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Abstract 1	

 2	

The site frequency spectrum in human populations is not accurately modeled by an infinite sites model, 3	

which assumes that all mutations are unique. Despite the pervasiveness of recurrent mutations, we lack 4	

computational methods to identify these events at specific sites in population sequencing data. Rare 5	

alleles that are identical-by-descent (IBD) are expected to segregate on a long, shared haplotype 6	

background that descends from a common ancestor. However, alleles introduced by recurrent mutation or 7	

by non-crossover gene conversions are identical-by-state and will have a shorter expected shared 8	

haplotype background. We hypothesized that the expected difference in shared haplotype background 9	

length can distinguish IBD and non-IBD variants in population sequencing data without pedigree 10	

information. We implemented a Bayesian hierarchical model and used Gibbs sampling to estimate the 11	

posterior probability of IBD state for rare variants, using simulations to demonstrate that our approach 12	

accurately distinguishes rare IBD and non-IBD variants. Applying our method to whole genome 13	

sequencing data from 3,621 individuals in the UK10K consortium, we found that non-IBD variants 14	

correlated with higher local mutation rates and genomic features like replication timing. Using a heuristic 15	

to categorize non-IBD variants as gene conversions or recurrent mutations, we found that potential gene 16	

conversions had expected properties such as enriched local GC content. By identifying recurrent 17	

mutations, we can better understand the spectrum of recent mutations in human populations, a source of 18	

genetic variation driving evolution and a key factor in understanding recent demographic history.  19	

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2020. ; https://doi.org/10.1101/2020.05.26.117358doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.26.117358
http://creativecommons.org/licenses/by-nc/4.0/


	 3	

Introduction 20	

 21	

Recurrent mutations are repeated mutational events at the same nucleotide position in multiple individuals 22	

in a population. The frequency of recurrent mutations and their relevance to evolutionary genetics studies 23	

have been examined since the beginning of the field of population genetics (e.g. Wright 1931; Haldane 24	

1933; Wright 1937). The frequency that a recurrent mutation is observed in a sample depends on many 25	

factors, including the per-base-pair mutation rate, the number of chromosomes surveyed, the effective 26	

population size, as well as the demographic history of the population surveyed. Distinguishing recurrent 27	

mutations from variants whose alleles are all inherited identical-by-descent (IBD) is critical to a complete 28	

understanding of the human germline mutation rate, and to population genetic methods that make 29	

inferences from the observed number and frequency of genetic variants in a population. 30	

As the genetics community has surveyed large, rapidly growing populations with a finite genome 31	

size, such as modern humans (Harpak et al. 2016), it has been observed that recurrent mutations occur at 32	

appreciable frequency. For example, in the Exome Aggregation Consortium dataset of 60,706 human 33	

exomes, there is a marked absence of singleton CpG transitions relative to other mutation types (Lek et al. 34	

2016). This observation could be explained by the presence of recurrent mutations saturating these highly 35	

mutable sites in this large sample, resulting in two or more sampled individuals segregating identical-by-36	

state alleles at CpG sites. 37	

 One implication of this observation is that the presence of recurrent mutations in a large sample 38	

may result in a suboptimal calibration of summary data typically utilized in population genetic inference, 39	

like the site frequency spectrum (SFS). The SFS is the distribution of the number of observed variants at 40	

allele counts 1 to n-1 in a sample of n chromosomes. Many modern population genetics methods use the 41	

SFS to infer the demographic history of a sample (Gutenkunst et al. 2009; Lukic and Hey 2012; Excoffier 42	

et al. 2013; Bhaskar et al. 2015; Jouganous et al. 2017). These approaches generally assume an infinite 43	

sites model with no recurrent mutations, but the human site frequency spectrum is not well explained by 44	

an infinite sites model (Harpak et al. 2016). Previous work has described the SFS allowing for recurrent 45	

mutations, relying on observed recurrent mutations in the form of triallelic sites (Jenkins and Song 2011; 46	

Jenkins et al. 2014; Ragsdale et al. 2016). If recurrent mutations are not accounted for, the SFS will be 47	

shifted to higher allele frequencies relative to the SFS that incorporated recurrent mutations at lower 48	

frequencies. This could impact the accuracy of demographic parameter inference. In particular, methods 49	

that infer the magnitude of recent population growth, which rely on rare variants, may incur bias if they 50	

do not take recurrent mutations into account. Similarly, the magnitude of purifying selection may be 51	

underestimated if the frequencies of rare variants are overestimated due to undetected recurrent mutation. 52	
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Finally, estimates of mutation rates from population genetic data that do not incorporate recurrent 53	

mutations may be biased downwards. 54	

 Beyond population genetic applications, identifying specific recurrent mutations could be useful 55	

in the context of genotype-phenotype association through tests of rare variant burden. Rare variant burden 56	

approaches are increasingly used to associate genomic regions with disease status or quantitative traits in 57	

large-scale sequencing datasets (Nicolae 2016). In general, these approaches test the null hypothesis that 58	

the frequency of rare variants in a genomic region is independent of the phenotype of interest. If a gene is 59	

causal for a trait, we may expect to observe a higher frequency of rare variants, but also more recurrent 60	

variants especially at highly mutable nucleotide positions that have a substantial impact on the trait. If 61	

recurrent mutations could be identified, they could potentially improve power to associate the gene with 62	

the trait. Recurrent mutations have been used in this context in family-based studies, where recurrent 63	

mutations can be identified as de novo events in unrelated families (e.g. Kirby et al. 2013; O’Roak et al. 64	

2014). We are not aware of any examples of recurrent mutations being used in large-scale population-65	

based sequencing studies of rare disease associations. 66	

In what follows, we propose a computational approach to infer the presence of a recurrent 67	

mutation at a genomic site. The key idea underlying our approach is to use the genetic variation linked to 68	

rare variants to distinguish alleles at a variant position as identical-by-descent (IBD) or non-IBD. Rare 69	

IBD variants are usually surrounded by a long, shared haplotype on all chromosomes carrying the variant 70	

(i.e., an IBD segment), because all segregating alleles derive from a recent ancestral mutation. If the 71	

variant arose a small number of generations ago, there have been few opportunities for recombination 72	

events to shorten the shared IBD segment. Thus, the length of the IBD segment shared across carriers is 73	

inversely related to the age of the variant (Haldane 1919; Mathieson and McVean 2014). In contrast, 74	

recurrent mutations or gene conversions can occur on any random haplotype background in a population, 75	

and thus we expect that their local time to the most recent common ancestor (TMRCA) will be on average 76	

older than an IBD variant of the same allele frequency. 77	

Leveraging the relationship between local TMRCA and the length of a shared IBD segment, we can 78	

identify rare variants that appear non-IBD. However, it is important to consider many potential reasons 79	

why we might observe a short IBD segment around a rare variant. Beyond recurrent mutation, non-80	

crossover gene conversion, proximity to a region of extremely high local recombination rate, or simply 81	

chance might also explain specific events. In addition, if one or multiple copies of a rare variant are 82	

genotyping errors, this could result in the same signature of a shorter than expected shared IBD segment 83	

between carriers. Thus, any approach that aims to identify recurrent mutations from data must work to 84	

distinguish amongst these types of events.  85	
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We propose to identify rare variants that fall on the extreme short end of shared IBD segment lengths 86	

and attempt to categorize these likely non-IBD variants by the possibilities enumerated above. In addition 87	

to the IBD segment length, additional genomic annotations can help to distinguish between these causes, 88	

such as the mutation’s sequence context (e.g. a CpG mutation), the local recombination rate, and local GC 89	

content. 90	

 While previous efforts have leveraged IBD tracts to infer mutation and gene conversion rates 91	

(Palamara et al. 2015), as well as to estimate allele ages (Palamara et al. 2012; Mathieson and McVean 92	

2014; Platt et al. 2019; Albers and McVean 2020), we are not aware of any previous method designed to 93	

specifically identify recurrent mutations and gene conversion events at specific genomic positions at 94	

genome-wide scale. In today’s era of whole genome sequencing of thousands of individuals from a 95	

population, categorizing specific rare variants as likely recurrent mutations or gene conversions is now 96	

uniquely possible. Here, we describe a Bayesian hierarchical model to identify non-IBD rare variants, 97	

using population genetic simulations to assess its precision and accuracy. We then apply our approach to 98	

sequencing data of 3,621 individuals from the UK10K dataset, and partition high-confidence non-IBD 99	

rare variants as those likely to be recurrent mutations or gene conversions. 100	

 101	

New Approaches 102	

 103	

Theory 104	

Previous work to model the expected TMRCA between two IBD alleles or two random alleles in a 105	

population provides a framework through which these states can be distinguished in data. Measuring the 106	

accumulation of mutations on a haplotype, i.e., the mutational clock, is useful for estimating the age of 107	

older, common variants; however, for our purpose here to distinguish rare recurrent and IBD variants, 108	

there will be few if any linked mutations more recent than the focal variant. Therefore, the mutational 109	

clock does not help us distinguish IBD and non-IBD rare alleles, and we rely solely on the recombination 110	

clock for inference. 111	

 The theoretical distributions of the pairwise TMRCAs for IBD or non-IBD alleles for a range of 112	

allele counts are plotted in Supplementary Figure 1 (Supplementary Methods). As the IBD allele 113	

count increases, the mean TMRCA also increases, reflecting that higher frequency alleles tend to be 114	

older; meanwhile, the TMRCA distribution between non-IBD allele pairs is unchanging because it is not 115	

a function of the allele frequency. Thus, the difference between the expected TMRCA for IBD vs. non-116	

IBD variants increases with decreasing allele frequency. 117	

Though the TMRCA of a genetic variant is not directly observable, it can be estimated by the 118	

length of the haplotype shared by carriers of the variant. The distance to the nearest recombination event 119	
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on either side of a genetic variant between a pair of alleles can be modeled as exponentially distributed 120	

with rate proportional to the TMRCA (Palamara et al. 2012; Mathieson and McVean 2014). The expected 121	

difference in the TMRCA between a rare variant segregating with IBD alleles and a variant position with 122	

recurrent mutations (Supplementary Figure 1) translates into IBD variants having, on average, longer 123	

pairwise distances to obligate recombination events compared to recurrent sites of the same allele 124	

frequency (Supplementary Figure 2). Recent methods have inferred the age of alleles in large-scale 125	

population datasets by leveraging this relationship between haplotype background and the TMRCA 126	

(Palamara et al. 2012; Platt et al. 2019; Albers and McVean 2020), and by constructing local genealogies 127	

(Kelleher et al. 2019; Speidel et al. 2019). However, these tools assume an infinite sites model (i.e., no 128	

recurrent mutations), and do not explicitly attempt to identify recurrent mutations. Existing approaches to 129	

identify recurrent mutations rely on family relationships, or assume that variants present at very rare 130	

frequencies in distantly related populations are recurrent without explicitly identifying variants as non-131	

IBD (e.g. Pagnier et al. 1984; The 1000 Genomes Project Consortium 2012). Thus, our goal was to 132	

develop an approach to identify non-IBD variants that scales to large, whole genome population 133	

sequencing studies with thousands of individuals. 134	

 While recombination breakpoints cannot be directly observed in population sequencing data, 135	

patterns of genetic variation can give us an estimate of the location of these events. Here, we are 136	

interested in rare genetic variants that are difficult to accurately phase. Additionally, the signature of 137	

recurrent mutation itself could introduce error into statistical phasing algorithms. Thus, our method 138	

utilizes unphased diploid genotypes to estimate the recombination distances on either side of a pair of 139	

alleles. With diploid genotypes for a pair of individuals each carrying a focal allele, one can measure the 140	

obligate recombination distance as the physical span to the first opposite homozygote genotype between 141	

the two individuals (Supplementary Figure 3). No genealogy without recombination is compatible with 142	

the observed genotypes of these two sites (the focal allele and the site of the opposite homozygote 143	

genotypes), and so we assume a recombination event has occurred between them (Mathieson and 144	

McVean 2014). Thus, the obligate recombination distance gives an estimate of the true recombination 145	

distance. 146	

 147	

Statistical Model 148	

We considered a Bayesian hierarchical model for the pairwise recombination distances from a sample of 149	

variants of a given allele count, which allowed us to learn the model parameters directly from the data 150	

(Figure 1). We modeled the sampled variants as a finite mixture of IBD (k=1) or non-IBD (k>1, with 151	

each possible partition of alleles for a non-IBD variant given a different value of k), with mixture 152	

proportions πk. For example, a non-IBD variant of allele count 4 has two possible partitions: a singleton 153	
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and an IBD tripleton (1:3), or two doubletons (2:2). Each variant of allele count A has 𝑛 = !
!  allele 154	

pairs. The TMRCA (t) for an allele pair was sampled from a gamma distribution with shape α and rate β, 155	

with one gamma distribution of t for IBD allele pairs and one for non-IBD allele pairs, For non-IBD allele 156	

pairs, we estimated α and β from multiallelic sites, and for IBD allele pairs we fixed α and performed 157	

sampling for β, over a range of possible values for α. For each variant, the possible permutations of allele 158	

pair assignments of IBD or non-IBD states are denoted by j. For IBD variants, all allele pairs are IBD; for 159	

non-IBD variants, the possibilities depend on the partition k. We modeled the left and right recombination 160	

distances (dL, dR) for each allele pair following an exponential distribution with rate proportional to t. We 161	

used Gibbs sampling to sample from the marginal posterior density of each parameter, as we could 162	

estimate these densities from the full conditional distributions. Below we outline these expressions. 163	

Mixture proportions (π): Using a multinomial likelihood for the probability of the assignments k based 164	

on proportions π, we used the conjugate prior Dirichlet distribution to get a Dirichlet posterior for the 165	

probabilities of π given the observed k assignments. Thus we have the likelihood function: 166	

 𝑘|𝜋~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1,𝜋) ( 1 ) 

We used a Dirichlet prior for π: 167	

 𝜋~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 𝛿  ( 2 ) 

 168	

The resulting posterior probability followed a Dirichlet distribution: 169	

 
𝜋|𝑘 ∝ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 𝛿 + (𝑘 = 𝑘!)

!

!!!

 
( 3 ) 

 170	

TMRCA (t): The likelihood of the pairwise recombination distance d to one side of a variant (in 171	

centiMorgans), given TMRCA t, followed an exponential distribution (Palamara et al. 2012): 172	

 𝑑|𝑡~𝐸𝑥𝑝
𝑡
50

 ( 4 ) 

 173	

We used a gamma prior for t: 174	

 𝑡|𝛼,𝛽~Γ(𝛼,𝛽) ( 5 ) 

 175	

The resulting posterior distribution was another gamma distribution: 176	

 
𝑡|𝑑 ∝  Γ 𝛼 + 𝑛,𝛽 +

𝑑!!
!!!
50

 
( 6 ) 

 177	
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Shape (α) and rate (β) of the TMRCA distribution: We modeled the distribution of t as a gamma 178	

distribution with shape α and rate β: 179	

 𝑡| 𝛼,𝛽~ Γ(𝛼,𝛽) ( 7 ) 

 180	

We used the conjugate priors for a gamma distribution rate parameter (β) with known shape (α), a second 181	

gamma distribution: 182	

 𝛽~ Γ(𝛼!,𝛽!) ( 8 ) 

 183	

The posterior for β then also follows a gamma distribution: 184	

 
𝛽|𝑡,𝛼~ Γ 𝛼! + 𝑛𝛼,𝛽! + 𝑡!

!

!!!

 
( 9 ) 

 185	

Full conditional distributions: To sample from the posterior for each unknown parameter, we derived the 186	

full conditional distributions below, ignoring conditionally independent terms. In each iteration of the 187	

Gibbs sampler, we sample each parameter from its full conditional distribution, conditioned on the current 188	

values of all other parameters. The sampling algorithm is described in the Supplementary Methods. 189	

 190	

π, mixture proportions of k: 191	

 
𝑓 𝜋 𝑑, 𝑘, 𝑗, 𝑡,𝛼,𝛽,𝛼!,𝛽! = 𝑓 𝜋 𝑘 ∝ 𝑓 𝑘 𝜋 𝑓 𝜋 = 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 𝛿! + 𝑘! = 𝑘

!

!!!

 
(10) 

 192	

β, rate parameter of TMRCA distributions: 193	

 
𝑓 𝛽 𝑑, 𝑘, 𝑗, 𝑡,𝜋,𝛼,𝛼!,𝛽! = 𝑓 𝛽 𝑡,𝛼,𝛼!,𝛽! ∝ Γ 𝛼! + 𝑛𝛼,𝛽! + 𝑡!

!

!!!

 
(11) 

 194	

t, TMRCA: 195	

 𝑓 𝑡 𝑑, 𝑘, 𝑗,𝜋,𝛼,𝛽,𝛼!,𝛽! = 𝑓 𝑡 𝑑,𝛼,𝛽 ∝ 𝑓 𝑑 𝑡 𝑓 𝑡 𝛼,𝛽 = 𝐸𝑥𝑝 𝑑;
𝑡
50

Γ 𝑡;𝛼,𝛽  (12) 

 196	

k, variant label (IBD or non-IBD partition): 197	

 𝑓 𝑘 𝑑, 𝑗, 𝑡,𝜋,𝛼,𝛽,𝛼!,𝛽! ∝ 𝑓 𝑑, 𝑗, 𝑡,𝜋,𝛼,𝛽,𝛼!,𝛽! 𝑘 𝑓 𝑘 =  𝑓 𝑑 𝑡, 𝑗, 𝑘 𝑓 𝑡 𝛼,𝛽 𝑓 𝑘

= 𝐸𝑥𝑝 𝑑;
𝑡
50

Γ 𝑡;𝛼,𝛽 𝜋! 

(13) 

 198	
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j, the partition of non-IBD variants: 199	

 𝑓 𝑗 𝑑, 𝑘, 𝑡,𝜋,𝛼,𝛽,𝛼!,𝛽! ∝ 𝑓 𝑑, 𝑘, 𝑡,𝜋,𝛼,𝛽,𝛼!,𝛽! 𝑗 𝑓 𝑗 ∝ 𝑓 𝑑 𝑡, 𝑗, 𝑘 𝑓 𝑡 𝛼! ,𝛽!

= 𝐸𝑥𝑝 𝑑;
𝑡!
50

Γ 𝑡!;𝛼! ,𝛽!  

(14) 

 200	

Results 201	

 202	

Application to simulated genetic data 203	

To evaluate our approach, we applied it to simulated genetic data including non-IBD (recurrent) 204	

mutations. Using the forward genetic simulation engine SLiM (Haller and Messer 2017), we generated 205	

genomic segments of length 10Mb with uniform mutation and recombination rates (µ = 2.5x10-8 206	

mutations per site per generation, r = 1x10-8 events per site per generation), and no selection, following a 207	

European demographic model (Bhaskar et al. 2015). For each simulation, we measured the pairwise 208	

obligate recombination distances of recurrent and IBD variants with allele count ≤10 in the 2Mb at the 209	

center of each genomic segment. The number of recurrent mutations in these simulations is plotted in 210	

Supplementary Figure 4. 211	

We applied our Bayesian hierarchical model to the obligate recombination distances from these 212	

simulations, and calculated the posterior probability of a variant being non-IBD as the fraction of 213	

posterior samples with k>1 (Supplementary Figure 5). We then evaluated the ability of this posterior 214	

estimate to distinguish the IBD and recurrent variants from their obligate recombination distances. The 215	

receiver operating characteristic (ROC) curves in Figure 2 show the relationship between true and false 216	

positive rates for allele counts 2-10. The precision and recall of our approach depends on the fraction of 217	

variants that are non-IBD (Figure 2), with higher recurrent fractions having superior performance. 218	

 We next performed a battery of sensitivity studies, simulating population genomics features 219	

known to influence patterns of genetic variation that may impact the robustness of our estimates. First, we 220	

performed simulations of genomic segments including genes and deleterious mutations, and applied our 221	

approach to these simulations to test the effect of selection on our approach to identify non-IBD variants 222	

(Methods). We found that including background selection had little impact on the power of our approach 223	

to identify recurrent mutations (Supplementary Figure 6; Supplementary Table 1). We suspect that 224	

this may be due to the fact that the rare variants we are interested in are largely quite new 225	

(Supplementary Figure 7); thus, the difference in recombination distance between IBD and recurrent 226	

variants in these simulations is not strongly altered by the presence of weak negative selection. 227	

Next, we evaluated the performance of our approach for simulated variants flanked by 10,000 228	

base pair recombination hotspots, with hotspot recombination rates of 5x10-6, 1x10-6, or 5x10-7 events per 229	
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base pair per generation (Methods). For variants close to a hotspot, we expected a smaller difference 230	

between recurrent and IBD allele pairs’ recombination distances, due to a weaker relationship between 231	

recombination distance and TMRCA. When we applied our Bayesian hierarchical model to the 232	

simulations with hotspots, we found that our power to distinguish IBD and recurrent variants decreased 233	

with increased hotspot strength (Supplementary Figure 8; Supplementary Table 1). 234	

 235	

Comparison to other approaches to identify non-IBD variants 236	

To provide alternative approaches for comparison and benchmarking purposes, we developed a 237	

composite-likelihood approach to identify non-IBD allele pairs, based on coalescent theory of the 238	

TMRCA for IBD or recurrent allele pairs in an exponentially growing population (Supplementary 239	

Methods). While the likelihood-based approach had some power to classify events, this approach 240	

performed less well than the Bayesian hierarchical model (Supplementary Figure 9, Supplementary 241	

Table 2). For allele counts <7, the likelihood-based approach had substantially worse power at the lowest 242	

false positive rates, the relevant range for identifying non-IBD variants. 243	

 While no genome-wide scalable approach to identify specific non-IBD variants exists to our 244	

knowledge, there are recently developed methods that estimate the age of a variant in large scale genome-245	

wide sequencing data (Platt et al. 2019; Albers and McVean 2020). Non-IBD mutations could potentially 246	

be identified as outliers in the age estimates of each allele frequency class by these approaches. We 247	

estimated simulated variants’ ages using the estimator runtc (Platt et al. 2019) (Methods). We used these 248	

age estimates to distinguish simulated IBD and recurrent variants, and plot the performance of this 249	

approach in Supplementary Figure 10. We find that the age estimates have limited power to distinguish 250	

non-IBD variants, and that runtc’s performance at this task – a task we note that it was not explicitly 251	

designed for – performs poorly compared to our Bayesian hierarchical approach (Supplementary Table 252	

2). 253	

 254	

Application of Bayesian hierarchical model to UK10K sequencing data 255	

We applied our method to identify non-IBD variants in whole-genome sequencing data in 3,621 256	

individuals from the UK10K project (Walter et al. 2015). Individuals from the ALSPAC and TWINSUK 257	

studies used here were sequenced to average depth ~7x and passed the UK10K project quality control 258	

filters. We measured the obligate recombination distance for biallelic and multiallelic single nucleotide 259	

variants that passed the UK10K quality filters. Based on the decreased performance of our method with 260	

increased allele count, we restricted our analysis to variants of allele count less than or equal to 5. 261	

 We applied our approach to a mixture of 80% biallelic and 20% multiallelic sites, in order to use 262	

multiallelic sites as a positive control for non-IBD mutations. We compared the empirical cumulative 263	
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distribution of posterior probabilities for multiallelic and biallelic sites, and as expected we observed that 264	

multiallelic sites had higher posterior probabilities of being non-IBD (Supplementary Figure 11). We 265	

used these distributions to determine the threshold of posterior probabilities we called “likely non-IBD” 266	

for all biallelic variants at allele counts 2-5, which we then used in downstream analyses. 267	

 268	

Non-IBD variants correlate with local sequence context 269	

To assess the accuracy of our recurrent mutation calls, we took advantage of the relationship between 270	

local sequence context and mutation rate (Aggarwala and Voight 2016). Under a Poisson model of 271	

mutation, sequence contexts with a higher mutation rate should have a higher probability of recurrent 272	

mutation relative to other contexts (i.e., "double hits"). If non-IBD variant calls reflect recurrent 273	

mutations, we would expect to see a correlation between the fraction of non-IBD variants and the 274	

mutability of sequence contexts. Conversely, if our approach randomly selects a subset of sites rather than 275	

true recurrent mutations, we would not expect to see a relationship between sequence context and fraction 276	

of sites called recurrent. Using sequence-context estimated polymorphism probabilities calculated from 277	

the UK10K dataset, we calculated an expected fraction of recurrent variants for each 5 base-pair (5-mer) 278	

sequence context and allele count (Methods). 279	

Across all 5-mer sequence contexts, we observed a significant correlation between expected and 280	

observed fractions (e.g. Pearson’s correlation = 0.81, P < 10-100 for allele count 2; Figure 3; 281	

Supplementary Table 3). The observed fraction of non-IBD called sites was higher than expected for 282	

non-CpG->T contexts, and lower than expected for CpG->T contexts (Figure 3; Supplementary Table 283	

4). Within CpG->T contexts, we also observed a significant correlation between expected and observed 284	

fractions, though for all contexts the observed fraction of non-IBD calls was less than expected 285	

(Supplementary Figure 12; Supplementary Table 4). Within non-CpG->T contexts, the correlation 286	

between expected and observed was significant for all allele counts except for variants of allele count 5, 287	

which have the smallest sample size (Supplementary Figure 13; Supplementary Table 4). These 288	

results suggest that at sequence contexts with relatively lower polymorphism probabilities, there was a 289	

higher rate of non-IBD calls. Non-CpG->T contexts represent 82% of the polymorphic sites tested, but 290	

68% of sites called non-IBD. 291	

 292	

Additional genomic annotations correlated with non-IBD variants 293	

Next, to understand which genomic features in addition to local mutation rate are associated with non-294	

IBD variants, we performed a linear regression with the posterior probability of each variant being non-295	

IBD as the response variable (6,763,324 sites; with 665,340 called non-IBD). In separate regressions for 296	

each allele count, we included 7-mer polymorphism probabilities, background selection, GC content, 297	
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replication timing, local recombination rate, distance to a recombination hotspot, germline CpG 298	

methylation levels, the variant calling quality measure VQSLOD, and read depth as predictor variables. 299	

We transformed the values of each annotation to z-scores, and report the odds ratios and 95% confidence 300	

interval for each annotation in Figure 4 (Supplementary Table 5). All annotations were significantly 301	

associated with the outcome (P<1x10-10). In addition, we performed a logistic regression with IBD/non-302	

IBD calls for each variant as the response variable (Supplementary Figure 14; Supplementary Table 303	

5). We also performed regressions with CpG->T sites only (Supplementary Figure 15, Supplementary 304	

Table 5). Below, we highlight the annotations included as predictors, our prior hypotheses about their 305	

relationships with recurrent mutations, and the results of the regression models. 306	

 307	

Polymorphism probability: As shown in our analysis of expected vs. observed recurrent fraction for 5-308	

mer sequence contexts above, polymorphism probability was strongly positively correlated with non-IBD 309	

status. As previous work has shown that a 7-mer model explains additional variation in genetic variation 310	

over a 5-mer model (Aggarwala and Voight 2016), we find that a 7-mer polymorphism probability 311	

calculated in UK10K in the logistic regression model was associated with our non-IBD calls.  312	

GC content: GC content varies across the human genome, and is correlated with gene content, repetitive 313	

elements, DNA methylation, recombination rates, and substitution probabilities (Arndt et al. 2005). In our 314	

regression model, increased local GC content (measured at a 1kb scale) was associated with increased 315	

probability of a variant being called non-IBD. 316	

Replication timing: Later replication timing has been linked to higher rates of de novo mutations in the 317	

human genome, specifically in the offspring of relatively younger fathers (Francioli et al. 2015). Our 318	

regression model with replication timing estimates (Koren et al. 2012) was consistent with these results, 319	

with variants in late replicating regions significantly more likely to be called as recurrent (positive 320	

replication timing values mean earlier replication). 321	

Background selection: We included B-values (McVicker et al. 2009), a measure of background selection, 322	

or purifying selection due to linkage with deleterious alleles. Lower B-values indicate a lower fraction of 323	

neutral variation in a region, i.e., stronger background selection. We expected that increased background 324	

selection would be associated with increased recurrent mutation, as linkage to deleterious alleles would 325	

result in variants being removed from the population and thus present at lower frequencies. Recurrent 326	

mutations would then be more likely to be present as they effectively shift the site frequency spectrum 327	

towards more rare alleles. Our results are consistent with this expectation, with an odds ratio less than one 328	

for B-values. 329	

Local recombination rate and distance to recombination hotspots: The results of our simulations 330	

suggested that we have lower power to identify recurrent variants located near a recombination hotspot 331	
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(Supplementary Figures 8, 9). Indeed, we observed that both an increased local recombination rate and a 332	

shorter distance to a recombination hotspot were correlated with a lower probability of a site being called 333	

as recurrent. 334	

Methylation levels at CpG sites: Spontaneous deamination of 5-methylcytosine at CpG sites results in a 335	

substantial increase in C-to-T transition mutations. We included CpG methylation levels measured in 336	

testes and ovaries in our model, expecting that CpG sites with higher methylation levels are more likely to 337	

spontaneously deaminate, increasing mutation rates generally and thus increase recurrent mutation 338	

probabilities. Methylation levels in testes and ovaries were correlated (Pearson's correlation coefficient = 339	

0.27, P<2x10-16), but we noted that increased methylation in both tissue types independently predicted an 340	

increased posterior probability of a variant being non-IBD. 341	

VQSLOD and read depth: We observed a significant relationship between sequencing quality, measured 342	

both by read depth and variant quality score, and the probability of a site being non-IBD. Under a simple 343	

model for genotyping error, where errors are distributed randomly (without respect to haplotype), this 344	

result suggests that our approach also identifies some number of genotyping errors in regions of low read 345	

depth or sequencing quality. 346	

 347	

Non-IBD calls and gene conversion events 348	

As non-crossover gene conversions are thought to be more frequent than de novo mutations in the human 349	

genome (Halldorsson et al. 2016), we expect that a subset of our non-IBD variant calls reflect gene 350	

conversion events. After a non-crossover gene conversion event encompassing a rare variant, the copied 351	

allele resides on the existing haplotype background of the acceptor chromosome, which may reduce the 352	

surrounding shared IBD segment. We devised a heuristic to identify likely gene conversions, based on the 353	

intuition that two non-IBD variants in close physical proximity in the same individuals are more likely to 354	

reflect variants copied along a gene conversion tract, rather than two independent recurrent point 355	

mutations. If a gene conversion tract contains only a single rare variant, this signature would be 356	

indistinguishable from a recurrent point mutation with our approach. Furthermore, if a gene conversion 357	

contained no rare variants, it would not be identified in our analysis as a potential recurrent mutation or 358	

gene conversion. 359	

Limiting our results to tracts less than 1kb with 2 or more non-IBD variants present in the same 360	

individuals, we identified 42,203 variants within 18,971 putative gene conversion tracts, representing 361	

6.3% of non-IBD variants (Supplementary Figure 16). We performed logistic regression with all non-362	

IBD variants labeled as potential gene conversions or not as the outcome, and the genomic annotations 363	

listed above as predictor variables (Figure 5, Supplementary Table 6). We additionally included the 364	

posterior probability of a variant being non-IBD as a predictor variable. Compared to non-IBD variants 365	
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not in putative gene conversion tracts, these variants were associated with lower polymorphism 366	

probability, higher variant quality score, increased posterior probability of being non-IBD, smaller 367	

distance to a recombination hotspot, and lower recombination rate. We also observed a GC bias in 368	

putative gene conversion variants, as measured by the fraction of variants containing an A->C/T->G or A-369	

>G/T->C mutation (37% in putative gene conversions vs. 27% in all other non-IBD variants; P < 10-100; 370	

Fisher’s exact test). 371	

 372	

Rescaling the site frequency spectrum with recurrent mutations 373	

With our set of high-confidence non-IBD variants, we rescaled the site frequency spectrum for very rare 374	

variants. Taking into account the power of our approach on simulated data, we plot the original and 375	

rescaled SFS for variants with allele count <5 in Figure 6A (Methods). Rescaling the site frequency 376	

spectrum resulted in a 3% increase in the fraction of singleton variants, from 46.6% to 49.6%. As 377	

expected, the majority of this shift is due to the relatively large fraction of CpG->T variants that were 378	

called as non-IBD (Figure 6B). For CpG->T variants alone, the fraction of singleton variants increased 379	

from 43.6% to 49.9%. We note that this rescaling is incomplete, as we identified non-IBD variants at only 380	

allele counts 2 to 5 (representing 38% of non-singleton variants in UK10K). 381	

 382	

Discussion 383	

We describe a novel approach designed to specifically identify non-IBD variants in whole genome 384	

sequencing data by leveraging the difference in the obligate recombination distance between rare IBD and 385	

non-IBD variants. Our approach uses a Bayesian hierarchical model and Gibbs sampling to jointly infer 386	

the TMRCA distributions of these two scenarios and identify variants with a high posterior probability of 387	

being non-IBD. In simulated data, we find that the posterior probabilities of a variant being non-IBD can 388	

discriminate between IBD and recurrent mutations for variants up to allele count 5 in a population sample 389	

of 3,621 individuals. 390	

 Our approach assumes that we do not have phase information for individuals, i.e. we do not 391	

assign each variant in an individual to a maternally or paternally inherited chromosome. If we had 392	

accurate phase information for rare variants, such as from long-read sequencing data, or ‘hard-phase’ calls 393	

from paired-end sequencing libraries, we could more accurately measure recombination breakpoints. This 394	

could potentially improve the accuracy of our method by eliminating the measurement error caused by 395	

using the obligate recombination distance. 396	

We focused on identifying non-IBD variants for allele counts of 5 or less, as the performance of 397	

our method decreases with increasing allele count. Additionally, the computational burden of sampling 398	

from the marginal posterior distributions increases exponentially with increasing allele count. With a 399	
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larger sample size, the frequency of a variant at a given allele count will decrease, while the 400	

computational complexity remains the same. Thus, we expect that applying our method to even larger 401	

sequencing datasets will improve its performance. 402	

 The negative correlation we observed between local recombination rate and the probability of a 403	

site being called non-IBD suggests that our method is confounded by local recombination rate. In 404	

simulated data, we also observed that we had lower power to identify recurrent mutations in close 405	

proximity to recombination hotspots. We also note that we found a significant relationship between 406	

sequencing quality, measured by read depth and variant quality score, and the probability of a site being 407	

called non-IBD. The signature of a non-IBD variant used here could also be that of a genotyping error, as 408	

genotyping errors also may occur on any random haplotype background in a population. This could be a 409	

potential application of our method, as a way to identify genotyping errors in large scale sequencing 410	

datasets. Our current recommendation to overcome this issue is to remove variants of low quality until 411	

this relationship is not significant. However, distinguishing genotyping errors from true non-IBD variants 412	

remains an important problem. 413	

 414	

Materials and Methods 415	

 416	

Forward genetic simulations with SLiM 417	

We used the software program SLiM version 2.5 (Haller and Messer 2017) for forward genetic 418	

simulations. We used the following European demographic model (Bhaskar et al. 2015): an ancestral 419	

population size of 10,000 with a burn-in period of 100,000 generations; a population bottleneck to 200 420	

individuals at generation 200; population size rebounds to 10,000; a second bottleneck to 500 individuals 421	

at generation 4,280; population size rebounds to 5,800; exponential growth starting at generation 4,870 at 422	

3.89% per generation; random sampling of 3,621 individuals at generation 5,000. SLiM simulations had a 423	

uniform mutation rate of 2.5x10-8 mutations per base pair per generation. We identified recurrent 424	

mutations as base positions with two or more unique mutations. We performed 1,000 simulations with 425	

uniform recombination rate of 1x10-8 events per base pair per generation, and additional 100 simulations 426	

each with recombination hotspots of r = 5x10-6, 1x10-6, or 5x10-7. Each 10Mb simulated genomic segment 427	

had two hospots of of length 10,000 bp flanking the central 2Mb of the segment. 428	

For forward genetic simulations with selection, we generated 10Mb genomic segments using a 429	

recipe from the SLiM manual (Haller and Messer 2017) with the following procedure: 1) sample non-430	

coding region; 2) sample exon; 3) sample intron and exon pairs in a loop with 20% probability of 431	

stopping after each pair; 4) repeat steps 1-3 while chromosome length < 10Mb; 5) sample final non-432	

coding region. Exonic mutations were synonymous or non-synononymous at a ratio of 1:2.31, and 10% of 433	
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non-synonymous mutations were neutral. Deleterious non-synonymous mutations' selection coefficients 434	

were sampled from a gamma distribution with mean -0.03 and shape 0.207. Exon lengths were sampled 435	

from a lognormal distribution with mean log(50) and standard deviation log(2). Non-coding regions were 436	

neutral and their lengths were sampled from a uniform distribution between 100 and 5000. Intronic 437	

mutations were neutral and intron lengths were sampled from a lognormal distribution with mean 438	

log(100) and standard deviation log(1.5). 439	

	440	

UK10K dataset 441	

We applied our method to identify recurrent mutations in whole-genome sequencing data in 3,621 442	

individuals from the UK10K project (Walter et al. 2015). These individuals were sequenced to average 443	

depth 7x, passed the UK10K project quality control filters, and come from the ALSPAC and TWINSUK 444	

studies. We measured the recombination distance for biallelic and multiallelic single nucleotide variants 445	

that passed the UK10K quality filters that were present at allele count ≤ 10 in these individuals. 446	

 447	

Measuring the obligate recombination distance 448	

For simulated data, we generated diploid genotypes by randomly combining pairs of haploid genomes, 449	

and calculated the recombination distances for variants within the central 2Mb of each 10Mb genomic 450	

segment. In both simulated and UK10K data, we measured the obligate recombination distances for 451	

variants with allele count ≤ 10. For each pair of carriers, we identified the nearest variant upstream and 452	

downstream with opposite homozygote genotype, i.e. where one individual has genotype 0 and the other 453	

has genotype 2 (Supplementary Figure 3). We then converted the physical distance to a genetic distance 454	

using a genetic map. For UK10K, we used a 1000 Genomes Project CEU genetic map (The 1000 455	

Genomes Project Consortium 2012), and for simulated data we used a uniform map with r = 1x10-8 events 456	

per site per generation, or a variable map for simulations including recombination hotspots. 457	

 458	

Applying the Bayesian hierarchical model 459	

To apply our model to simulated or UK10K recombination distances, we first generated an estimate of the 460	

beta parameter for non-IBD variants from multiallelic sites. Using Gibbs sampling on non-IBD allele 461	

pairs from multiallelic variants, we used a simplified version of the hierarchical model where we sampled 462	

the TMRCA for each allele pair and the beta parameter in each Gibbs iteration. We repeated this 463	

procedure to estimate beta for a range of alpha values from multiallelic sites’ recombination distances. To 464	

test if the choice of alpha affected our ability to discriminate IBD and non-IBD variants, we applied the 465	

model with different non-IBD alpha/beta values to UK10K variants on chromosome 22. The posterior 466	

estimates of k were highly correlated across values of alpha (alpha=20 vs. alpha=40, Supplementary 467	
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Table 7). When applying the full model to data, we used alpha = 10 for IBD allele pairs, with alpha = 40 468	

and the corresponding value of beta inferred from multi-allelic sites (beta = 0.0859) for non-IBD allele 469	

pairs. We ran 10,000 iterations of the Gibbs sampler for each run of the model, thinned the chains until 470	

autocorrelation was below 0.01, and assessed convergence of the chains by comparing the thinned 471	

samples from the first and second half of the chain via a Wilcoxon rank-sum test. A chain was determined 472	

to have converged if the Wilcoxon test P-value was > 0.05. 473	

 We parallelized the application of our model by breaking down the genome into 10Mb segments, 474	

rather than including all variants of a given allele count in a single run of the Gibbs sampler. To test the 475	

effect of the number of variants included in a Gibbs sampling run, we applied the model to 10Mb 476	

segments on chromosome 22 and to all variants on chromosome 22 together. For smaller allele counts 477	

with thousands of variants in each segment, we observed no effect, but for larger allele counts we did see 478	

an effect of applying the model to small numbers of variants. Thus, for allele counts >5, we grouped 479	

segments together until at least 1000 variants were included in each run of the model. 480	

  481	

Variant age estimation with runtc 482	

The runtc software was downloaded from https://github.com/jaredgk/runtc (Platt et al. 2019). The output 483	

from 100 simulations from SLiM with uniform recombination and mutation rates was converted to VCF 484	

format, and then runtc was applied to the vcf files with the commands --k-range 2 10 --rec 1e-8 --mut 485	

2.5e-8. 486	

 487	

Area under the ROC curve (AUC) 488	

For all ROC curves from simulated data, we calculated the area under the curve as: 489	

𝐴𝑈𝐶 =  
1!!!!!

!
!

!
!

𝑟 ∗ 𝑖
 

where r and i represent recurrent and IBD variants, and qr and qi the values of the statistic being 490	

evaluated. For each AUC, we calculated a confidence interval by generating 10,000 bootstrap samples of 491	

5,000 variants (with the same ratio of IBD:recurrent variants as the simulated sample). We then sorted the 492	

10,000 AUC estimates and took the 2.5th and 97.5th percentiles to get a 95% confidence interval. 493	

 494	

Calculating an expected fraction of recurrent mutations from polymorphism probabilities 495	

As a proxy for the mutation rate, we estimated the polymorphism probability for 5-mer sequence contexts 496	

(i.e., the focal base and two bases up and downstream) as the fraction of sites with that context that were 497	

variable in the UK10K dataset. These polymorphism probabilities were highly correlated with those 498	

calculated previously with the 1000 Genomes dataset (Aggarwala and Voight 2016) (Pearson’s 499	
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correlation = 0.99, P<10-100), with a higher fraction of polymorphic sites in the UK10K for each context 500	

due to the larger sample size (Supplementary Figure 5). 501	

To predict the fraction of sites that should be called recurrent based on sequence context 502	

polymorphism probabilities, we used a simple Poisson model of mutation. With the polymorphism 503	

probability for a context as the Poisson rate parameter λ and the number of mutations at a site H, the 504	

probability of a recurrent mutation is the probability of two or more mutations at a site: 505	

 506	
As we are only considering sites where there has been at least one mutation event, i.e. polymorphic sites, 507	

the probability of a recurrent mutation at a site is then: 508	

 509	
We calculated this probability for each 5-mer sequence context. We then calculated the expected fraction 510	

by scaling the overall fraction of sites called non-IBD by each context’s probability of a recurrent 511	

mutation, relative to all the other contexts. 512	

 We used 5-mer sequence contexts for this analysis so that we would have a reasonable number of 513	

variants classified as IBD or not for each sequence context. If we had used 7-mer sequence contexts, 514	

some contexts would have too few variants to calculate the proportion called non-IBD. For the regression 515	

models to predict non-IBD variants using multiple genomic annotations, we used 7-mer sequence 516	

contexts, as there is significant mutation rate variation even within 5-mer contexts (Aggarwala and Voight 517	

2016). 518	

 519	

Identifying putative gene conversions 520	

Within the set of variants called as non-IBD, we called putative gene conversion tracts that contained 2 or 521	

more variants that were: 1) present in the same individuals, 2) at the same allele count, 3) within 1kb of 522	

each other. 523	

 524	

Genomic annotation datasets 525	

We used the B statistic (McVicker et al. 2009) (downloaded from 526	

http://www.phrap.org/othersoftware.html) to measure background selection, which estimates the 527	

proportion of neutral variation in a region. VQSLOD and read depth were extracted from the UK10K 528	

VCF files. We used a recombination rate map estimated for Europeans from the 1000 Genomes Project, 529	

downloaded from 530	

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130507_omni_recombination_rates (The 531	
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We can then use the binomial probability of the number of pairs with recombination dis-
tance greater than or less than the threshold distance to calculate the likelihood of the data
given an IBD or recurrent allele.
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2 BAYESIAN HIERARCHICAL MODEL TO IDENTIFY RECURRENT

MUTATIONS

As an alternative to the likelihood approach presented in the previous section, I also devel-
oped a Bayesian hierarchical model to jointly infer the model parameters along with identify-
ing recurrent mutations. The benefit of this approach is that we can jointly infer the parame-
ters of the posterior distribution and the posterior probability of each variant being recurrent
from the data itself.

The model parameters are as follows:
d : recombination distances for a variant
t : TMRCA(s) for a variant (1 if IBD variant, 2-3 if recurrent depending on partition)
k : component assignment of variant. k=1 if IBD, k>1 otherwise (each recurrent partition
given its own value of k).
j : given k, assignment of allele pairs. k = 1 if an IBD pair (k=1 for all pairs if k=1), k = 2 if a
recurrent allele pair.
µ,ø: mean and precision parameters for distribution of t .
º: mixture fractions of each component k.
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We can then use the binomial probability of the number of pairs with recombination dis-
tance greater than or less than the threshold distance to calculate the likelihood of the data
given an IBD or recurrent allele.

P (m|I BD) =
√

k

m

!

PI BD (D ∏ l )m(1°PI BD (D ∏ l ))k°m

P (m|r ec) =
√

k

m

!

Pr ec (D ∏ l )m(1°Pr ec (D ∏ l ))k°m

(19)

§= log

√°
P (m|I BD)R P (m|I BD)L

¢w
P (r anks|I BD)1°w

°
P (m|r ec)R P (m|r ec)L

¢w P (r anks|r ec)1°w

!

(20)

P (r ecur r ent ) = P (H ∏ 2) = 1°e°∏°∏e°∏ (21)

P (H ∏ 2|H ∏ 1) = P (H ∏ 2)
P (H ∏ 1)

(22)

2 BAYESIAN HIERARCHICAL MODEL TO IDENTIFY RECURRENT

MUTATIONS

As an alternative to the likelihood approach presented in the previous section, I also devel-
oped a Bayesian hierarchical model to jointly infer the model parameters along with identify-
ing recurrent mutations. The benefit of this approach is that we can jointly infer the parame-
ters of the posterior distribution and the posterior probability of each variant being recurrent
from the data itself.

The model parameters are as follows:
d : recombination distances for a variant
t : TMRCA(s) for a variant (1 if IBD variant, 2-3 if recurrent depending on partition)
k : component assignment of variant. k=1 if IBD, k>1 otherwise (each recurrent partition
given its own value of k).
j : given k, assignment of allele pairs. k = 1 if an IBD pair (k=1 for all pairs if k=1), k = 2 if a
recurrent allele pair.
µ,ø: mean and precision parameters for distribution of t .
º: mixture fractions of each component k.

3
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1000 Genomes Project Consortium 2012). We used human recombination hotspots identified in the 532	

HapMap project (The International Hapmap Consortium 2007), and downloaded from 533	

https://github.com/auton1/Campbell_et_al. Replication timing data was obtained from (Koren et al. 534	

2012). CpG methylation levels were downloaded from https://www.ncbi.nlm.nih.gov/geo/ using 535	

accession numbers GSM1010980 (ovary), and GSM1127119 (testis). 536	

 537	

Rescaling the SFS with non-IBD mutations 538	

Starting with the SFS calculated from all UK10K biallelic sites included in our study, for allele counts 2-5 539	

for CpG->T and all other mutation types we calculated the fraction called as non-IBD. We then divided 540	

this fraction by the power of our method, estimated by the percent of multiallelic sites identified as non-541	

IBD at the chosen posterior threshold. From this fraction of non-IBD sites for the two mutation types, we 542	

apportioned the non-IBD mutations into lower allele counts based on the relative frequency of allele 543	

counts 1-5. For example, to determine what fraction of non-IBD 4-ton variants would be assigned 544	

partition 1:3 vs. 2:2, we used the relative frequencies: 545	

𝑓!:! =
𝑓!𝑓!

𝑓!𝑓!+𝑓!𝑓!
;  𝑓!:! =

𝑓!𝑓!
𝑓!𝑓!+𝑓!𝑓!

 

 546	

Where 𝑓!:! is the relative frequency of the 1:3 partition, and 𝑓! is the frequency of singletons in the 547	

original SFS. In the rescaled SFS, the number of singletons increased by the number of variants of allele 548	

count 2-5 that were identified with partition 1:(n-1); the number of doubletons decreased by the number 549	

of doubletons that were identified as recurrent, and increased by the number of variants of allele count 3-5 550	

that had partition 2:(n-2); and so on through allele count 4. Allele count 5 was excluded from the rescaled 551	

SFS plots because we did not identify recurrent variants at allele counts greater than 5. 552	

 553	

 554	
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 652	
Figure 1. The generative model underlying our Bayesian hierarchical model to distinguish IBD and non-653	

IBD variants. Each variant i has n allele pairs; k: variant assignment to IBD (k=1) or non-IBD (k>1); jn: 654	

allele pair assignments (IBD: jn =1, non-IBD: jn =2); q: all possible permutations of jn assignments for a 655	

given non-IBD variant partition; tj: within a variant, IBD allele pairs or non-IBD allele pairs’ TMRCAs; 656	

d: allele pairwise recombination distances to the right (dR) and left (dL). 657	
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 659	
Figure 2. (A) Precision-recall plots and (B) ROC plots for the Bayesian hierarchical model applied to 660	

distinguish recurrent and IBD variants in simulated data. In A, each panel represents the application to 661	

variants of a given allele count (AC). In B, the dashed line represents the identity line.  662	
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 663	
Figure 3. The expected and observed fraction of sites called non-IBD for UK10K variants. Each dot 664	

represents a 5-mer sequence context. The expected fraction was calculated from each sequence context’s 665	

polymorphism probability. The solid black line is a linear regression line for all sequence contexts, and 666	

the dotted line is the identity line.  667	
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 668	
Figure 4. Linear regression of genomic annotations (predictor variables) vs. posterior probability of being 669	

non-IBD (outcome) for all variant sites, grouped by allele count. Dot colors represent allele count, and a 670	

separate regression was run for variants of each allele count. Each dot’s position denotes its beta 671	

coefficient estimate, with error bars representing beta ± 1.96*standard error. The vertical dashed line 672	

represents a beta estimate of zero. Hotspot distance: physical distance to nearest recombination hotspot z-673	

score; Recombination rate: local recombination rate z-score; B score: McVicker’s B statistic z-score; 674	

Replication timing: replication timing z-score; GC content: local GC content z-score; Methylation 675	

(ovary): ovary CpG methylation z-score; Methylation (testes): testes CpG methylation z-score; Read 676	

depth: read depth z-score; VQSLOD: variant quality z-score. 677	
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 679	
Figure 5. Results of a logistic regression using genomic annotations to distinguish putative gene 680	

conversions from other non-IBD variants. Separate regressions were performed for variants of each allele 681	

count. The annotation of variants’ probability of being non-IBD for allele count 5 was left off to improve 682	

the visualization (Estimate: -7.0; 95% CI: -16.4 - 2.4). Dot colors represent allele count. Each dot’s 683	

position denotes its beta coefficient estimate, with error bars representing the 95% confidence interval 684	

(beta ± 1.96*standard error). The vertical dashed line represents a beta estimate of zero. Hotspot distance: 685	

physical distance to nearest recombination hotspot z-score; Recombination rate: local recombination rate 686	

z-score; B score: McVicker’s B statistic z-score; Replication timing: replication timing z-score; GC 687	

content: local GC content z-score; Methylation (ovary): ovary CpG methylation z-score; Methylation 688	

(testes): testes CpG methylation z-score; Read depth: read depth z-score; VQSLOD: variant quality z-689	

score; Probability non-IBD: posterior probability of variant being non-IBD. 690	
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 692	
Figure 6. The site frequency spectrum for variants of allele count <5, before and after rescaling to 693	

incorporate non-IBD variants. (A) The original and rescaled SFS for all variants. (B) The original and 694	

rescaled SFS for CpG->T variants only. 695	
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