genotype-environmental 
correlation, providing more reliable GxE estimations. These methods typically 
employ the GREML approach that requires individual level genotypes and is 
computationally intensive. Especially when using biobank-scale data, the approach 
becomes computationally intractable.  

To reduce the computational limitation of GREML, linkage disequilibrium score 
regression (LDSC) was introduced to estimate SNP-based heritability and genetic 
correlation 9. LDSC is computationally efficient and requires no individual-level 
genotypes. Instead, it uses GWAS summary statistics, regressing the association 
test statistics of SNPs on their LD score. However, existing LDSC methods are 
limited to additive models only 10-13.  

In this study, we propose a novel approach for GxE based on GWAS summary 
statistics (GxESum), which can estimate GxE using a large-scale biobank dataset, 
correctly accounting for genotype-environment correlation and scale effects. In 
simulated and real data analyses, we show that the computational efficiency of the 
proposed approach is substantially higher than RNM, an existing GREML-based 
method while the estimates are reasonably accurate and precise. Because of this 
computational advantage, GxEsum may be an efficient tool to estimate GxE that can 
be applied to large-scale data across multiple complex traits. 
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Results  

Method Overview  

We propose a method to estimate whole-genome GxE based on GWAS summary 
statistics, referred to as GxEsum. GxEsum can be a computationally efficient RNM 
using an extension of LDSC approach. For SNP effects modulated by an 
environment, the expected chi-square statistic (!!") is     

E#!!"|ℓ!& =
()#!"
* ∗ ℓ! + 1 + 2()#!" + )$!" ) 

where N is the number of individuals, M is the number of SNPs, )#!"  is the variance 
due to GxE, )$!"  is the variance due to residual heterogeneity or scale effects caused 
by residual-environment interaction (RxE), ℓ! is the LD score at the variant ! (please 
see Methods for a full derivation of this equation). If chi-square statistics from GWAS 
are regressed on LD scores, non-genetic interaction effects ()$!" ) are captured by the 
intercept, from which GxE ()#!" ) can be disentangled. Consequently, GxE effects 
estimated by GxEsum are equivalent to that adjusted for RxE when using RNM (Ni 
et al. 2019).  

To validate the proposed model, i.e. GxEsum, we used various simulations that were 
based on real genotype data. In simulations with and without GxE, we assessed the 
type l error rates and the accuracy of estimated GxE. In the simulations, we 
deliberately generated confounding effects such as genotype-environment (G-E) 
correlation, RxE and residual-environment (R-E) correlation to see if the type l error 
rate and the accuracy of GxEsum were affected by these confounding factors.  

In the real data analysis, we used the UK Biobank data with 288,837 unrelated 
individuals after stringent quality control. Subsets of the data with various sample 
sizes were analysed to compare the precision (i.e. power) and the computational 
efficiency of GxEsum and GREML-based GxE model (i.e. RNM).  

Finally, we show how the genetic effects of trait (e.g. BMI or hypertension) are 
modulated by environment (e.g. neuroticism score, smoking, alcohol consumption or 
physical activity or age) by using the proposed method.  

 

Simulations 

Under the null (no GxE), whether or not there were confounding effects (RxE and G-
E and R-E correlations), the type I error rate of GxEsum was not significantly inflated 
(Supplementary Table 1). Note that the use of 500 replicates for each simulation 
scenario can detect a type I error of greater than 0.07 or less than 0.03 as 
significantly different from 0.05, using the binomial distribution theory 14,15. Even with 
larger confounding effects (Supplementary Table 2), there was no inflation for the 
type I error rate of GxEsum.  

In simulation with non-zero interactions, estimated GxE (g1) was unbiased and not 
significantly different from the true values whether there were significant G-E and R-

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2020. ; https://doi.org/10.1101/2020.05.31.122549doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.31.122549
http://creativecommons.org/licenses/by/4.0/


E correlations or not (see supplementary Figure 1). It was noted that RxE component 
was correctly captured by the intercept and not confounded with GxE estimates 
(Supplementary Note 1 and Supplementary Table 3). In the absence of RxE, 
estimated GxE was also unbiased (Supplementary Figure 2). The estimated GxE 
seemed robust to different values of G-E and R-E correlations ranging from 0.05 to 
0.2, respectively (Supplementary Figures 3 and 4).  

On the other hand, estimated main genetic variance (g0) was slightly biased 
especially when using a large G-E or R-E correlation (Supplementary Figure 4). This 
is probably because of the fact that the main genetic effects are over-adjusted for the 
environment due to the large correlations (between the trait and environment) in the 
model.   

We also validated that there was no inflation for the type I error rate when applying 
GxEsum to binary (disease) traits (Supplementary Tables 4 and 5), showing that 
GxEsum appears to be robust to false positives in the scenarios of various 
confounders. In addition, we estimated the variance component of GxE on the 
observed scale and transformed to that on the liability scale, using Robertson 
transformation 16. As shown in Supplementary Figure 5, the transformed estimates 
coincided the true simulated values on the liability scale although the precision of 
estimates (represented as 95% CI) was shown to be decreased when the population 
prevalence approached an extreme (e.g. k=0.025). GxE estimates were biased when 
simulating a large effect size of GxE (e.g. 10% of phenotypic variance explained by 
GxE) in the case of k=0.025 (Supplementary Figure 6) although they were mostly 
unbiased in the case of k=0.1 (Supplementary Figure 7). The level of biasedness 
appeared to be increased when there were RxE effects (Supplementary Figure 6). 
Note that the large GxE (> 5% of phenotypic variance) may not be realistic as 
estimated GxE explain only a small proportion of phenotypic variance in general (e.g. 
< 1%; see real data analysis below). Finally, caution should be given in interpreting 
GxE estimates when there are large confounding effects such as substantial G-E 
and R-E correlations (Supplementary Figure 8). The inflated GxE estimates were 
probably due to the fact that the phenotypes were over-adjusted for the environment 
in the model because of the correlation between the main trait and environment (G-E 
and R-E correlations). This resulted in a reduced phenotypic variance 
(Supplementary Figure 9), hence an inflated GxE estimates that is the ratio of the 
estimated GxE variance to the phenotypic variance.  

Nevertheless, those confounders including RxE interaction and G-E/R-E correlations 
would not produce false positives whether using continuous quantitative or binary 
responses as shown above (Supplementary Tables 1 – 5). We additionally tested if 
the type I error rate of GxEsum was controlled when there is collider bias, which is 
concerned especially when using a self-report study (e.g. UK Biobank data)17. In 
simulation with collider bias, although estimated SNP-heritability was substantially 
(and unrealistically) underestimated (Supplementary Figures 10 and 11), the type I 
error rate of GxEsum was well controlled whether using continuous or binary 
responses (Supplementary Tables 6 and 7).  
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The estimated variance of the main genetic effects was mostly unbiased when using 
binary disease traits without G-E/R-E correlations (Supplementary Figure 12). When 
there were significant G-E and /or R-E correlations, the estimated variance of the 
main genetic effects appeared to be underestimated especially when there was RxE 
interaction (Supplementary Figure 13), which confirmed the fact that the main 
genetic effects are over-adjusted for the environment due to correlations between 
the trait and environment (Supplementary Figure 9). 

Precision and Computational Efficiency  

The precision (i.e. power) was assessed by comparing the standard error (SE) of 
GxEsum and RNM estimates. The SE of GxEsum was obtained from LDSC software 
(using a jackknife method). The SE of RNM for GxE component can be obtained 
from the information matrix 18 or from well-established theory 19 (see Supplementary 
Table 8). Figure 1 shows that the SE of GxEsum was 1.65 times higher than that of 
RNM when using the same sample size of 50,000. However, when sample size 
increased for GxEsum up to 288,837, for which RNM estimation is infeasible, the 
ratio reduced to 0.2. GxEsum can use a larger sample size (e.g. > 1,000,000), for 
which the ratio is expected to be further decreased, although the largest sample size 
tested in this study was 288,837 (Supplementary Figure 14). 

While the precision of GxEsum is competitive with that of RNM, the computational 
efficiency is dramatically different between two methods (Figure 2 and 
supplementary Table 9). For example, when using a sample size of 50,000, the 
computing time for RNM was taken more than a thousand times than GxEsum. Even 
for GxEsum with a sample size of 288,837, its computational efficiency was still 
substantially higher than RNM with a sample size of 50,000 (Supplementary Figure 
10 and Supplementary Table 9). This justifies that GxEsum is a computationally 
efficient tool that can be applied to biobank scale data for multiple complex traits and 
diseases. It is noted that we assumed that preliminary analyses for each method 
were already done (e.g. GRM for RNM, and LD scores and GWAS for GxEsum) 
(Supplementary Table 9).  
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Figure 1. The ratio of standard error (SE) from GxEsum to that from RNM using 
UK Biobank data. The SEs of GxE variance estimated from GxEsum with various 
sample sizes ranging from 50,000 to 288,837 were obtained, and they were 
compared to the SE of GxE variance estimated from RNM with a sample size of 
50,000. The dashed horizontal line represents the ratio as 1.  

 

 

       

Figure 2. Computing time with various sample sizes used in GxEsum and RNM 
analyses. As the sample size increases, the computing time of RNM (red) increases 
exponentially, while that of GxEsum (blue) is almost invariant (less than a minute).   
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Real data analyses  

We applied GxEsum to estimate genetic effects of body mass index (BMI) that were 
modulated by an environment such as age, alcohol consumption, smoking, 
neuroticism scores or physical activity. The significant GxE were observed from the 
analyses using neuroticism scores and smoking. On the other hand, we did not find 
significant GxE when using age, alcohol consumption and physical activity after 
Bonferroni correction (Bonferroni p-value = 0.05/8 = 0.006 since there were 8 
significance tests in this study) (Table 1). The GxEsum approach applied to a binary 
disease was conducted using hypertension as the main trait, and BMI, waist-hip ratio 
(WHR) or body fat percentage (BFP) as an environmental variable. Table 1 shows 
that the genetic effects of hypertension are significantly modulated by BMI, but not 
by WHR or BFP.  

Because not all variables were without missing, we imputed missing phenotypes 
using the mean value for each variable in the analyses, in order to maximise the 
sample size. In this real data analysis, there was no remarkable difference in the 
results whether using phenotypic imputation or not although some variables 
improved their significance, e.g. NEU and SMK (Supplementary Tables 10 and 11).         
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Table 1. Estimates obtained from GxEsum analysis using real data.  

 

We used a quantitative trait (BMI) and a binary disease trait (hypertension) because BMI is known to be modulated by age/lifestyle 
such as NEU, SMK, ALC, PA 8,20,21, and hypertension is known to be caused by obese traits such as BMI and WHR22,23. The p-
value is from a Wald test for the estimated GxE variance not being different from zero. The estimates on the observed scale for the 
binary trait, hypertension, were transformed to those on the liability scale using Robertson transformation16,24. 
aNEU: Neuroticism Score  
bSMK: Smoking  
cPA: Physical Activity  
dALC: Alcohol consumption  
eWHR: Waist-Hip Ratio 
fBFP: Body Fat Percentage  

Main trait Environmental  
variable 

Main genetic  
effect 

The proportion of phenotypic variance 
explained by GxE effect p-value for GxE 

BMI 

Age 0.216 (0.007) 0.004 (0.0017) 1.86E-02 
NEUa 0.216 (0.007) 0.0069 (0.0016)  1.61E-05 
SMKb 0.212 (0.007) 0.0059 (0.002)  3.18E-03 
PAc 0.218 (0.007) 0.0029 (0.0013)  2.57E-02 

ALCd 0.216 (0.007) 0.0032 (0.0017)  5.98E-02 

Hypertension 
BMI 0.152 (0.008) 0.006 (0.002)  2.09E-03 

WHRe 0.154 (0.008) 0.005 (0.002)  3.21E-02 
BFPf 0.151 (0.008)  0.008 (0.003) 2.66E-02 
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Discussion 

In this study, we propose GxEsum, a novel whole-genome GxE method, of which the 
computational efficiency is a thousand times higher than existing methods. The 
estimation of GxE using GWAS summary statistics has great flexibility in the 
application of the method to multiple complex traits and diseases. The proposed 
method and theory have been explicitly verified using comprehensive simulations 
that were carried out for both quantitative trait and binary disease. Moreover, we 
showed that the type I error rate of the proposed method was not inflated by 
moderate to severe collider bias 17 that caused a substantial underestimation of 
heritability shown in our simulation (Supplementary Figures 10 and 11).  

In the real data analysis, we show that the genetic effects of BMI were significantly 
modulated by NEU and SMK, which agrees with previous studies 8,25. It is noted that 
the significance of GxE was improved because we used a larger sample size, 
compared with the previous studies. Our result agrees with Robinson et al. (2017) 
who found no significant GxE evidence for age when analysing BMI using the UK 
Biobank in which the participants aged 40-69 at the recruitment. However, a dataset 
with a wider range of ages is desirable, which would increase the power to detect 
GxE on age. For example, a significant GxE was found in a BMI-age analysis using 
a dataset including samples aged 18-80 at the recruitment8. For hypertension, its 
causal relationship with BMI has been reported by a number of studies using 
Mendelian randomization 22,26. However, it was not clear if the causal relationship is 
due to GxE or something else, e.g. unknown non-genetic effects of the disease 
modulated by BMI status. We show that the causal relationship between 
hypertension and BMI is significantly explained by genome-wide GxE. Interestingly, 
there is no significant evidence of genome-wide GxE for hypertension-WHR or 
hypertension-BFP causal relationship. 

The estimated intercept from GxEsum should be interpreted with caution. We show 
that estimated intercepts were unbiased from the theoretically predicted values when 
using the simulation of quantitative traits, as a proof of concept, i.e. the phenotypic 
variance explained by RxE effects (ℎ!!" ) can be obtained as ℎ!!" = (intercept – 1 – 2ℎ#!" ) 
/ 2 (from eq. (4)). However, in real data analyses, there may be additional 
confounding effects such as scale effects, residual heteroscedasticity or/and sample 
heterogeneity that are often attributed to unknown factors. Moreover, when using 
binary traits, substantial scale effects can be generated (statistical RxE effects) 
because only affected and unaffected status are observed and individual differences 
within affected or unaffected group are ignored. These additional confounding effects 
and statistical scale effects are captured and estimated as an intercept in GxEsum9, 
resulting in unreliable RxE estimates. It is noted that RxE estimation is not the main 
interest of GxEsum and can be more reliably estimated in RNM that is designed to 
model both GxE and RxE.  

The existing GxE methods require individual-level genotype data which often has a 
restriction to share, and their computational burden is typically high. Moreover, it is 
not clear how they perform when the representativeness of the samples is limited, 
e.g. selection bias due to a collider in the UK Biobank samples. On the contrary, the 
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proposed approach, GxEsum, is computationally efficient and can detect GxE 
interaction correctly for both quantitative and binary disease traits even when there is 
moderate to server collider bias. If GWAS summary statistics of estimated main 
additive and interaction effects can be made publicly available, a meta-analysis 
across multiple cohorts can be possible for an ever-large GxE study (like the context 
of LDSC SNP-heritability meta-analysis). There are some issues that the measure of 
environmental variable may not be standardised across study cohorts, and the 
environmental variable may be even unavailable in some cohorts. However, these 
issues can be remedied when the information of exposome that is the standardised 
measure of all exposures for individuals, complemented to the genome, is available. 

There is a GxE method that can use GWAS summary statistics, i.e. VarExp, which is 
recently published. While VarExp benefits computationally from using GWAS 
summary statistics, it needs to invert the correlation matrix between SNPs, which 
prevents from using a large number of SNPs27. Furthermore, the theoretical 
frameworks of GxEsum and VarExp are fundamentally different in that the latter 
does not account for confounding effects such as scale effects, residual 
heterogeneity or RxE that can be captured by the estimated intercept of GxEsum. 
Finally, the performance of VarExp has been verified with a limited magnitude of 
interaction effects up to 1.5% and 0.25% of the phenotypic variance for quantitative 
and binary traits, respectively27.  

Like RNM, GxEsum can fit environmental exposures such that the genetic effects of 
a trait can be modelled as a nonlinear function of a continuous environmental 
gradient. The potential modifier of the genetic effects is not limited to environmental 
exposures but can be extended to novel variables from multi-omics data such as 
gene-expression, protein expression and methylation data. Polygenic risk scores can 
also be considered as an environmental variable in the model. This novel approach 
may allow dissecting a latent biological architecture of a complex trait in a future 
application of GxEsum. 

In the analysis of binary disease traits, estimates on the liability scale, transformed 
from those on the observed scale using Robertson transformation, should be 
interpreted with caution. Biased estimates on the liability scale are likely due to the 
violation of the normality assumption that is essentially required for the Robertson 
transformation, i.e. large interaction effects can cause a non-normal phenotypic 
distribution. It is also known that if the transformation involves substantial non-
additive effects, it can give biased estimates on the liability scale 16,24,28. However, 
when non-additive effects are small, the transformation can give reasonably accurate 
estimates on the liability scale, which is also evidenced by our simulations with small 
interaction effects. As shown in the real data analysis, the magnitude of genome-
wide GxE is not large (< 1% of the phenotypic variance), showing that the bias of 
transformation due to the assumption violation may not be substantial in general. 
Nevertheless, it is required to develop a better transformation method for large 
interaction effects in a further study, e.g. when using multiple environmental 
variables simultaneously, the interaction effects are aggregated and can be 
substantially large.  
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There are a number of limitations in our study. First, like RNM, GxEsum does not 
determine the causal direction between variables, which can be provided from 
previous studies or other epidemiologic methods, e.g. Mendelian randomisation, as 
prior information. Second, we only modelled the first order of random regression 
coefficients with a single environmental variable, and there may be significant 
additional effects when modelling a higher-order interaction or multiple 
environmental variables. Third, the estimation for the main genetic effects can be 
biased when there are large G-E and/or R-E correlations. Because of such 
correlations, the main genetic effects are over-adjusted when the phenotypes of the 
main trait are adjusted for the environmental variable in the model. Therefore, a 
careful interpretation of the estimated main genetic effects is required when using 
GxEsum. Lastly, when using the same sample size, the precision of GxEsum is not 
better than GREML-based GxE methods, implying that the former is only useful 
when using a large sample size that the latter cannot handle.    

In conclusion, despite these caveats, GxEsum can be a useful tool to estimate 
whole-genome GxE as it can achieve a higher precision (i.e. power) from a larger 
sample size, compared to existing GxE methods. Especially when the scale of 
available resources increases, GxEsum may be a unique method that can be applied 
to large-scale data across multiple complex traits and diseases in the context of 
GxE.  

 

 

 

Methods  

 

GxEsum  

Following Ni et al. (2019), RNM can be written as  

! = # + % + & = # + %! + %" × ( + &! + &" × ( 

where " is N vector of phenotypic observations, # is a vector of fixed effects, % is N 
individual genetic effects, which can be decomposed into the first and second order 
of genetic random regression coefficients, %! and %", & is residual effects, 
decomposed into the first and second order of residual random regression 
coefficients, &! and &", and ( is an N vector of environmental variable. Note that ( 
can be also any covariate variable (e.g. smoking, alcohol consumption).   

Assuming that the phenotypes (!) are pre-adjusted for the main genetic effects (%!), 
environmental or covariate variable (() and other fixed effects (#), the model can be 
rewritten as  

! = %" × ( + &! + &" × ( = )*" × ( + &! + &" × ( 
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where ) is an N x M standardised genotype matrix for M SNPs, *" is an M vector of 
SNP interaction effects modulated by the environment (i.e. GxE SNP effects). It is 
noted that &! is residual effects that are consistent across environment whereas &" 
captures heterogeneous residual effects across environment (i.e. RxE). 

Following Bulik-Sullivan et al. (2015), assuming +[%"] = +[*"] = 0, the expected chi-
square statistics of variant j for the GxE is  

  +/0#
$1 = 2 ∙ Var(8%&):  eq. (1) 

Using the law of total variance, Var[8%&]:  can be obtained as  

Var(8%&): = +/Var;8%&:<()=1 + Var/+(8%&:|())1 

                                                = +/Var;8%&: <()=1 

where () is an N x M matrix with each column having the Hadamard product 
between ( and )#(standardised genotypes at the j th SNP) and the conditional 
expectation of 8%&:  is +;8%&:|()= = 0. 

Noting that the least-square estimate of 8%&:  can be obtained as 8%&: = (()#)′!/2, 
Var;8%&:|()= can be rearranged as  

 

Var;8%&:|()= = Var[(()#)′!/2|()]		 

	=
1

2$ Var C;()#=
'
!D()E																						 

=
1

2$ ;()#=
'
Var(!|());()#=											 

																						=
1

2$ (()#)′Var[(())*" + &! + (&"|()](()#) 

=
1

2$ ;()#=
'
Var[(())*"|()];()#= 

																																																+
1

2$ ;()#=
'
;()#=Var(&!) +

1

2$ (()#)′(()(()′(()#)Var(&") 

									=
1

2$ (()#)′(())(())
'(()#)Var(*"|()) 

																								+
1

2$ /2Var(&!) + (()#)′(()(()′(()#)Var(&")1 

=
1

2$
ℎ(!
)

G
;()#=

'
(())(())';()#=						 

																														+
1

2$ /2;1 − ℎ(!
) − ℎ*!

) = + ℎ*!
) (()#)′(()(()′(()#)1 
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where ℎ(!
)  and ℎ*!)  is the proportion of phenotypic variance explained by GxE and 

RxE, respectively. 

Therefore, +/0#$1 in eq. (1) can be written as  

+/0#
$1 = 2 ∙ Var;8%&: |()= 

 =
1

2
I
ℎ(!
)

G
;()#=

'
(())(())';()#= + 2;1 − ℎ(!

) − ℎ*!
) = + ℎ*!

) (()#)′(()(()′(()#)J eq. (2) 

 

According to Bulik-Sullivan et al. (2015), the products of the standardised genotypes 
at variant j and other variants can be expressed as a function of LD scores, i.e.  

1

2$ ;)+=
'
())())';)+= =

1

2$ KN2 +	 /N ∗ ;1 − L̃#$= + L̃#$ ∗ N21 ∗ (M − 1)N 

= O + I
1 − L̃#$
N +	 L̃#$J ∗ (M − 1) 

= ℓ, + +
(M − 1).1 − L/,20

N 1 

≈	ℓ# +
G − ℓ#
2

 

where L̃#$ defined as the expected sample correlation between genotypes at the Rth 
variant and the other (G-1) variants, and ℓ# = 1 + L̃#$(G − 1) is the LD scores of the 
Rth SNP.  

According to the central moment theory of standard normal distribution of three 
independent random variables ()", )) and (), each with an N vector, useful 
equations are 

+[()")′()")] = 2 

+[()")′()))()))′()")] = 2 

+[()")′()")()")′()")] = 2$ 

+[(()")′(()(()′(()")] = +[(()")′(()))(()))′(()")] = 32 

and 

+[(()")′(()")(()")′(()")] = 2$. 

 

Therefore, assuming that ( and )+ have negligible correlation (as expected), the term 
;()#=

'
(())(())';()#= can be expressed as a function of LD scores as   

1

2$ ;()#=
'
(())(())';()#= =

1

2$ K22 + /32;1 − L̃#$= + L̃#$ ∗ 221 ∗ (4− 1)N 
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= 1 + +3.1 − L
/,20

2 + L/,21 ∗ (4 − 1) 

= ℓ, +
3(G− ℓ,)

2
 

Thus, a part in eq. (2) can be rearranged as  

1

2
I
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)

G
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'
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) =J 

=
1

2
I
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G
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2

W + 2;1 − ℎ(!
) =J 

=
2ℎ(!

)

G
Vℓ# +

3;G − ℓ#=
2

W + 1 − ℎ(!
)  

=
(2 − 3)ℎ(!

)

G
ℓ# + 1 + 2ℎ(!

)  

=
2(1 − 3/2)ℎ(!

)

G
ℓ# + 1 + 2ℎ(!

)  

 	=
2ℎ(!

)

G
ℓ# + 1 + 2ℎ(!

)  
 

eq. (3) 

 

The term, 1 − 3/2, in eq. (3) can be approximated as 1 in the analysis using biobank 
scale data, which contains over 105 samples.  

The remaining part in eq. (2) can be rearranged as  

1

2
/2;−ℎ*!

) = + ℎ*!
) (()#)′(()(()′(()#)1 = 2ℎ*!

)  

where +[(()")′(()(()′(()")] = 32 according to the central moment theory of 
standard normal distribution (see above), assuming that ( and each column of ) 
have a negligible correlation, which satisfies if ( is an environmental variable or a 
polygenic trait.  

Therefore, 

	+/0#
$1 = 2 ∙ Var;8%&: |()= =

./"!#
0 ℓ# + 1 + 2ℎ(!

) + 2ℎ*!
)      eq. (4) 

where 1 + 2ℎ(!
) + 2ℎ*!

)  can be obtained as the intercept of the outcome by fitting to 
the proposed model (GxEsum), which is verified using simulations (see 
Supplementary Note 1 and Supplementary Table 11). 

To validate the proposed model in general, we used comprehensive phenotypic 
simulations that were based on real genotype data (see Supplementary Note 2).  
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Real data  

UK Biobank data were used, which contains 0.5 million individuals aged between 40-
69 years. The data consists of health-related information for each participant who 
was recruited in 2006-2010, and their imputed genomic data (~92 million SNPs) has 
been distributed through European Genome-phenome Archive.  A stringent quality 
control process for individuals was set as followings: 1) who were reported as non-
white British, 2) who were having mismatched gender between the reported and the 
inferred by the genotypic data, 3) who were having missing rate over 0.05, 4) who 
were having putative sex chromosome aneuploidy. In addition, only HapMap3 SNPs 
were used which were passed from the stringent quality controls for SNPs. The filter 
for SNPs is set as followings: 1) which were having INFO score less than 0.6, 2) 
which were having a MAF less than 1%, 3) which were having Hardy-Weinberg 
Equilibrium (HWE) P-value less than 1E-4, 4) one of which from the duplicated 
SNPs. From those passing the tough procedures, we additionally excluded one of 
pair of samples who were having the genomic relationship higher than 0.05. After 
quality control, 288,837 individuals and 1,133,273 SNPs were remained.  

Among trait phenotypes available in the UK biobank, we arbitrarily selected BMI (a 
quantitative trait) and hypertension (a binary disease trait) and tested if the genetic 
effects of BMI or hypertension was significantly modulated by an environmental 
variables, i.e. NEU, smoking, ALC, PA or age for testing the quantitative trait, and 
BMI, WHR or BFP for testing the binary disease trait. The phenotypes of the main 
trait were adjusted for potential confounders such as age, gender, year of birth, 
assessment centre, genetic batch, household income, educational qualification, the 
first 10 principal components, and the environmental variable. For any phenotypic 
missing value for each variable, we used the mean of the phenotypes of the variable, 
i.e. phenotypic imputation with the mean. Further details of the variables used on this 
study are in Supplementary Note 2.  

In GWAS, we used a linear model for quantitative traits as well as for binary 
responses. The use of a linear model applied to binary responses is because it has 
been reported that a logistic regression may generate biased estimates in some 
instances29 and our simulations (Supplementary Note 3) were based on a probit 
model (i.e. a linear transformation of the inverse standard normal distribution) that 
can be well approximated by a linear model 30.  

 

URLs 

The UK Biobank via https://www.ukbiobank.ac.uk/ 

The PLINK version 1.9 via https://www.cog-genomics.org/plink/1.9/ 

The MTG 2 version 2.15 via https://sites.google.com/site/honglee0707/mtg2 

The LDSC via https://github.com/bulik/ldsc 

The ARIC study via https://sites.cscc.unc.edu/aric/ 
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GxEsum script via https://sites.google.com/site/honglee0707/mtg2 

 

 

Code Availability  

MTG2 version 2.15 for using RNM https://sites.google.com/site/honglee0707/mtg2 

GxEsum model is implemented in the script that are publicly available in 
https://sites.google.com/site/honglee0707/mtg2 

 

Acknowledgements  

This research is supported by Australian Research Council (DP 190100766, FT 
160100229), and the HPC resources were provided by the Australian Government 
through Gadi under the National Computational Merit Allocation Scheme (NCMAS) 
and by the university of South Australia through Tango 2.0. We would like to thank 
staff and participants of the ARIC study and the UK Biobank for their valuable 
contributions. The access code for the ARIC study is phs000090, and the reference 
number approved by the UK Biobank is 14575. UK Biobank data was approved by 
the North West Research Ethics Committee (REC, reference number 11/NW/0382).  

 

References  

1. Visscher, P.M., Brown, M.A., McCarthy, M.I. & Yang, J. Five years of GWAS discovery. Am J 
Hum Genet 90, 7-24 (2012). 

2. Sud, A., Kinnersley, B. & Houlston, R.S. Genome-wide association studies of cancer: current 
insights and future perspectives. Nature Reviews Cancer 17, 692-704 (2017). 

3. Pasaniuc, B. & Price, A.L. Dissecting the genetics of complex traits using summary association 
statistics. Nature Reviews Genetics 18, 117-127 (2017). 

4. Yang, J., Lee, S.H., Goddard, M.E. & Visscher, P.M. GCTA: a tool for genome-wide complex 
trait analysis. Am J Hum Genet 88, 76-82 (2011). 

5. Arnau-Soler, A. et al. Genome-wide by environment interaction studies of depressive 
symptoms and psychosocial stress in UK Biobank and Generation Scotland. Translational 
Psychiatry 9, 14 (2019). 

6. Gong, J. et al. Genome-Wide Interaction Analyses between Genetic Variants and Alcohol 
Consumption and Smoking for Risk of Colorectal Cancer. PLoS Genet 12, e1006296 (2016). 

7. Manning, A.K. et al. A genome-wide approach accounting for body mass index identifies 
genetic variants influencing fasting glycemic traits and insulin resistance. Nature Genetics 44, 
659-669 (2012). 

8. Robinson, M.R. et al. Genotype-covariate interaction effects and the heritability of adult 
body mass index. Nat Genet 49, 1174-1181 (2017). 

9. Bulik-Sullivan, B.K. et al. LD Score regression distinguishes confounding from polygenicity in 
genome-wide association studies. Nat Genet 47, 291-5 (2015). 

10. Finucane, H.K. et al. Partitioning heritability by functional annotation using genome-wide 
association summary statistics. Nat Genet 47, 1228-35 (2015). 

11. Gazal, S., Marquez-Luna, C., Finucane, H.K. & Price, A.L. Reconciling S-LDSC and LDAK 
functional enrichment estimates. Nat Genet 51, 1202-1204 (2019). 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2020. ; https://doi.org/10.1101/2020.05.31.122549doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.31.122549
http://creativecommons.org/licenses/by/4.0/


12. Hou, K. et al. Accurate estimation of SNP-heritability from biobank-scale data irrespective of 
genetic architecture. Nat Genet 51, 1244-1251 (2019). 

13. Ni, G., Moser, G., Schizophrenia Working Group of the Psychiatric Genomics, C., Wray, N.R. 
& Lee, S.H. Estimation of Genetic Correlation via Linkage Disequilibrium Score Regression 
and Genomic Restricted Maximum Likelihood. Am J Hum Genet 102, 1185-1194 (2018). 

14. Rosner, B. Fundamentals of biostatistics, (Nelson Education, 2015). 
15. Austin, P.C. Type I error rates, coverage of confidence intervals, and variance estimation in 

propensity-score matched analyses. Int J Biostat 5, Article 13 (2009). 
16. Lee, S.H., Wray, N.R., Goddard, M.E. & Visscher, P.M. Estimating missing heritability for 

disease from genome-wide association studies. American journal of human genetics 88, 294-
305 (2011). 

17. Munafò, M.R., Tilling, K., Taylor, A.E., Evans, D.M. & Davey Smith, G. Collider scope: when 
selection bias can substantially influence observed associations. International Journal of 
Epidemiology 47, 226-235 (2017). 

18. Lynch, M. & Walsh, B. Genetics and analysis of quantitative traits, (Sinauer Sunderland, MA, 
1998). 

19. Visscher, P.M. et al. Statistical power to detect genetic (co)variance of complex traits using 
SNP data in unrelated samples. PLoS Genet 10, e1004269 (2014). 

20. Sutin, A.R., Ferrucci, L., Zonderman, A.B. & Terracciano, A. Personality and obesity across the 
adult life span. Journal of personality and social psychology 101, 579-592 (2011). 

21. Rask-Andersen, M., Karlsson, T., Ek, W.E. & Johansson, Å. Gene-environment interaction 
study for BMI reveals interactions between genetic factors and physical activity, alcohol 
consumption and socioeconomic status. PLoS genetics 13, e1006977-e1006977 (2017). 

22. Hyppönen, E., Mulugeta, A., Zhou, A. & Santhanakrishnan, V.K. A data-driven approach for 
studying the role of body mass in multiple diseases: a phenome-wide registry-based case-
control study in the UK Biobank. The Lancet Digital Health 1, e116-e126 (2019). 

23. Lee, M.-R., Lim, Y.-H. & Hong, Y.-C. Causal association of body mass index with hypertension 
using a Mendelian randomization design. Medicine 97, e11252-e11252 (2018). 

24. Dempster, E.R. & Lerner, I.M. Heritability of Threshold Characters. Genetics 35, 212-236 
(1950). 

25. Ni, G. et al. Genotype-covariate correlation and interaction disentangled by a whole-genome 
multivariate reaction norm model. Nat Commun 10, 2239 (2019). 

26. Larsson, S.C., Bäck, M., Rees, J.M.B., Mason, A.M. & Burgess, S. Body mass index and body 
composition in relation to 14 cardiovascular conditions in UK Biobank: a Mendelian 
randomization study. European heart journal 41, 221-226 (2020). 

27. Laville, V. et al. VarExp: estimating variance explained by genome-wide GxE summary 
statistics. Bioinformatics 34, 3412-3414 (2018). 

28. Van Vleck, L.D. Estimation of Heritability of Threshold Characters. Journal of Dairy Science 
55, 218-225 (1972). 

29. Sun, R., Carroll, R.J., Christiani, D.C. & Lin, X. Testing for gene-environment interaction under 
exposure misspecification. Biometrics 74, 653-662 (2018). 

30. Lee, S.H., Goddard, M.E., Wray, N.R. & Visscher, P.M. A Better Coefficient of Determination 
for Genetic Profile Analysis. Genetic Epidemiology 36, 214-224 (2012). 

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2020. ; https://doi.org/10.1101/2020.05.31.122549doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.31.122549
http://creativecommons.org/licenses/by/4.0/

