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Abstract

Motivation: Gene networks are complex sets of regulators and interactions that govern cellular processes.

Their perturbations can disrupt regular biological functions, translating into a change in cell behaviour

and ability to respond to internal and external cues. Computational models of these networks can boost

translation of our scientific knowledge into medical applications by predicting how cells will behave in

health and disease, or respond to stimuli such as a drug treatment. The development of such models

requires effective ways to read, manipulate and analyse the increasing amount of existing, and newly

deposited gene network data.

Results: We developed BioSWITCH, a command-line program using the BioPAX standardised language

to "switch on" static regulatory networks so that they can be executed in GINML to predict cellular

behaviour. Using a previously published haematopoiesis gene network, we show that BioSWITCH

successfully and faithfully automates the network de-coding and re-coding into an executable logical

network. BioSWITCH also supports the integration of a BioPAX model into an existing GINML graph.

Availability: Source code available at https://github.com/CBigOxf/BioSWITCH.

Contact: clara.pavillet@msdtc.ox.ac.uk; francesca.buffa@oncology.ox.ac.uk

1 Introduction

Complex inner-cell molecular networks and their dynamical properties

underpin cellular behaviour and interactions with the surrounding

environment. The ability to model such network has the potential to

boost our understanding of health and disease and translate our knowledge

into useful clinical tools. We and others have recently illustrated how a

computational technique such as Agent-Based Modelling (ABM) lends

itself naturally to represent cells, as computational meta-agents, in a

three-dimensional (3D) environment equipped with an inner network

model of genes and molecules (Voukantsis et al. 2019, Letort et al. 2019).

As a result, co-occurring intrinsic molecular changes and extrinsic

factors influencing cellular behaviour can be modelled within the broader

biological context of the environment in which they act.

Achieving a meaningful link between genotype and phenotype via

gene networks, however, requires careful curation of deposited and newly

acquired biological data. The increased availability of high-throughput

technology has boosted our ability to acquire such data, and led to the

creation of large data repositories, including pathway repositories such as

Reactome (Fabregat et al., 2016), WikiPathways (Kutmon et al., 2016),

Pathway Commons (Cerami et al., 2011), and KEGG (Kanehisa et al.,

2017). These are assimilated by their aim to provide easy access to

biological entities and their corresponding interactions, and play a

vital role in the construction of comprehensive models requiring the

manual or computational extraction of information from literature and

databases. A caveat is the fractionation of biological data into a variety

of languages and formats across different data providers. This translates

into computational tools supporting the analysis of data written in some

formats but not others, a phenomenon that creates redundancy and

compatibility issues, highlighting the need for standardisation through

the development of a widely adopted format. Although there may never

be an Esperanto language, the Biological Pathway Exchange (BioPAX)

language (Demir et al., 2010), an OWL-based language represented in

the RDF/XML format (Horrocks et al., 2003), represents a community-

driven effort to increase uniformity of pathway data. Since its creation it is

becoming a widely used format and major databases increasingly support

file export to BioPAX. Software like Chisio BioPAX Editor (ChiBE)

(Babur et al., 2010) and Cytoscape (Shannon P, 2003), along with parsing

tools like Paxtools (Demir et al., 2013) and PaxtoolsR (Luna et al., 2016),

enable the visualisation and parsing of these models, respectively.

BioPAX networks however are static, with no established method

supporting their execution and generation of testable predictions. With

the aim to develop BioPAX-compatible executable pathway models,

Haydarlou et al. (2016) created a Java framework, BioASF, which partially

addresses the above. However, the network simulation rules need to
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be manually encoded in Java when a new model is developed, and no

user interface exists, which limits non-developers’ ability to generate

new models or expand them. BioSWITCH was developed to address

these limitations, and to automate the translation of BioPAX graphs into

executable models containing the necessary logical rules to be simulated

in different environments (i.e. turned ON). Importantly, the simulation

rules are generated directly from the BioPAX functional annotation of the

pathways, with no additional coding needed by the user. As we continue

to further develop BioSWITCH, we will increasingly be able to tap into

the comprehensive collection of biological data in the form of annotated

graphs, thereby facilitating the automated incorporation and scaling of

executable predictive models.

2 Description

2.1 Extracting Data from BioPAX Gene Regulatory

Networks to Construct Executable Models

BioSWITCH is a command-line application developped in Python. It

produces networks with directed edges in the GINML format (Naldi et al.,

2009), an extension of the Graph eXchange Language (GXL) (Holt et al.,

2006). It takes in a BioPAX Gene Regulatory Network model containing

the ontology classes in Figure 1a and extracts the graph ID, the specific

ontology terms for the biological entities and their interactions. It then

converts these into specific rules which can be used for the simulation of

the network. Specifically, once a BiopaxGinml object has been initialised,

the BioSWITCH function WriteGINML automatically generates a logical

GINML regulatory graph (cf. Figure 1b).

2.2 Simulating Gene Regulatory Networks

The generated GINML file encodes both the information required to create

a visual representation and the logical formalism for the network to be

executed. A handful of tools exist to execute biological networks, the

Gene Interaction Network Simulation (GINSim) environment, a freeware

Java application (Naldi et al., 2009), offers a user-friendly graph editor for

the manual creation and/or editing of models, and provides a database to

share the models for reuse by the scientific community.

A network, or graph, G = (N,E), is formally defined by a set of

objects, or nodes, (N ) connected together by links, or edges (E). In

GINSim, simple geometric vector shapes define the nodes (ie. genes,

proteins), whilst line segments drawn between nodes define the interaction

types (ie. activating → or inhibitory −|). Beyond this visual structure,

logical parameters can be defined governing the rules for activation of

individual nodes in the network, using for example, but not limited

to, the Boolean expressions: & = AND, ! = NOT, | = OR. Boolean

networks are governed by a binary rule-based dynamic system, where

nodes x1, x2, . . . , xn take a value of 1 or 0 (ON/OFF), respectively. In

the current implementation of BioSWITCH, we support Boolean logic

because of its popularity in the context of GRNs due to the switch-like

behaviour naturally exhibited by biological systems during the regulation

of their functional states (Leshi et al., 2018).

State transitions, from 0 to 1, or from 1 to 0, are influenced by the node’s

parent interactions, where relationships are either positive or negative. For

instance, if xi has ki parent nodes xi1
, xi2

, . . . , xki
, then the value of xi

at time t+ 1 is determined by its parent nodes’ status at time t, described

by the Boolean function:

xi(t+ 1) = fi
(

(xi1
(t), xi2

(t), . . . , xki
(t)

)

Assuming that the Boolean functions are time invariant, it follows that:























x1 = f1
(

(x11
(t), x12

(t), . . . , xk1
(t)

)

x2 = f2
(

(x21
(t), x22

(t), . . . , xk2
(t)

)

...

xn = fn ((xn1
(t), xn2

(t), . . . , xkn
(t))

(1)

The global state of the network at any time point is the collection of

states, as defined by 0 or 1, of each of the nodes. Thus, a network of N

nodes, can undertake 2N possible states, where the vector state is defined

as:

x(t) = ((x1(t), x2(t), . . . , xn(t))

and the state space as:

{0, 1}n = {(0, 0, . . . , 0), (0, 0, . . . , 1), . . . , (1, 1, . . . , 1)}

If we consider a network of three genes, a, b, c, its transitions would

thus be defined by the functions:











a = fa ((xa(t), xb(t), xc(t))

b = fb ((xa(t), xb(t), xc(t))

c = fc ((xa(t), xb(t), xc(t))

(2)

The 23 possible states such network can undertake is schematically

represented in Figure 1c, with stable states depicted in red. If reached,

stable states are those where the dynamics of the network do not change

over time. In the context of GRNs, the stable states translate biologically

into the predicted cellular phenotype. BioSWITCH, via the GINML

format, helps bridge a gap between BioPAX models and a simulation

environments, such as GINSim, thereby enabling the calculation of such

stable states, which allow us to predict the behaviour of network when

different perturbation are applied in silico, such as the knock-out/inhibition

(0) or activation (1) of a gene.

2.3 Merging and Expanding Gene Regulatory Networks

The increasing wealth and size of available network models calls for the

need to automate the process of merging information from individual

networks into unified, more comprehensive, networks. As such, we have

provided the functionality to combine GINML networks into BioSWITCH,

setting a starting point for the scalability of network models. Specifically,

the MergeTree class compares the node names in a case-insensitive manner.

If the nodes already exist, only the missing edges are added along with

their corresponding rules, if the nodes do not exist in the original network,

both nodes and edges are added to the graph along with any corresponding

rules.

2.4 Applications

In silico methodologies are clearly becoming indispensable tools to

navigate the ever growing volume of biological data. BioSWITCH enables

the implementation of static BioPAX network data into a user-friendly

executable simulation environment which is easily accessible to non-

developers. The expansion of GINML-encoded networks and the addition

of deposited knowledge to existing executable models has been done

manually, BioSWITCH addressed the need to automate this process.

Importantly, we and others have recently developed models using

the ABM framework, which can incorporate, amongst others, GRNs.

Among these, microC models these networks into an ABM 3D spatial

model of a cell, and execute them under different perturbation to infer

cellular behaviour (Voukantsis et al., 2019). As input microC accepts

the GXL-GINML format, which makes BioSWITCH-converted networks

executable within cellular agents. BioSWITCH can be applied to either

scale agents’ networks and/or integrate newly generated regulatory graphs

from non-GINML databases in an increasingly automated fashion.
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3 Results

To demonstrate and validate BioSWITCH functionality, we used a

BioPAX-encoded GRN controlling haematopoiesis from Haydarlou et al.

(2016), for which previously published simulation results were available.

Most importantly, this model was validated by the BioPAX validator

(Rodchenkov et al., 2013). Haematopoiesis, the process of blood

formation, is an intensely studied process mainly controlled by

transcriptional regulation. Bonzanni et al. (2013) created a Boolean

network model, linking 11 transcription factors that govern this

highly complex process. This original model was developed and

simulated in Petri-net, another commonly used mathematical modelling

language to describe discrete events of a dynamic system over time

(Latorre-Biel and Jimenez-Macias, 2018). A BioPAX version of this

model was later created by Haydarlou et al. (2016) for BioASF. We used

this deposited version to test BioSWITCH faithfulness in reproducing the

existing model. Namely, we converted the BioPAX deposited model into

an executable GINML file. This proved that we were able to reconstruct

the same network to be viewed and manipulated in GINSim (cf. Figure 1d).

We then computed stable states, and could verify that they were identical

to previously published simulation results in Haydarlou et al. (2016) and

Bonzanni et al. (2013). Moreover, the newly generated haematopoiesis

model resulted in the three following stable states: all 11 components set

to 0, where GATA1 and Scl are the only expressed transcription factors,

and a cyclic attractor of 32 substates. Finally, building on this example, we

demonstrate how BioSWITCH enables us to combine the graph in Figure

1d with a smaller network of three nodes to output a larger network which

can be seen in Figure 1e.

4 Discussion

Molecular systems orchestrating the biology of the cell involve a complex

network of interactions among various components (i.e. genes, proteins,

molecules). They can be studied in silico using a class of discrete models

where the behaviour of the network translates into the long-term expected

biological behaviour or cellular phenotype (Xiao, 2009). BioSWITCH

provides access to a user-friendly interface for non-developers to run

asynchronous and synchronous simulation experiments of BioPAX

models. Specifically, it enables the simulation of BioPAX models within

the GINSim environment. Using BioSWITCH we successfully converted

an existing haematopoiesis BioPAX model to an executable Boolean

logical GINML file. This allowed us to validate the BioSWITCH-

generated model against previously validated published simulations of

the same. We could verify that GINSim simulation of the GINML

haematopoiesis model reproduced the same three stable states, including

a cyclic attractor consisting of 32 substates, as the BioASF and Petri-Net

simulation results. In addition, BioSWITCH contributes to the collection

of GINML models to be reused by the scientific community and offers

a starting point for the automatic expansion of existing GINSim network

models.

This is not without limitations, however, since BioPAX files can

contain various levels of information. BioSWITCH relies on generalised

classes and rules which currently limits its use to BioPAX models with

control interactions of type TemplateReactionRegulation, thus limiting the

breadth of BioPAX models that can be tapped into. BioSWITCH served

as a proof of concept and we now aim to expand this tool to other BioPAX

models, newer releases will address these current limitations.

Importantly, we have already integrated BioSWITCH into an

established ABM microC framework (Voukantsis et al., 2019), enabling

us to integrate newly generated regulatory graphs into existing 3D cellular

agents. Generating executable gene networks to build computational

sub-agents will contribute to a deeper appreciation of the effect
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Fig. 1. a) Overview of the BioPAX ontology classes currently supported by BioSWITCH.

b) BioSWITCH workflow, enabling the conversion of a BioPAX model (OWL) to GINML,

with the optionality of directly integrating it into an existing GINML network. c) Schematic

diagram representing the state space of a Boolean model composed of 3 nodes. Stable states

are shown in red. d) Generated haematopoiesis GINML model by BioSWITCH in GINSim.

e) Figure d merged by BioSWITCH with a smaller BioPAX network consisting of three

additional nodes and one overlapping node.

molecular changes have in a given environment, and may help elucidate

mechanisms behind cell behaviour observed in different experimental

models. BioSWITCH opens the door to the automatic generation of such

computational representations by ’switching on’ static network models

thereby providing a new perspective from which to study their dynamics

and response to perturbations in silico.

Acknowledgements

We are grateful for the advice received from the BioPAX community and

Pathway Commons founders, in particular Dr. Augustin Luna from the

Dana-Farber Cancer Institute at Harvard Medical School. We also thank

Dr. Charalampos Triantafyllidis for testing the BioSWITCH software.

Funding

This work was supported by the Medical Research Council and the

European Research Council (MICROC:772970 to FMB).

review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peerthis version posted May 31, 2020. ; https://doi.org/10.1101/2020.05.29.122200doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.29.122200


✐

✐

“output” — 2020/5/29 — 8:19 — page 4 — #4
✐

✐

✐

✐

✐

✐

4 Pavillet et al.

References

Voukantsis D, Kahn K, Hadley M, Wilson R, Buffa F. Modelling

genotypes in their microenvironment to predict single- and multi-cellular

behaviour. GigaScience 2019;giz010.

Letort G, Montagud A, Stoll G, Heiland R, Barillot E, Macklin P,

et al. PhysiBoSS: a multi-scale agent-based modelling framework

integrating physical dimension and cell signalling. Bioinformatics

2019;35(7):1188–1196.

Fabregat A, Sidiropoulos K, Garapati P, Gillespie M, Hausmann K, Haw

R, et al. The Reactome pathway Knowledgebase. Nucleic Acids Res

2016;44:D481–D487.

Kutmon M, Riutta A, Nunes N, Hanspers K, Willighagen EL, Bohler A,

et al. WikiPathways: capturing the full diversity of pathway knowledge.

Nucleic Acids Research 2016;44:D488–D494.

Cerami EG, Gross BE, Demir E, Rodchenkov I, Babur O, Anwar N, et al.

Pathway Commons, a web resource for biological pathway data. Nucleic

Acids Res 2011;39:D6850–D690.

Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new

perspectives on genomes, pathways, diseases and drugs. Nucleic Acids

Res 2017;45:D353–D361.

Demir E, Cary M, S P, et al. The BioPAX community standard for pathway

data sharing. Nature Biotechnology 2010;28:935–942.

Horrocks I, Patel-Schneiderb PF, Harmelenc F. From SHIQ and RDF

to OWL: the making of a Web Ontology Language. Web Semantics:

Science, Services and Agents on the World Wide Web 2003;1(1):7–26.

Babur O, Dogrusoz U, Demir E, Sander C. ChiBE: interactive visualization

and manipulation of BioPAX pathway models. Bioinformatics

2010;26(3):429–431.

Shannon P OOBNWJRDANSBIT Markiel A. Cytoscape: a software

environment for integrated models of biomolecular interaction networks.

Genome Research 2003;13(11):2498–2504.

Demir E, Babur O, Rodchenkov I, Aksoy BA, Fukuda KI, Gross B, et al.

Using Biological Pathway Data with Paxtools. PLoS Comput Biol

2013;9.

Luna A, Babur O, Aksoy BA, Demir E, Sander C. PaxtoolsR:

pathway analysis in R using Pathway Commons. Bioinformatics

2016;32(8):1262–1264.

Haydarlou R, Jacobsen A, Bonzanni N, Feenstra K, Abeln S, Heringa J.

BioASF: a framework for automatically generating executable pathway

models specified in BioPAX. Bioinformatics 2016;32:i60–i69.

Naldi A, Faure DBA, Lopez F, Thieffry D, Chaouiya C. Logical modelling

of regulatory networks with GINsim 2.3. Biosystems 2009;97(2):134–

139.

Holt RC, Schurr A, Sim SE, Winter A. GXL: A graph-based standard

exchange format for reengineering. Science of Computer Programming

2006;60:149–170.

Leshi C, Don K, Sandhya S. A Novel Data-Driven Boolean Model for

Genetic Regulatory Networks. Frontiers in Physiology 2018;9:1328.

Rodchenkov I, Demir E, Sander C, Bader GD. The BioPAX Validator.

Bioinformatics 2013;29(20):2659–2660.

Bonzanni N, A G, Feenstra K, Schutte J, Kinston S, Miranda-Saavedra

D, et al. Hard-wired heterogeneity in blood stem cells revealed using a

dynamic regulatory network model. Bioinformatics 2013;29:i80–i88.

Latorre-Biel JI, Jimenez-Macias E. Petri Net Models Optimized for

Simulation, Simulation Modelling Practice and Theory. IntechOpen

2018;.

Xiao Y. A tutorial on analysis and simulation of boolean gene regulatory

network models. Current Genomics 2009;10:511–525.

review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peerthis version posted May 31, 2020. ; https://doi.org/10.1101/2020.05.29.122200doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.29.122200

	Introduction
	Description
	Extracting Data from BioPAX Gene Regulatory Networks to Construct Executable Models
	Simulating Gene Regulatory Networks
	Merging and Expanding Gene Regulatory Networks
	Applications

	Results
	Discussion

