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ABSTRACT 

Like humans, canine companions spontaneously develop lymphomas that are treated by a cocktail of 

chemotherapy drugs. However, canines have high rates of developing multiple drug resistance (MDR), 

shortened clinical timelines and easy tumor accessibility, making them excellent models to study MDR 

mechanisms. Previously, we used in vitro cell models to demonstrate that metformin resensitized MDR 

cells to chemotherapy and prevented MDR development. Here, we used metformin to understand the in 

vivo molecular mechanisms regulating MDR development and reversal. Metformin was added to 

chemotherapy in MDR canines, reducing MDR biomarkers within all tumors tested, with one canine 

entering remission after prior repeated relapses. We employed microarray analyses to identify molecular 

networks involved in MDR development and the impact of metformin treatement. Tumor sampling 

throughout entry to remission and subsequent relapse allowed correlation of gene expression profiles to 

MDR tumor behavior. We discovered that the Anaphase Promoting Complex (APC), a ubiquitin-ligase 

regulating cell cycle progression, was impaired in MDR samples. In vitro tests demonstrated that APC 

activation resensitized MDR cells to chemotherapy. The companion canine, therefore, is a powerful 

translational MDR model that has revealed the APC as an underlying cellular mechanism associated 

with treatment resistance, and a novel potential therapeutic target. 
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INTRODUCTION 

 

It is estimated that one-in-two people will develop cancer in their lifetimes, a staggering statistic to 

consider. Advances in surgical techniques, cancer-specific therapies and small molecule inhibitors have 

contributed to survival and disease-free duration [1]. However, the development of multiple drug 

resistance (MDR) to first-line chemotherapeutic agents leaves few, if any, proven treatment options, and 

may signal a shift to palliative support rather than active therapy [2-6]. MDR can be inherent (prior to 

treatment) or acquired at any time after initial treatment responsiveness, with recrudescence as much as 

20 years later [7,8]. Malignancies of the breast, blood, lung and colon are particularly renowned for their 

relatively high rates of treatment resistance and acquired MDR. A need for new treatment options is 

required for this cohort suffering from MDR cancers. 

 

Our goals are to identify the underlying cellular pathways involved in MDR development, and to identify 

novel agents that will promote reversal or prevention of MDR cancers. We have used in vitro MDR cell 

culture models of a variety of human cancers to identify molecular biomarkers and their post-translational 

modifications (phosphorylation and acetylation) that correlate with both entry to, and exit from, an MDR 

state [9-13]. Simultaneously, we have evaluated the utility of several oral agents with unexpected anti-

cancer activity that returns MDR cells to treatment-sensitive states [10,11,13]. Of relevance here, we 

found that repurposing the antidiabetic drug metformin in breast cancer cells in vitro proved effective at 

both reversing preexisting treatment resistance in MDR cell populations, and also preventing MDR onset 

[13]. Metformin is generally believed to primarily mediate metabolic changes in response to insulin 

resistance in individuals with Type 2 diabetes through the AMP-dependent protein kinase (AMPK) 

[14,15]. Although metformin was also shown to slow the growth of multiple human cancer cells in vitro 

[16], its specific effects of MDR malignancy had not been evaluated. We observed that resensitization 

of cells by metformin was associated with increased global histone H3 Lys9 acetylation (a marker of cell 
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killing) [10-13,17] and gH2AX phosphorylation (a marker of DNA damage) [18]. We also observed that 

the anti-cancer properties of metformin in MDR breast cancer cells in vitro was AMPK-independent in 

our hands, and appeared to induce histone acetylation via indirect inhibition of histone deacetylases 

(HDAC) [13]. Compounds with HDAC inhibitory (HDACi) capacity are currently in Phase III cancer 

trials, with several approved for clinical use [19,20].  

 

Here, we used metformin as a tool to understand MDR development and reversal in vivo using the 

companion canine model of lymphoma that is clinically resistant to therapy. Metformin treatment 

reduced the levels of MDR protein biomarkers in all tumors sampled. Our analysis of an individual canine 

that reached full remission while taking adjunct metformin allowed us to carry out a microarray analysis 

of gene expression changes within the tumor that correlated with clinical treatment responsiveness. 

Within both canines (in vivo) and canine cell culture (in vitro), we demonstrate that impairment of 

Anaphase Promoting Complex (APC) activity occurs concomitantly with MDR development and that 

activation of the APC by a small chemical APC activator can reverse drug resistance. The APC is a large 

evolutionarily conserved ubiquitin ligase that is primarily considered to target proteins that inhibit cell 

cycle progression through mitosis and G1 for ubiquitination and proteasome-dependent degradation 

[21,22]. More recently, accumulating evidence implicates the APC in cell cycle-independent functions 

such as neurogenesis, longevity, stress response and genome stability [23-26]. The idea that APC 

function is critical to ward off cancer is gaining traction, as the APC has been shown to be important for 

DNA repair decisions [27,28], to preserve genomic stability in humans and yeast [29,30], and APC 

impairment is associated with onset of drug resistance [31,32]. Our results, therefore, identify the APC 

as a potential therapeutic target that protects the genome, thereby delaying the development of aggressive 

treatment resistant tumors. 

 

RESULTS  
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Companion canines with non-Hodgkin-like lymphoma are strong models of MDR malignancy.  

Our proximity to the largest Veterinary College in western Canada provided us an opportunity to obtain 

treatment resistant tumor samples representative of in vivo events as companion dogs present regularly 

to the oncology clinic for diagnosis and chemotherapy. Canine lymphoma is orthologous to non-Hodgkin 

lymphoma of B- and T-cells and has a relapsing-remitting course with a high incidence of terminal MDR 

transformation [33-35]. The superficial nature of the lymph node enlargements allows easy access to 

tumor sampling in a non-invasive manner. Standard clinical management of lymphoma in companion 

canines involves repeated weekly appointments, providing an opportunity to sample a given tumor over 

time during the chemotherapeutic regimen. To test our in vitro observations that metformin reverses 

MDR protein markers and resensitizes MDR cells to chemotherapy, we treated companion canines that 

developed MDR lymphoma with metformin. We obtained tumor samples from 8 canines in total, 2 from 

naïve drug sensitive canines and 6 that had failed their drug therapy. Details of the 4 canine subjects used 

for our complete analyses are shown in Supplemental Table 1. Canine subjects 1-4 were clinically 

unresponsive to chemotherapy, were identified as having B-cell lymphoma and all received oral 

metformin, as described. Canine subjects 5 and 6 were treatment resistant, but were not treated with 

metformin and were not followed any further. Canine subjects 7 and 8 were treatment sensitive, were not 

staged, and did not receive metformin.  

 

Canines with drug resistant lymphoma overexpress proteins associated with drug resistance, and 

adjunct metformin therapy results in reduced MDR protein biomarker levels  

We used Western analyses to determine the relative abundance of the MDR biomarker, MDR-1, in 

cancerous lymph nodes, as compared to skin control samples, before and after metformin use. We used 

fine needle aspirates (FNAs) to obtain tumor samples from 5 MDR canines (canines 1-4, 6), who all 

expressed high levels of MDR-1 in their tumor sample compared to their control sample (Fig. 1). We 
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assessed additional MDR protein markers in canine 3 tumor samples, such as BCRP (Breast Cancer 

Resistance Protein), HIF1a (Hypoxia Inducible Factor 1 alpha), and phosphorylated S6K, and found 

them to all be elevated (Fig. 1C). Samples were then taken at the indicated weeks after metformin 

initiation. Remarkably, MDR-1 protein, and the other MDR protein markers in canine 3, rapidly declined 

or disappeared with metformin ingestion (Fig. 1). An MDR-1 signal was not detected in canine subjects 

7 and 8 as expected since they were treatment-sensitive (Fig. 1B). Thus, the in vitro observations showing 

loss of MDR markers following metformin treatment [13] are also observed in vivo, and potentially 

clinically relevant as one canine experienced a period of remission following metformin exposure.   

 

Metformin as adjunct therapy was nontoxic and well-tolerated  

We had already established that the dose of metformin used in this study is nontoxic to canines and 

generally well tolerated [36,37]. Metformin as monotherapy is not presumed to be highly effective at 

killing cancerous lymphoma cells, which was supported clinically by the ongoing lymphadenopathy in 

our subjects. Generally, there was a decrease in food interest and this was interpreted to indicate possible 

gastrointestinal intolerance of metformin [38]. Laboratory investigations spanning metformin 

monotherapy in these subjects did not show a metabolic acidosis (data not shown), a relevant 

consideration given that lactic acidosis has been reported as a rare complication of metformin use in 

humans with renal failure [39,40]. There was no alteration to differential cell counts, with immature 

bands being equally present before and after weeks of treatment. Blood glucose levels remained normal, 

as did renal function. The remainder of the bloodwork was unchanged following metformin addition. 

Although the dual therapy did not, for the most part, result in measurable decreases in lymph node burden, 

there was an increase in energy and activity reported even with metformin still being administered. A 

slight elevation in total lactate levels was seen in canine subject 3 after the first week on metformin 

therapy (3.59 mmol; normal < 2.5 mmol), which is not unexpected in rapidly proliferating malignancies 
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such as lymphoma and was likely multifactorial including the comorbid presence of mild anemia, and a 

significant urinary tract infection.  

 

Microarray analyses of canine tumor mRNA validates increased expression of MDR-1 and 

reduction of MDR-1 by metformin 

We isolated RNA from tumor cells and skin biopsies obtained from 4 treatment resistant companion 

canines in our study (canines 1-4). We used 2 independent samples from canine 1 for this analysis, 

labelled canine 1 #1 and #2. We performed microarray analyses (Agilent Canine Microarrays; 25,000 

annotated genes) to identify genes that were differentially expressed in the tumor samples compared to a 

normal skin sample (canine 2), and in the tumors before and after metformin treatment (canines 2 and 

4). The datasets have been deposited at the GEO repository (GEO accession # GSE121242; 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE121242). To validate our Western detection 

of increased expression of MDR-1, we first analyzed expression of the ABC transporter family members 

present on the array. We observed expression of ABCB1 mRNA (encoding MDR-1) above 3 FC in only 

one tumor sample (Canine 4; Supplemental Fig. S1), with mild elevation in canine 2. There were 2 probes 

for ABCB1 on the array, and both were elevated in canine 4 well above the 3 FC cutoff (Log base 2 

equals a fold change (FC) of 4), and mildly so in canine 2. ABCB1 mRNA expression was unaffected in 

canine 3. Since MDR-1/ABCB1 protein was elevated in all MDR canines, the lack of consistent elevated 

ABCB1 mRNA suggests that increased MDR-1 protein levels can occur post-translationally. The array 

contained probes for 40 ATP transporters in total, and only ABCB3 was elevated above 3 FC in all MDR 

canines at the mRNA level (one of the canine 1 samples (#1) was below 3 FC). Expression was elevated 

in the MDR canines (with at least three out of four 2-fold or higher) for 4 additional ATP transporters 

(ABCA3, ABCC10, ABCG1, and ABCA4). Next, we averaged expression from the tumor samples 

before metformin treatment from canines 2 and 4, normalized to the control sample, and compared this 

to the average of canines 2 and 4 treated with metformin normalized to samples before treatment 
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(Supplemental Figure S1). Consistent with metformin reducing the protein levels of ABCB1 (MDR-1; 

Fig. 1), expression of ABCB1 mRNA was also reduced by metformin in the 2 canines. There were four 

other ABC transporters that showed this pattern, with elevation in the MDR tumor at least 2-fold greater 

than in the control sample, and reduced by metformin (ABCA3, ABCC10, ABCG1, and ABCB3). While 

MDR-1 and other ABC transporters were expressed in these tumors, and while possible that this may be 

a contributing factor in MDR development, we observed that overexpression of ABC transporters was 

not a common occurrence in these canines. Thus, we sought to identify other possible mechanisms of 

MDR development by looking for common differentially expressed genes in the tumors of the 4 MDR 

canines (canines 1-4).  

 

A 290 gene set overexpressed >3-fold in tumour vs control was common to the 4 MDR canines.  

Between 875 (canine 2) and 1365 (canine 3) genes were overexpressed >3-fold in the 4 canine datasets 

(Supplemental Table S2). We used Venn diagrams to identify genes that were overexpressed greater than 

3-fold that were common to the 4 MDR canine datasets, which resulted in 290 genes (Fig. 2A; 

Supplemental Table S2). Using Cytoscape and Reactome FIViz [41], we discovered that 146 of these 

genes had functional relationships. In total, 13 different gene clusters were identified (as defined by 

different colour spheres and astericks; Fig. 2B; Supplemental Table S3). Genes within the clusters are 

listed in Supplemental Table S3, and the enriched genes within the network pathways are shown in 

Supplemental Table S4. A particularly tight interconnected gene cluster (shown in green in Fig. 2B) was 

identified that was involved in multiple aspects of mitosis. A subsequent analysis, using the software 

‘Search Tool for the Retrieval of Interacting Genes/Proteins’ (STRING, version 10.5), identified 186 

genes from the 290 gene set that were involved in multiple interconnected networks/clusters 

(Supplemental Fig. S2; Supplemental Table S2). One such cluster (cluster 2) was composed almost 

exclusively of genes encoding proteins involved in mitotic progression (yellow nodes in Supplemental 

Fig. S2, highlighted in yellow in Supplemental Table S5). Clusters 3 and 6 also contained many genes 
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involved in mitotic progression, as well as genes required for DNA repair and replication (green and 

purple nodes in Supplemental Fig. S2; highlighted in green in Supplemental Table S5). These gene 

clusters highlight that regulated progression through mitosis and adherence to checkpoints is vital to 

maintaining cell health and avoiding cancer. 

 

Both Cytoscape with ReactomeFIViz and STRING identified the same cluster of mitotic genes, in which 

many of the genes encoded substrates of the Anaphase Promoting Complex (APC; 20 genes, marked by 

*, Supplemental Table S5; nodes circled in red in Fig. 2B). The APC is a ubiquitin protein ligase that 

targets proteins that inhibit cell cycle progression for ubiquitin- and proteasome-dependent degradation 

[22,42 40]. If APC substrates are elevated, even at the mRNA level (APC regulatory and substrate 

mRNAs often peak during G2/M, then decline once the protein is degraded [43,44]), then this suggests 

APC function is impaired. Furthermore, proteins associated with the Spindle Assembly Checkpoint 

(SAC) and the kinetochore, which predominantly inhibit APC activity prior to mitosis [45], are elevated 

(15 genes, marked by **, Supplemental Table S5). Moreover, proteins that maintain chromosome 

condensation (the condensin complex) are also elevated (3 genes; marked by ***, Supplemental Table 

S5). Interestingly, a recent study comparing differentially expressed genes between normal human 

ovarian tissue and ovarian cancer, and carboplatin-sensitive and resistant ovarian tumors [46], identified 

a similar set of genes identified in our canine study; of the 5 top genes identified in their study (GNAI1, 

NCAPH, MMP9, AURKA and EZH2), three were identified in our study (NCAPH, AURKB (rather than 

AURKA) and EZH2). Taken together, our work suggests that MDR development in these 4 canines is 

associated with impaired APC activity. Consistent with this, we demonstrated using the Cancer Genome 

Atlas (TCGA; https://portal.gdc.cancer.gov/) database that the APC substrates PTTG1, DLGAP5/HURP 

[26] and CCNB1/Cyclin B1 (Supplemental Fig. S3) are elevated in at least 24 different human cancers 

from patient samples.  
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Mitotic and G1 APC substrate gene expression is elevated in treatment resistant tumors compared 

to normal controls.  

The APC targets proteins for degradation in both mitosis (M) and G1, and we asked if there was a 

differential impact on expression in MDR samples compared to control. Different coactivators interact 

with the APC to promote cell cycle progression; CDC20 during mitosis (APCCDC20) and CDH1/FZR1 to 

exit mitosis and progress through G1 (referred to as APCCDH1 hereafter) [21-23]. Therefore, we separated 

all APC targets we could detect in the array into M vs G1 targets (11 mitotic substrates and 22 G1 

substrates) to assess if there were differences in expression between the clusters (Fig. 3). In some cases 

APCCDH1 will target residual APCCDC20 sunstrates, such as PLK1, PTTG1 and CCNA2. It is clear that 

there are unique differences between APC target gene expression in transcripts produced from genes 

encoding APC targets in all 5 MDR samples (2 samples were analyzed for canine 1, which were very 

similar), whether considering M or G1 targets. We consistently observed that the mitotic targets were 

overexpressed in MDR tissue on average to a greater extent than that observed for G1 substrates 

(Supplemental Fig. S4), although many G1 substrates were also highly expressed. The APC coactivator 

CDC20 is one of the mitotic substrates that is highly expressed. APC activity is inhibited by the SAC 

prior to mitosis via interactions with CDC20, which blocks CDC20’s ability to interact with substrates, 

until all metaphase chromosomes are firmly attached to kinetochores [45-49]. It is interesting to note that 

many SAC components that are activated by incomplete attachment of microtubules to kinetochores, and 

kinetochore factors (BUB1, CENPL, CEP152, NUF2, SPC24, SPC25, NEK2, INCENP, SGO1L, 

MLF1IP, CASC5, NDC80, and ASPM), are all highly overexpressed in MDR canines (Supplemental 

Tables S2 and S3). Elevated expression of SAC and kinetochore components (NCAPG, NCAPG, SKA3, 

AURKB, NEK2) is associated with cancer [50-55], and is consistent with APC impairment.  

 

Coordinated gene expression of functionally associated genes may be due to activation by a one or more 

common transcription factors. To gain insight into this possibility, we implemented a Cis-element Over-

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 28, 2020. ; https://doi.org/10.1101/2020.05.26.115337doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.26.115337


 11 

representation (CLOVER) Analysis [56] using the Transfac Database, to anaylyze the 290 gene list. This 

analysis identifies over-represented transcription factor binding sites within the promoters of genes. This 

analysis revealed that 230 of the genes have FOXO3A and/or FOXM1 binding sites, as well as 241 sites 

for the SP1-4 transcription factor family. A Venn diagram shows that 225 of the genes contain sites for 

all 3 sets of transcription factors (Supplemental Fig. S5). Our finding that FOXM1 may be highly 

involved in the expression of the 290 gene list is significant since FOXM1 is an APCCDH1 substrate [57]. 

As can be seen in Fig. 3, FOXM1 expression is elevated in all canine tumors, providing a mechanism for 

how the APC substrates can be coodinately expressed in the canine tumors. Further work will need to be 

done to work out the details of this observation.  

 

Microarray reveals reversible changes in APC target gene expression that correlate with altered 

clinical treatment responses. 

Canine 4 exhibited a successful remission (temporary) based on the near disappearance of all palpable 

lymph nodes. It should be highlighted that this dog had failed both repeat CHOP therapy and rescue 

therapy in the months prior to our study entrance. Clinical remission occurred when CHOP was again 

trialed but with the addition of oral metformin. After 8 weeks in remission the subject relapsed and 

expired. RNA samples were obtained prior to metformin therapy, during remission while on metformin 

therapy as the tumors shrank, and from the tumor after relapse. We identified a set of 27 genes that were 

upregulated >3 FC in the MDR tumor, decreased >2 FC upon remission and then elevated once again >3 

FC upon relapse (Fig. 4A). We performed STRING on this set of genes and found that they were highly 

enriched in APC substrates (Fig. 4B, highlighted with a black ring around the node; Supplemental Table 

S6). This provides additional support for the idea that APC function is associated with the clinical 

manifestation of the disease. Further analyses of APC mitotic and G1 substrates in our three temporal 

samples from canine 4 revealed that the mitotic APC substrates that were elevated in tumors were 

remarkably reduced during remission, and upon relapse, were elevated beyond the initial MDR 
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lymphoma cells (Fig. 4C). This was also observed for the bulk of the APC G1 substrates (Fig. 4C), but 

several did not show this trend (FOXM1, CDC25A and SKP2). We validated several of the microarray 

hits by performing qRT-PCR on the original FNA samples from chemoresistant and remission samples 

in canine 4, for the genes encoding HURP and Securin (Fig. 4D). We observed that gene expression is 

significantly decreased in the treatment-sensitive/remission sample as compared to the MDR sample.  

 

APC substrates are elevated in vitro in OSW lymphoma cells selected for DOX resistance. 

We queried whether APC impairment may be a common mechanism in MDR transformation. To extend 

the observations that APC activity is impaired in vivo in drug resistant clinical samples, we obtained the 

canine OSW lymphoma cell line [58] to test whether our in vivo observations were valid in vitro. We 

selected OSW cells for resistance to Doxorubicin (OSWDOX) according to our established methods 

[12,13]. We observed that OSWDOX cells overexpressed protein biomarkers of MDR, including BCRP, 

MDR-1, and HIF1α (Fig. 5A). We next performed qPCR on OSW parental and resistant cells using 

primers against the APC substrates PTTG1, DLGAP5 and the MDR marker MDR1 (Fig. 5B). This 

analysis confirmed that APC substrates are elevated at the mRNA level in in vitro selected cells similar 

to in vivo MDR canine tumor samples, consistent with the idea that the APC is not targeting proteins 

required for the expression of the APC substrates for degradation. As expected, we observed that APC 

protein substrates were increased specifically in the MDR cell populations, as noted by the increased 

protein abundance of HURP, Cyclin B1 and Securin (Figs. 5C and 5D). If APC mitotic substrates are 

accumulating in MDR cells, indicating that APC activity is impaired, then we expected that MDR cell 

populations should accumulate in the mitotic phase of the cell cycle. To address this question, we 

analyzed cell populations derived from OSW DOX sensitive and resistant cells by flow cytometry (Fig. 

5E). The results show that both sensitive and resistant cell populations are predominatly in G1. A 

previous study of 182 breast cancer patient samples revealed that 58% of cases were characterized with 

high levels of MDM2 staining, defining G1/S replicating cells, yet also contained high levels of the 
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mitotic APC substrates GMNN, PLK1 and Aurora A [59]. This set of cases was decribed as having 

accelerated cell cycle progression, and was found to be associated with a higher risk of relapse and with 

high-grade triple negative subtypes. This is also known as mitotic slippage, where cells can bypass a 

mitotic arrest and progress into G1 [60]. Mitotic slippage can occur when the SAC is overridden and this 

is associated with an MDR phenotype. Cases showing G1 arrest (high MDM2) and low mitotic markers, 

similar to DOX sensitive OSW cells, were found to be associate with a low risk of relapse. Our work 

revealing that OSWDOX cells exhibit high levels of APC mitotic substrates in a population predominantly 

in G1 is consistent with a higher grade cancer and has the potential to serve as a diagnostic markert for 

aggressive tumor progression.  

 

Activation of the APC reduces APC substrates in MDR cells and resensitizes MDR cells to therapy. 

If impaired APC activity correlates with MDR development, we predicted that activating the APC should 

reverse the MDR phenotype by resensitizing these cells to chemotherapy. To directly investigate this 

idea, we obtained a commercially available APC activator called MAD2 Inhibitor-1 (M2I-1) [61]. This 

small molecule compound disrupts the MAD2-CDC20 interaction, thereby negating SAC inhibition of 

the APC. This results in the release of CDC20 to enable interactions with, and activation of, the APC. 

We treated OSWDOX cells with 1 µM M2I-1 for 48 hours (previously optimized, data not shown) and 

assessed the protein levels of the APC substrates HURP and Securin, and the load control Tubulin (Fig. 

5F). As shown in the quantificative analysis in Fig. 5G, HURP and Securin levels in OSWDOX cells 

dropped to levels lower than in sensitive cells upon M2I-1 treatment. This is consistent with the idea that 

APC E3 activity was being restored with the M2I-1 compound. To test if APC activation correlated with 

a simultaneous enhancement in chemosensitivity, we tested the effects of M2I-1 on cell viability in the 

presence of a toxic dose of DOX (1 µM) in OSW and OSWDOX cell populations (Fig. 5H). M2I-1 (1 and 

5 µM) proved to be nontoxic to both parental and selected cells in the absence of DOX. However, there 

was a striking dose-dependent killing of OSWDOX cells when M2I-1 and DOX were used in combination 
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that reached the chemosensitivity of the parental cells. This is consistent with a recent study showing that 

M2I-1 disrupts CDC20-MAD2 interactions in vivo, leading to increased sensitivity of cancer cell lines 

to nocodazole and taxol in vitro [62]. Taken together, the experiments presented here support our 

hypothesis that activation of the APC in MDR cells will enhance E3 activity and resensitize MDR cells 

to chemotherapy. 

  

DISCUSSION 

 

In the work presented here we used metformin as a tool to elucidate the molecular mechanisms at play 

when cancer progresses to an MDR state and the molecular networks involved in reversing MDR. Our 

previous work demonstrated that metformin could resensitize human MCF7 estrogen receptor positive 

(ER+) breast cancer cells selected for resistance to Doxorubicin (DOX) to DOX once again [13]. 

Furthermore, pretreatment of MCF7 with metformin delayed selection against DOX, indicating a 

prevention of MDR development. This may in part explain the meta-analysis results indicating that 

individuals taking metformin for Type 2 diabtetes therapy not only have a lower incidence rate of many 

common cancer types, but also appear to respond more robustly to therapy [63-65]. Translation of our in 

vitro results to an in vivo model could provide enormous potential for humans who develop resistance to 

therapies designed to treat their disease, and reveal the underlying mechanisms that are altered 

specifically in MDR malignancies. 

 

The canine model of cancer is considered an excellent model for human translation [66-69]. Thus, we 

employed companion canines recruited to the Western College of Veterinary Medicine at the University 

of Saskatchewan with treatment resistant lymphoma into our study to reveal the gene expression 

differences between tumors with variable treatment responsivenesses, as well as to determine the effects 

of metformin on cancer progression in these animals. Six of the canines recruited into this study 
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expressed MDR-1, a drug transporter found elevated in many cases of drug resistant cancers in humans 

[9,70]. Four of these canines were treated with metformin, and in all cases, MDR-1 proteins levels 

decreased. One of the canines (Canine 4), after failing all previous rescue therapies, did go into remission, 

providing evidence that metformin has the potential to reverse drug resistance in vivo. However, it should 

be noted that the canines enrolled in our study were terminally ill, and although there were signs of 

improvement in their behavior, there was little sign of reduced tumor size aside from the one canine that 

did go into remission. Future studies will focus on naïve dogs as they enter the clinic for a blinded study 

with metformin to determine whether metformin can delay the onset of drug resistant lymphoma. 

 

We used microarray technology to identify differentially expressed genes in MDR tumors compared to 

normal skin tissue in the 4 animals, and in tumors before and after metformin treatment in 2 animals. We 

also identified differentially expressed genes following remission and relapse of the one canine that had 

a full, yet transient, response. We began our analysis by assessing if expression of any of the ABC 

transporters found on the array was altered in tumors or following metformin treatment. Many ABC 

transporters are thought to play a large role in cancer development, as they are effective drug-efflux 

pumps and can lower the intracellular concentrations of chemtherapeutic agents below useful levels [71-

73]. Pharmaceutical efforts to design drugs that target MDR-1 in the clinic have failed in early human 

trials [9,70,74]. Interestingly, not all of the 4 canines overexpressed MDR-1 (ABCB1) mRNA, even 

though they overexpressed MDR-1 protein (Supplemental Figure S1), suggesting that elevated MDR-1 

protein levels may be a result of post-translational events. In fact, only one ABC transporter, ABCB3, 

was overexpressed greater than 3 FC in all 4 canines (although it was less than 3 FC in canine 1 sample 

#1). Five of the transporters were elevated in at least 3 of the canines (ABCA3, ABCC10, ABCG1, ABCC1 

and ABCA4), but the levels for the most part failed to surpass 3 FC. We also determined the effect of 

metformin on ABC transporter expression and found that metformin only reduced expression in a subset, 

including ABCB1 (Supplemental Figure S1). From these observations, we concluded that it is unlikely 
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that transcriptional regulation of ABC transporters plays a significant role in MDR development in our 

model. 

 

Our analyses of overexpressed genes in the MDR tumors of the 4 canines revealed a common set 

composed of 290 genes overexpressed at least 3-fold (Fig. 2A). We used Cytoscape and STRING 

databases to analyze this gene set and discovered that 146 and 186 of the 290 genes, respectively, fit into 

highly interconnected clusters of genes (Supplemental Fig. S2; Supplemental Tables S2, S3 and S5). One 

cluster (cluster 2; Supplemental Table S5), highlighted in yellow, is highly enriched for genes encoding 

proteins involved in mitotic cell cycle progression, especially degradation substrates of the APC and 

components of the kinetochore and SAC. A second cluster (cluster 4), highlighted in medium aqua, is 

enriched in signaling molecules, whereas a third cluster (cluster 3), highlighted in green, contains genes 

required mostly for DNA-dependent functions (ie., DNA repair, chromosome condensation and 

kinetochore/centromere assembly). Cluster 6, highlighted in purple, mostly contains genes involved in 

maintaining genome stability. Clusters 2 and 4 are joined by the Ras homolog gene family, member H 

(RHOH). Clusters 2 and 3 are connected by DNA topoisomerase II A (TOP2A). Cluster 6 is interwoven 

between clusters 2 and 3. Visually, cluster 2 is clearly the central theme of the common set of genes, 

indicating that tumor development depends on impaired progression through mitosis, potentially 

controlled by APC activity given our other clustered genes of commonality.  

 

Elevated APC substrates can have at least 2 readouts. First, many substrates, such as CCNB2, PLK1 and 

CDC20, are both APC activators and APC substrates. Elevation of these mRNAs and proteins could 

result in persistent APC activity that impacts the cell. The APC targets proteins for degradation, not 

mRNA, but APC substrates are often transcriptionally active just prior to when they are required [43,44]. 

This is controlled by transcripton factors that are themselves cell cycle regulated by the APC, such as 

FOXM1 [56]. The mRNAs encoding many APC substrates in yeast are also cell cycle regulated, with 
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synthesis of their corresponding proteins peaking following the mRNA expression peak [75-77]. In fact, 

transcription factors that transcribe yeast APC substrates, such as Fkh1 [29] and Ndd1 [78], are targeted 

by the APC, thereby creating feedforward loops. This loop is further layered by the observation that the 

yeast Fkh2 transcription factor (also likely an APC target; our unpublished observation) recruits Ndd1 to 

chromatin of additional G2/M specific APC subunit promoters [79]. The accumulation of APC substrate 

mRNA, at least in part, is a result of impaired degradation of the transcription factors responsible for 

their synthesis. Increased accumulation of APC substrates like CDC20 has lead to suggestions that 

inhibition of the APC, via down-regulation of CDC20, is important for cancer treatment [80,81]. 

However, other proteins, such as PTTG1 and DLGAP5 are not APC activators, but merely substrates. 

Elevation of these substrates, and many other APC substrates are linked with cancer and other diseases 

[26,80,82], and this is consistent with the idea that impaired APC activity is a primary driver of MDR 

development.  

 

To validate the idea that APC is impaired in canines with MDR lymphoma, resulting in the likely 

accumulation of APC substrate mRNAs, we determined the fold change of the APC substrates we could 

identify in the canine array (Fig. 3). Almost all of the 33 substrates identified were elevated at least 3 FC; 

all mitotic substrates in all 4 canines and most of the G1 substrates (Fig. 3). Previous work has also 

demonstrated APC substrates to be elevated in cancer cells [80,82]. Furthermore, recent work comparing 

differential gene expression in drug sensitive and resistant ovarian tumor datasets [46] revealed a similar 

collection of genes that were identified by us; half of the 30 highly connected nodes they identified were 

associated with APC function or substrates. Consistent with these observations, remission and relapse of 

canine 4 following metformin treatment identified 27 genes that were upregulated in the tumor, down-

regulated following metformin treatment, then upregulated again following relapse (Fig. 4A). These 27 

genes were highly interconnected and mostly composed APC substrates (Fig. 4B), clearly placing the 

APC at a pivot point as a critical activity in maintaining cell health.  
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To further validate our results, qRT-PCR of RNA isolated from canine 4 tumor tissue before and after 

metformin treatment showed that the APC substrates HURP and Securin were indeed reduced following 

metformin therapy (Fig. 4D). Validation in vitro using canine OSW lymphoma cells selected for 

resistance to DOX confirmed that APC substrates were elevated in MDR cells compared to parental cells 

(Figs. 5B-5D). We further proposed that activation of the APC may increase cell health and may 

resensitize MDR to chemotherapy. Activation of the APC using a commercially available small 

compound that inhibits the MAD2-CDC20 interaction, M2I-1 [61], reduced APC substrate levels in the 

selected OSW cells and resensitized the selected cells to DOX again (Figs. 5F-5H). Our results 

demonstrate that impaired APC function may be a critical trigger leading to progression towards 

aggressive tumor behavior and decreased treatment responsiveness. We propose that targeting the APC 

for activation through pharmaceuticals may reverse MDR behavior, and thereby provide much needed 

treatment options for those suffering from untreatable tumors. 

 

Taken together, the results presented here validate the companion canine as a powerful model of multiple 

drug resistant cancer that has allowed us to determine that the APC is important in cancer behavior and 

treatment sensitivity to chemotherapy. Impaired APC activity correlates with poor clinical outcomes, as 

well as MDR behavior. Exogenous activation of the APC corrected the impairment and restored 

chemosensitivity in vitro. Our work provides insight into the APC as a novel therapeutic target that may 

offer hope for individuals presenting with treatment-resistant malignancies, and may prove useful in 

preventing the development of resistance in cancer patients in the future. 

 

MATERIALS AND METHODS 

 

Cell lines and materials: 
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Canine OSW lymphoma cells were obtained from American Type Culture Collection (ATCC) in 

Manassas, VA, USA. Cells were cultured in 100 mm tissue culture dishes (Nalgene) in a humidified 

atmosphere (5% CO2) at 37°C. Non-adherent K562, Raji and OSW cells were cultured in RPMI 1640 

media (Hyclone) with 10% FBS and antibiotics. All treatment compounds were reconstituted in 

dimethylsulfoxide (DMSO) except metformin (Sigma) which was reconstituted in molecular-grade water 

and filter sterilized prior to use. Drug treatments were applied at the concentrations and times as 

indicated. Flow cytometry was performed as described previously [10]. 

 

Doxorubicin-selection of MDR cell lines 

OSW parental cells were selected for drug resistance as previously described [12] with initial selection 

in the presence of 1 uM Doxorubicin (DOX) for 48 hours. Following this treatment, the cells were washed 

with sterile PBS and allowed a 3-day recovery period. Drug resistance selection pressure was then 

reapplied to the cells by subculturing in the presence of 100 nM DOX for 2 weeks with fresh media 

changes every 3 days. Following the selection period the cells were subjected to MDR-1 Western blot 

analysis to verify the establishment of drug resistance and sensitivity to DOX using an MTT assay, as 

previously described previously [12] and below. 

 

Western blot analysis 

Non-adherent OSW cells were captured by centrifugation at 1000 rpm and washed once with sterile PBS. 

Cell pellets were transferred to microtubes and resuspended in ice cold RIPA buffer. The cell suspensions 

were pulse sonicated and centrifuged to remove cell debris. The resulting cell lysates were subjected to 

Bradford protein analysis (BioRad) to facilitate equivalent protein loading during Western analysis. Cell 

lysates were treated with 5X Laemmli buffer containing ß-mercaptoethanol, boiled to reduce viscosity 

and resolved by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), and 

transblotted onto nitrocellulose membranes. Transblot efficiency was verified prior to immunoprobing 
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by nonspecific Ponceau S protein staining of the membranes. Following primary antibody incubation 

overnight at 4°C, the blots were probed with a 1:10,000 dilution of a secondary horseradish peroxidase 

(HRP) secondary antibody. Primary antibodies against MDR-1 (Abcam, 1:500, 180 kDa), BCRP 

(Abcam, 1:1,000, ~70 kDa), HIF1a (Santa Cruz Biotechnology (SCBT), 1:500, 110 kDa), S6Kphos 

(SCBT, 1:1,000, 60 kDa), HURP (Abcam, 1:1,000, 120 kDa), Cyclin B1 (Sigma, 1:1,000, 70 kD), 

Securin (Abcam, 1:1,000, 29 kDa), GAPDH (Abcam, 1:1,000, 55 kDa) and tubulin (Sigma, 1:1,000, ~50 

kDa), were used in this study. The antigen/antibody target signals were detected using an enhanced 

chemiluminescent detection kit (ECL-BioRad) and chemoluminescent detection using BioRad VersaDoc 

molecular imager and Software. Cells were viewed with an Olympus BX51 fluorescence microscope 

100x objective equipped with an Infinity 3-1 UM camera. Images were collected using Infinity Analyse 

software version 5.0. A. 

 

MTT assay 

MTT (3-(4,5-dimethylthiazol-2-yl) 2, diphenyl-tetrazolium bromide) was used to measure the anti-

proliferative effects of the compounds used in this study. MTT is a colorometric cell proliferation assay 

based on the reduction of the yellow MTT compound to a purple-colored formazan product in the 

mitochondria of viable, living eukaryotic cells. Cancer cells were cultured in 6 well multi-well plates in 

phenol red-free medium to avoid interference with the analysis of the purple formazan product. The 

formazan product and spectrophotometric analysis was performed at 570 nm.  

 

Canine clinical assessment and sample retrieval 

During routinely scheduled clinic visits at the Wester College of Veterinary Medicine, each companion 

canine was examined and samples were taken. At the first visit, a punch biopsy of unaffected skin was 

taken as a negative control and preserved for RNA and protein. Tumor samples were obtained by three 

fine-needle aspiration biopsies that were taken of a palpable superficial lymph node: the same node was 
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sampled over time for each canine. One FNA sample was placed immediately into Trizol to preserve 

RNA for subsequent RT-PCR analysis and in some cases microarray. The remaining two FNA samples 

were pooled and immediately frozen at -80°C for western analysis. As for cell culture lysates, FNA 

sample protein concentrations were determined by Bradford assay. 

 

Microarray hybridization 

Total RNA from tumor and skin samples was shipped on dry ice and sent to the Laboratory for Advanced 

Genome Analysis at the Vancouver Prostate Centre for microarray analysis (http://www.mafpc.ca/). 

Total RNA was used as a template to create labeled cDNA using MessageAmpTM Premier RNA 

Amplification Kit and MessageAmpTM III RNA Amplification Kit (Applied Biosystems) according to 

the manufacturer’s instructions. Labeled cDNA was hybridized on Agilent Canine Microarrays, which 

are comprised of more than 25,000 annotated genes. Scanning and data acquisition were obtained using 

the Illumina iScan scanner, raw data (idat files) were loaded into Illumina BeadStudio, without 

background subtraction, and exported for analysis. The data files have been deposited with the meta-

database Gene Expression Omnibus (GEO accession # GSE121242; 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE121242) as of Dec. 1, 2018. Sufficiently high 

quality of extracted RNA was not available for all samples or at all time points, limiting the overall 

assessment possible. We were only able to extract RNA from the skin control from canine 2. Canine 4 

was unique in providing multiple quality protein and RNA samples over time as the canine progressed 

through clinical relapse and regression. These samples entered the microarray for a temporal comparison, 

and protein samples were able to provide additional MDR protein biomarkers by western analysis. 

 

Companion canine recruitment and characteristics 

The 8 canines in the study had been previously diagnosed with lymphoma and underwent initially 

successful chemotherapy. Six of the canines recruited presented to the Western College of Veterinary 
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Medicine with relapse and generalized lymph node enlargement. The canines had had at least 2 previous 

treatment failures and were recruited into the study upon spontaneous relapse and positive MDR 

biomarkers (MDR-1). Inclusion criteria included the need for owner consent; their ability to financially 

contribute to the treatment cost, time and travel required to receive chemotherapy; owner willingness to 

administer oral metformin tablets up to twice daily; and a life-expectancy of at least 6 weeks. The study 

protocol was approved after a full review by the University Animal Care Committee - Animal Research 

Ethics Board at the University of Saskatchewan (AREB# 20120063). Upon recruitment by one of two 

veterinary oncologists at the WCVM, the canines underwent a complete physical exam and staging that 

included bloodwork (complete cell counts, liver panel, electrolytes, and renal function testing), thoracic 

radiographs, and abdominal ultrasound prior to initiation of chemotherapy, the choice of which was left 

to the discretion of the treating clinicians. Oral metformin tablets were dosed on body weight with a 

maximum dose of 10 mg/kg, initiated as once-daily and increased as tolerated to twice daily at weekly 

clinic appointments. 
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Figure 1. Changes in MDR protein biomarker levels within tumor samples from canine subjects 

before and after oral metformin addition. A. Protein lysates were prepared from canines 2, 6, 7 and 8 

for analysis by Western blotting using antibodies against MDR-1 and tubulin. The control was derived 

from skin samples from canine 2. Canines 2 and 6 were recruited with drug resistant lymphoma, while 

canines 7 and 8 were drug sensitive. Tumor samples were obtained by fine needle aspirates (FNAs) 

following 1 and 2 weeks of metformin treatment from canine 2. B. Lysates prepared from skin and tumor 

samples obtained from drug resistant canine 3, before and after metformin therapy, were analyzed with 

antibodies against the MDR markers shown, with tubulin serving as the load control. C. and D. Protein 

lysates prepared from skin and tumor samples from drug resistant canines 4 and 5, before and after 

metformin treatment, were assessed using antibodies against MDR-1, with Ponceau S representing 

relative load controls.  

 

Figure 2. Canines with MDR lymphoma tumors express a common set of highly interactive genes. 

A. A Venn diagram highlights a set of 290 genes overexpressed in the tumors of the four MDR canines 

studied. Agilent canine arrays containing over ~25,000 annotated canine genes were used to analyze 

mRNA obtained from tumor samples in four MDR subjects (canines 1 (sample 2) 2, 3, and 4) and 

normalized to control skin tissue mRNAs (canine 2). The fold change (FC) was determined by comparing 

the Log base 2 expression levels from the tumors with the control. A Log base 2 of 1 is equivalent to a 

FC or 2. A FC >3 was used as a cut-off. Bracketed numbers reflect the total number of genes above the 

FC 3 threshold in that subject. B. Cytoscape was used to analyze the 290 gene set. 146 genes were found 

to form 13 highly interconnected nodes. Network pathways found to be enriched within these nodes are 

shown. Astericks denoting genes within the nodes that are enriched within network pathways are color 

coded. Nodes circled in red define Anaphase Promoting Complex substrates. 

 

Figure 3. mRNAs encoding APC substrates are elevated in the 4 MDR canines. All known APC 
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mitotic and G1 specific substrates, to the best of our knowledge, that were identified in the arrays were 

assessed for differential gene expression in MDR tumor samples compared to control skin samples. The 

histogram in black reflects APCCdc20 mitotic substrates, while those in red define APCCdh1 targeted G1 

substrates. All 5 samples from the 4 MDR canines are shown. Average values are shown in Supplemental 

Figure 4.  

 

Figure 4. Changes in APC target gene expression correlate with altered clinical responses. A. 

Cervical lymph node FNA samples were obtained from canine 4 before metformin treatment when the 

tumor was chemoresistant, during remission following metformin treatment, and then after relapse, with 

differential gene expression compared to normal skin samples using canine microarray. A Venn diagram 

was used to determine similarities in genes overexpressed 3 FC in the tumor, 2 FC down-regulated 

following remission, then 3 FC upregulated following relapse. This is predicted to identify genes 

specifically involved in the MDR phenotype. From this analysis, 27 genes were found to be 

overexpressed in chemoresistant cells, reduced upon remission, then overexpressed once again when 

remission failed. B. A STRING analysis indicates that the 27 genes were highly interconnected, with the 

majority of the genes encoding APC substrates (red nodes, circled in black), and genes encoding proteins 

required for chromosome maintenance (green and blue nodes, APC substrates circled in black). C. 

Differential gene expression was determined for the APC substrates identified in the array (shown in 

Figure 3) in chemoresistant tumors and following remission and relapse, compared to control skin 

samples. D. Microarray results were validated by qRT-PCR of original FNA aspirate samples for 

DLGAP5 (encoding HURP) and PTTG1 (encoding Securin) in canine subject 4 at study entry and 

remission.  

 

Figure 5. Elevation of MDR biomarkers and APC protein target abundance upon in vitro selection 

for chemoresistance in a canine lymphoma cell line, and reversal and resentization following APC 
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activation. A. OSW canine lymphoma cells (OSWsens) were selected for resistance to DOX (OSWDOX). 

Protein lysates from chemosensitive and resistant populations were analyzed by Western analysis for 

multiple MDR biomarkers. B. qRT-PCR analysis of APC substrate and MDR marker genes in matched 

populations (n=3). C. OSW cell lysates from (A) were tested for APC-target protein abundance. D. 

Quantification of  western protein abundance using ImageJ, normalized to Tubulin levels (3 rpts). E. 

Flow cytometry of sensitive and resistant OSW asynchronous cell populations. Propidium iodide 

fluorescence was measured. F. OSW canine lymphoma cells selected for DOX-resistance were exposed 

to 1 µM M2I-1 for 18 hours. Protein lysates from these cells and controls were analyzed by westerns for 

the abundance of APC protein targets. G. Protein bands in (F) were quantified using ImageJ, normalized 

to Tubulin levels, and plotted. Three separate westerns were analyzed. H. OSW parental and DOX-

resistant cells were pretreated with 1 or 5 µM M2I-1 for 18 hours, then exposed to 1 µM Doxorubicin for 

48 hours. Cell viability was measured using Trypan Blue. Three biological replicates were performed. 

 

Supplemental Figure 1. ABC transporters do not play a critical role in the development of canine 

MDR lymphoma. A. Differential gene expression of the family of ABC transporters on the canine 

microarray was determined for each MDR canine sample. Two samples from canine 1 were evaluated 

by microarray. B. ABC transporter gene expression changes were determined for the 2 canines (2 and 4) 

that were treated with metformin and analyzed by microarray. The 2 values for each gene were averaged 

and the SEM was plotted.    

 

Supplemental Figure 2. 186 genes form the 290 gene set are predicted to form a highly 

interconnected network based on STRING. STRING analysis of the 290 common overexpressed 

genes within the tumors of MDR canines (Figure 2A) reveals a highly interconnected 186 gene set 

(Supplemental Table 2). The thicker the connecting edge defines higher confidence interactions. The 
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genes were grouped into 6 clusters, as shown by the different colored nodes. The yellow nodes are highly 

clustered and largely define genes involved in mitotic progression (see Supplemental Table 5). The green 

and purple nodes, also tightly connected to the yellow nodes, are primarily involved in chromosome 

maintenance and DNA repair. A significant number of these genes encode proteins known to be targeted 

by the Anaphase Promoting Complex (marked by an * in Supplemental Table 5). The majority of these 

genes are in fact elevated in a variety of human cancer types. 

 

Supplemental Figure 3. Expression scores for CCNB1 within 24 different types of cancer and 

normal tissue. Using the Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/) database, we 

determined if expression of an APC substrate gene (CCNB1) in cancer patients is differentially regulated 

between normal and the tumor tissues. The numbers along the x-axis denote the number of patient 

samples in each cancer type. Statistical significance of the difference in expression between the normal 

and tumor samples are depicted for each cancer type. N.S. denotes not significant. The abbreviation of 

each cancer along the y-axis is represented as described in the TCGA portal. 

 

Supplemental Figure 4. Expression of APC substrates is highly increased in canines with MDR 

lymphoma, with mitotic substrates showing a greater elevation than G1 substrates. The scores for 

all mitotic and G1 substrates from the 5 canine samples were averaged and plotted as shown. The top 

and bottom of the box define the third and first quartiles, respectively, while the median of the data 

divides the box. The whiskers define the error bars for the dataset. 

 

Supplemental Figure 5. Binding sites within the promoters of the genes in the 290 gene set are 

enriched for FOXM1, FOXO3A and the SP1-4 class of transcription factors. A CLOVER analysis 

(https://www.ncbi.nlm.nih.gov/pubmed/14988425), combined with the Transfact database, identified 

enrichment for FOXM1 (230 genes), FOXO3A (230 genes) and SP1-4 (241 genes). A Venn diagram 
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was used to identify overlaps between these datasets. 225 genes were found to contain binding sites 

within their promoters for all three sets of transcription factors. 

 

Supplemental Table 1.  Clinical characteristics of the MDR lymphoma canines used for the 

microarray analysis. All 4 MDR canines were male/neutered with recurrent B-cell lymphoma. All 

canines were clinically resistant/MDR. Skin biopsy samples were taken prior to metformin treatment. 

Repeat FNA sampling was performed before and during MET addition to chemotherapy. MET: oral 

metformin in tablet form. OD: once daily. BID: twice daily. Stage III is generalized lymph node 

involvement of the front and back half of the body. CHOP: 4 drug chemotherapy cocktail given over 19 

weeks including Cyclophosphamide, Doxorubicin (Adriamycin), Vincristine, Prednisone. CCNU is 

lomustine, an alkylating agent.  

 

Supplemental Table 2. Lists of genes upregulated >3 fold in the 4 MDR canines. All genes 

differentially expressed >3 fold for the tumor samples, compared to control skin samples, were retreived 

from the microarrays. Venn analyses identified a common set of 290 genes overexpressed in all 4 MDR 

canines. STRING analyses identified a set of 186 genes within the 290 gene set that were highly 

connected. 

 

Supplemental Table 3. Cytoscape node list for the 146 gene set (see Figure 2B). The 290 gene set 

was analyzed using the Cytoscape online tool. 13 interconnected nodes, composed of 146 genes, were 

identified that defined pathways involved in DNA repair and cell cycle progression through mitosis. 

 

Supplemental Table 4. Cytoscape network pathway enrichment for 146 gene set (see Figure 2B). 

Network, Biological and Cell Component pathways were identified from the 146 gene network indicating 

the number of total genes in the complete gene set and the number found in our network. The enrichment 
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was indicated by the p-value. 

 

Supplemental Table 5. Gene clustering from the STRING analysis identifies a set of genes within 

the 186 gene set that defines progression through mitosis as a key regulator of MDR development. 

The clusters identified in Supplemental Figure 2 were listed and categorized in terms of function based 

on review of the literature. Genes highlighted in yellow define genes involved in mitotic progression, 

while genes highlighted in green define genes involved in DNA replication and repair. * denotes APC 

substrates; ** denotes kinetochore and Spindle Assembly Checkpoint associated proteins; *** denotes 

components of the chromosome condensin complex. 

 

Supplemental Table 6. Analyses of genes identified as responsive to clinical chemoresistance, 

remission, and relaspe in canine 4. A Venn diagram comparing genes overexpressed >3 fold in the 

chemoresistant tumor, down-regulated >2 fold upon remission, and >3 fold following relapse in canine 

4, identified 27 genes in common. Each pairwise comparison was listed. STRING interactions were 

identified for each comparison. As above, genes highlighted in yellow define genes involved in mitotic 

progression, while genes highlighted in green define genes involved in DNA replication and repair. * 

denotes APC substrates; ** denotes kinetochore and Spindle Assembly Checkpoint associated proteins; 

*** denotes components of the chromosome condensin complex. 
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New Figure 5
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Supplemental Figure 4
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Supplemental Figure 5
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Case  ID 
number

Breed Age
B vs T cell 
lymphoma

Stage
Chemotherapy at 
times of sampling

Clinical 
response to 

therapy

MET 
duration

MET dose

Time to 
death 
after 
MET

Overall survival 
(diagnosis to 

death)

1
Golden 

Retriever
10 yr B III CHOP with MET 

No, enlarged 
lymph nodes 

remained
108 days 250 mg OD 184 days 254 days

2
Lab Retriever 

mix
5 yr B III CHOP  with MET 

No, enlarged 
lymph nodes 

remained
81 days 500 mg BID 87 days 277 days

3 Retriever mix 7 yr B III DOX with MET
No, enlarged 
lymph nodes 

remained
138 days 500 mg BID 143 days 184 days

4
Lab Retriever 

mix
11yr B III

CHOP failed then 
rescue with CCNU 
failed, then MET 
added to CHOP 
and remission

Yes/No, 
Remission 

attained for 8 
weeks then 

relapse again

84 days
250 mg OD 
then 250 mg 

BID
91 days 261 days

Supplemental Table 1
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