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ABSTRACT (150-200 words) 21 

Regime shifts of climatic and environmental conditions potentially affect productivity 22 

of fisheries resources, posing challenging issues to stock management. The stocks of the 23 

Japanese flying squid (Todarodes pacificus) are suspected to suffer from regime shifts, 24 

but their detection is difficult and possibly doubtful because the nature of short-lived 25 

species readily makes the effect of regime shifts confounded with observation errors. 26 

Here we developed a new state-space assessment model to evaluate the influence of 27 

regime shifts on spawner-recruitment relationship of the Japanese flying squid. The 28 

model simultaneously estimates the population dynamics of multiple stocks that could 29 

share some life history parameters, making parameter inference stable. We demonstrate 30 

that two-time regime shifts of productivity around 1991 and 2015 caused two- to 31 

three-fold changes of maximum sustinabile yields. The model with regime shifts 32 

clarifies the relationship between fishing pressure and spawner abudance that is difficult 33 

to detect in a model with no regime shift. The state-space approach will be a promising 34 

tool to accurately assess stock status by separating recruitment process from observation 35 

errors and contribute tothe management of marine biological resources sensitive to 36 

regime shifts. 37 

 38 

Keywords (up to 5) 39 

Japanese common squid; MSY reference points; multistock modeling; state-space stock 40 

assessment model (SAM) ; template model builder (TMB)  41 

  42 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.22.111088doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.111088
http://creativecommons.org/licenses/by-nc-nd/4.0/


INTRODUCTION 43 

Ecological regime shifts cause drastic changes of ecosystem states and organisms 44 

(Scheffer et al. 2001; Kadowaki et al. 2018). In the ocean, climatic and environmental 45 

conditions drive regime shifts in productivity of fisheries stocks: average recruitment 46 

for a certain period is substantially different before and after a single year (Perälä and 47 

Kuparinen 2015; Maunder and Thorson 2019). Recent studies showed that a high 48 

proportion of stocks experienced shifts of recruitment, or nonstationary 49 

stock-recruitment relationship (Vert-Pre et al. 2013; Perälä and Kuparinen 2015; 50 

Szuwalski et al. 2015). Since fisheries production is one of the most important 51 

provisioning ecosystem services, understanding regime-shift dynamics of fisheries 52 

resources is a key issue toward the sustainable use of nature’s contribution from marine 53 

ecosystems. 54 

 Maximum sustainable yield (MSY) is an importatnt concept for the assessment 55 

and management of fish stocks around the world. International legal frameworks for 56 

sustainable fisheries, the United Nations Convension on Law of the Seas (UNCLOS) 57 

and the United Nations Fish Stocks Agreement (UNFSA), set an objective as the 58 

maintainance and restoration of populations at stock biomass that produces MSY. The 59 

Convension on Biological Diversisity (CBD) and the Sustainable Developoment Goals 60 

(SDGs) also outline the sustainable use and conservation of biological resources. 61 

Although these international circumstances require the estimation of MSY worldwide 62 

(Costello et al. 2012; Martell and Froese 2013; Punt et al. 2014; Ichinokawa et al. 2017), 63 

the existence of regime shifts makes the calculation of MSY challenging, because 64 

regime shifts are likely to generate multiple stock-recruitment relationships and thus 65 

multiple MSY-based reference points. It is suggested that although management advice 66 
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should take into account recruitment variability by regime-shift-like behaviors (Vert-Pre 67 

et al. 2013; King et al. 2015), regime-based harvest control rules (HCRs) generally have 68 

high risk of overfishing when regimes are misidentified or regime shifts do not occur 69 

(A’mar et al. 2009; Szuwalski and Punt 2013). Reliable assessment on the occurrence 70 

and degree of regime shifts is needed for considering management strategies of fisheries 71 

stocks exhibiting nonstationary recruitment. 72 

 The stocks of Japanese flying squid (Todarodes pacificus) are considered to 73 

suffer from regime shifts in association with dynamic climatic conditions (Sakurai et al. 74 

2002; Kidokoro et al. 2010; Kurota et al. 2020). Climatic shift in 1989 caused water 75 

temperature warm and expanded spawning areas of this species in the Sea of Japan 76 

(Sakurai et al. 2000; Kidokoro et al. 2010). Its paralarvae were likely to survive as a 77 

result of warming temperature (Sakurai et al. 2000, 2013), and thus, the catch biomass 78 

and abundance index rised dramatically since 1989 (Sakurai et al. 2002; Fig. 1). We 79 

expect, therefore, that the effect of regime shift changed spawner-recruitment 80 

relationship of this species. Furthermore, the opposite direction of shift might occur 81 

recently because the catch biomass and abundance index have been decreasing (Fig. 1; 82 

Kaga et al. 2019). Since the Japanese flying squid is preyed upon in great numbers by 83 

large fish, such as mackerels (Scomber japonicus and S. australasicus) and bullfin tuna 84 

(Thunnus thynnus), and marine mamamals, such as dolphins (Sakurai et al. 2013), this 85 

species has an important role in sustaining food webs in marine ecosystems. The 86 

occurrence of regime shifts in this speciesis of serious concern to fishermen and 87 

fisheries managers.  88 

 Distinguishing recruitment process and observation error is important for 89 

accurately detecting regime shifts (King et al. 2015; Maunder and Thorson 2019). 90 
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Recently, the state-space stock assessment models (SAM) that estimate latent variables 91 

such as abundance and fishing mortality as random effects have been developed and is 92 

effective at separately estimating process and measurement errors (Nielsen and Berg 93 

2014; Miller and Hyun 2017; Okamura et al. 2018). However, these models are 94 

age-structured and not possible to apply to the Japanese flying squid, because its 95 

life-span is a single year. Applying population dynamics modeling to the stock 96 

assessment for a species with annual life-span is generally difficult, because one cannot 97 

track the interannual depletion process of each cohort by fishing and natural death, 98 

making parameter estimation unstable. In fact, annual stock assessment of the Japanese 99 

flying squid has been conducted based on an abundance index and not used population 100 

models (Kaga et al. 2019; Kubota et al. 2019). The stock assessment has therefore 101 

confounded measurement and process errors and been likely to fluctuate unwantedly. 102 

The calculation of MSY also increases the demand for state-space approach for the 103 

Japanese flying squid, because the estimation error in recruitment should be directly 104 

linked to the measurement error in spawner abundance (i.e., independent variable for 105 

recruitment), which could be considered appropriately by using a state-space model 106 

(Subbey et al. 2014; Brooks and Deroba 2015). 107 

 A possible solution to estimation difficulty and unstability is joint modeling of 108 

multispecies or multistocks rather than per-stock analysis (Thorson et al. 2013). 109 

Dynamics of multiple species and stocks could be partially correlated if they share 110 

environmental conditions (Thorson and Minto 2015; Thorson et al. 2016). The 111 

assumption on a species having the same life history paramter between different stocks 112 

could be valid and enable parsimonious and stably predictive modeling. Fortunately, 113 

there are two different stocks of the Japanese flying squid (autumn-spawning stock and 114 
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winter-spawning stock) that have been independently assessed (Kaga et al. 2019; 115 

Kubota et al. 2019), but may have correlated dynamics (Hoshino et al. 2014).  116 

In this article, we developed a new model for multistocks of annual life-span 117 

species, called ‘SAMUIKA’ (State-space Assessment Model Used for IKA (squid in 118 

Japanese)), to investigate whether and how regime shifts occur in productivity of the 119 

Japanse flying squid. We firstly performed intensive model selection by varying the 120 

occurrence, parameter, year, and pattern of regime shifts. We then computed MSY-based 121 

reference points from estimated spawner-recruitment relationship. Lastly, we evaluated 122 

the past stock status relative to the MSY-based reference points. 123 

 124 

MATERIAL AND METHODS 125 

Biology and fisheries of Japanese flying squid 126 

The Japanese flying squid is one out of the nine TAC (total allowable catch) species in 127 

Japan, whose total catch are restrictly managed by output control, because it is 128 

commercially important for Japanese fisheries (5% of total Japanese catch in 2014; 129 

Kaga et al. 2017; Kubota et al. 2017). Japan has conducted annual stock assessments of 130 

autumn-spawning stock and winter-spawning stock that have diferent distributions as 131 

well as spawning seasons. The former stock is distributed in the Sea of Japan, whereas 132 

the latter is mainly distributed in the Northwest Pacific near Japan when it migrates in 133 

feeding season (Kidokoro et al. 2010). The Japanese flying squid is usually caught by 134 

jigging in Japan, but other fisheries including bottom trawling, set net, and purse seine 135 

also harvest the species especially for the winter-spawning stock (Kaga et al. 2019). 136 

 137 
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State-space modeling 138 

Our state-space model SAMUIKA simultaneously describes the population dynamics of 139 

autumn-spawning and winter-spawning stocks of Japanese flying squid, whose lifespan 140 

is a single year. The squid individuals that survive from natural death and fishing after 141 

recruitment become spawning adults: 142 

��,� � ��,� � exp�	
�,� 	 �� , (1) 

where Si,y is the number of spawning adults of stock i (A: autumn-spawning, W: 143 

winter-spawning) in year y (this definition of subscripts will be applied hereafter), Ni,y is 144 

the number of recruits, or stock number. Fi,y is the fishing mortality coefficient, while M 145 

is the natural morality coefficient and assumed to be 0.6, in accordance with the annual 146 

stock assessment (Kaga et al. 2019; Kubota et al. 2019). The natural morality 147 

corresponded to a death rate during half-year fishing season (monthly mortality 148 

coefficient was assumed to be 0.1). The interannual dynamics of fishing mortality 149 

coefficient is described by a random walk, as with age-structured state-space assessment 150 

model (Nielsen and Berg 2014): 151 

log 
�,� ~Normal�log 
�,��� , ���� , (2) 

where ��� is the variance that controls the process error of random walk.  152 

The number of recruits is expressed by the product of Beverton-Holt model and 153 

process error: 154 

��,� � ��,���,�1 � ��,���,� � exp���,�� , (3) 

where ai,y represents the number of recruits per spawning individual when adult number 155 

approaches zero, and bi,y represents the strength of density dependence per spawning 156 

individual. We consider that the spawner-recruitment parameters ai,y and bi,y could 157 
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depend not only stocks but also years because regime shifts could affect these 158 

parameters (details are shown in the next subsection). εi,y is a deviance to the 159 

stock-recruitment curve and assumed to follow a multivariate normal distribution: 160 

�� � ���,� , ��,��	~MVN� , !
� . (4) 

Σy is a variance-covariance matrix: 161 

!
 � # $�,�� %$�,�$�,�%$�,�$�,� $�,�
� &  , (5) 

where $�,��  is the variance in recruitment process and ρ is the correlation coeffieicnt of 162 

recruitment variability between two stocks. We used the multivariate normal distribution 163 

because recruitment deviances could be correalted between autumn-spawning and 164 

winter-spawning stocks that potentially share environmental and climatic conditions. 165 

Moreover, we consider that the magnitude of recruitment variability could be different 166 

between stocks and regimes. 167 

The following observation model was fitted to data of catch biomass and 168 

abundance index for autumn-spawing and winter-spawning stocks (Fig. 1; Kaga et al. 169 

2019; Kubota et al. 2019). We used one time series of abundance index per stock that 170 

was used in the annual stock assessment (Kaga et al. 2019; Kubota et al. 2019). The 171 

duration of index data is 1981 to 2018 for the autumn-spawning stock and 1979 to 2017 172 

for the winter-spawning stock (Table 1). The abundance indices were assumed to be 173 

proportional to the stock numbers with normal errors at logarithmic scale: 174 

log '�,� ~Normal�log�(���,�� , )�
�� , (6) 

where Ii,y represents an index value, qi represents a proportional constant, and )�
� is the 175 

variance that controls the magnitude of observation error. The observed catch biomass 176 
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was also followed to a normal distribution at logarithmic scale: 177 

log *�,� ~Normal�log *+�,� , ,�
�� , (7) 

where *+�,� represents a predicted catch biomass and ,�
� is the variance in observation 178 

error. The duration of catch data is 1979 to 2017 for both stocks (Table 1). We used the 179 

Baranov equation to obtain the predicted catch biomass: 180 

*+�,� � -�,� � 
�,�
�,� � � � ��,� � .1 	 exp�	
�,� 	 ��/ , (8) 

where wi,y is mean body mass per individual. We used the body weight in the annual 181 

stock assessment (Kaga et al. 2019; Kubota et al. 2019): for the autumn-spawning stock 182 

the per-capita mass is 280g during the whole period, while for the winter-spawning 183 

stock the per-capita mass is 300g before 1989 and 311g thereafter.  184 

 185 

Parameter estimation and model selection 186 

We estimated the parameters of fixed and random effects (Table 1) using the maximum 187 

likelihood method via template model builder (TMB, Kristensen et al. 2016). TMB 188 

enables the estimation of many random effects using the Laplace approximation and 189 

automatic differentiation (Kristensen et al. 2016). Because the random effects were 190 

estimated at the logarithmic scale, we applied a generic method for bias correction for 191 

the mean of random effects (Thorson and Kristensen 2016). The source code and data 192 

are made available as an R package at GitHub 193 

(https://github.com/ShotaNishijima/messir). 194 

 TMB enables fast optimization of hierarchical models including complex 195 

random effects (Kristensen et al. 2016). By utilizing this advantage, we analyzed a 196 

number of models having different assumptions on recruitment and performed model 197 
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selection based on AICc (Burnham and Anderson 2002). We found that assuming that 198 

both ai,y and bi,y were independent between stocks caused false convergence or 199 

unrealistic, extremely-large abundance estimates, suggesting that estimation is 200 

unfeasible only from one-stock information. We therefore assumed that at least either 201 

ai,y or bi,y must be a common value between stocks. We also assumed that a regime shift 202 

occurred simultaneously for both stocks and changed either ai,y or bi,y in the 203 

spawner-recruitment relationship. This assumption was made because a previous study 204 

suggeted the shift in climatic conditions changed spawining areas and stock abundances 205 

for both autumn-spawning and winter-spawning stocks (Sakurai et al. 2000). The 206 

changes in ai,y and bi,y both caused the change in productivity, and therefore, were likely 207 

to be confounded (Maunder and Thorson 2019). The variation in ai,y changes both 208 

maximum recruits per spawner and maximum recruitment, and thus affects expected 209 

recruitment at both high and low spawning abundances. On the other hand, the variation 210 

in bi,y changes maximum recruitment, but not maximum recruits per spawner, and thus 211 

affects expected recruitments at high spawning abundance. 212 

To reduce the number of analyzed models, we assumed that the parameter that 213 

are independent of stocks could change in response to a regime shift by considering that 214 

the spawner-recruitment parameter that is different between stock is also likely to be 215 

differnt among regimes; when the parameter ai,y (or bi,y) was different between stocks, 216 

ai,y (or bi,y) could be different among regimes. When the same parameter values ai,y and 217 

bi,y were shared between stocks, we assumed that either ai,y or bi,y changed due to a 218 

regime shift. We thus made seven types of assumptions: (1) both paramters ai,y and bi,y 219 

were common between stocks and no regime shift occured; (2) both paramters ai,y and 220 

bi,y were common between stocks and a regime shift changed the parameter ai,y; (3) both 221 
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paramters ai,y and bi,y were common between stocks and a regime shift changed the 222 

parameter bi,y; (4) the parameter ai,y were different between stocks (bi,y were common) 223 

and no regime shift occured; (5) the parameter bi,y were different between stocks (ai,y 224 

were common) and no regime shift occured; (6) the parameter ai,y were different 225 

between stocks (bi,y were common) and a regime shift changed the parameter ai,y; and 226 

(7) the parameter bi,y were different between stocks (ai,y were common) and a regime 227 

shift changed the parameter b,y.  228 

 Previous studies suggests that a regime shift from low to high state occurred 229 

around 1989 (Sakurai et al. 2002; Kidokoro et al. 2010), and another regime shift 230 

possibly occurs in recent years (Kaga et al. 2019). We considered three pattens of 231 

regime shifts: (i) a regime shift occurred once in a year between 1987-1991 (A→B); (ii) 232 

regime shifts occurred twice in a year between 1987-1991 and in a year between 233 

2013-2017, respctively, and the second regime shift reverted the first state (A→B→A); 234 

and (iii) regime shifts occurred twice in a year between 1987-1991 and in a year 235 

between 2013-2017, respctively, and the second regime shift brought a third state 236 

(A→B→C). The first patten had five cases having different shifting years, and the 237 

second and third patterns had 25 cases (= 5×5), and thus we analyzed 55 cases 238 

(5+15+25) in the models with regime shift(s). We had four out of the seven types that 239 

assumed regime shift(s) in the previous paragraph (2, 3, 6 and 7). The other three types 240 

with no regime shift had only one case respectively (1,4, and 5). We analyzed 223 241 

models (= 55×4+3) with different assumptions in total.  242 

We futher assumed the parameter ��� (variance representing process error of 243 

fishing mortality coefficient) and ,�
� (variance representing observation error of catch) 244 

were common between stocks (Table 1). This is because a preliminary analysis showed 245 
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that estimated values of these parameters varied little between stocks and assuming a 246 

common value between stocks had lower AICc (Burnham and Anderson 2002) than 247 

assuming different values in a preliminary analysis. We excluded 68 models that caused 248 

estimation error or convergence problem from results; remaining 155 (223−68) models 249 

achieved successful estimation and convergence. We calculated AICc of each of 250 

successfully-converged models from maximum likelihood, sample size, and the number 251 

of fixed parameters shown in Table 1. 252 

 253 

MSY-based reference points  254 

We calculated derived parameters and biological reference points from estimated 255 

stock-recruitment relaltionships (Eq. 3). First, we obtained the steepness h, or the 256 

fraction of recruitment from unfished population obtained when the spawning stock is 257 

20% of its unfished level (Mangel et al. 2010):  258 

0�� � � � 0.2��1 � � � 0.2�� . (9) 

N0 and S0 are the unfished numbers of recruits and spawners, respectively, which can be 259 

obtained from the intersection of the spawner-recruitment relationship and the 260 

replacement line (y = exp(M)×x in this case):  261 

�� � � 	 exp3�4� � exp3�4   and  �� � � 	 exp3�4�  . (10) 

h = 1 means that the recruitment is completely driven by environments, whereas h = 0.2 262 

means the proportional relationship between spawners and recruits. The steepness, 263 

therefore, represents the resilience of a species to harvesting: a high steepness indicated 264 

high resilience, and vice versa (Mangel et al. 2010). In this study, we can calculate the 265 
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steepness by substituting the equation (10) into the equation (9): 266 

0 � �� � 4 exp3�4 . (10) 

It is worth noting that the steepness depends on the parameter a but not b. 267 

We then calculataed MSY-based reference points. The amount of surplus 268 

production reaches at maximum when the difference between spawner-recruitment 269 

relationship and replacement line is the largest:  270 

��� � 1� 89 �exp3�4 	 1: , (11) 

��� � ����1 � ����

 , (12) 

and FMSY = log(NMSY)−log(SMSY)−M. MSY was calculated by substituting NMSY and FMSY 271 

into Eq. 8. We compared the estimates with these MSY-based reference points to 272 

evaluate the stock status in the past. The steepness and MSY-based reference points 273 

were computed for each paramter set of spawner-recruitment relationship when models 274 

with different parameters between stocks and/or regimes were selected. 275 

 276 

RESULTS 277 

Model selection 278 

Model selection showed that top models with lower AICc had two-time regime shifts 279 

around 1991 and 2015 (Table 2). The models with one-time regime shift had ΔAICc of 280 

21.7 or larger. The no-regime models had ΔAICc of 34.1 or larger, and were ranked as 281 

the worst among the 155 models having successful convergence. For comparison, the 282 

results of a no-regime model are shown in Supporting Information. The best five models 283 
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assumed different parameter values of the strength of density dependence (bi,y) between 284 

stocks and regimes, rather than the maximum number of recruits per spawning 285 

individual (ai,y). These five had different years of regime shifts, but the best model, 286 

which assumed 1991 and 2015 as shifting years, had significantly lower ΔAICc than the 287 

other models (ΔAICc of 4.2 or larger). The best three models assumed that the second 288 

regime shift went back to the first regime (A→B→A), but the forth model with ΔAICc 289 

of 5.8 assumed different regimes between the first and third ones (A→B→C). The sixth 290 

model with ΔAICc of 5.9 had different parameter values of the maximum number of 291 

recruits per spawning individual (ai,y), but a common value for the strength of density 292 

dependence (bi,y). 293 

 294 

Fit to observation 295 

The estimated temporal patterns of stock number were smoother than the temporal 296 

dynamics of abundance indices especially for the autumn-spawning stock (Fig. 1b). The 297 

stock number was kept at the low level during the first decade, and then abruptly 298 

increased since the 1990s. This ‛high’ regime continued to a middle of the 2010s and 299 

thereafter, the ‛low’ regime came back. The estaimtes of catch biomass were well fitted 300 

to its observed values (Fig. 1a).  301 

 302 

Recruitment productivity  303 

The spawner-recruitment relationships were clearly distinct between the regimes in the 304 

best model (Fig. 2). The Japanese flying squid belonged to the low regime in the 1980s, 305 

and thereafter, moved to the high regime. The productivity then decreased to the low 306 

regime in 2015. The magnitude of regime shift was largher for the winter-spawning 307 
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stock (Fig. 2b) than for the autumn-spawning stock (Fig. 2a). For the autumn-spawning 308 

stock, the MSY in the high regime (305 thousand MT) was 1.8 times larger than that in 309 

the low regime (167 thousand MT); for the winter-spawning stock, by contrast, the 310 

MSY in the high regime (237 thousand MT) was 2.8 times larger than that in the low 311 

regime (85 thousand MT) (Fig. 1a).  312 

 The spawner-recruitment relationship with regime shifts was considerably 313 

different from that with no regime shift. The spawner-recruitment relationship became 314 

close to a proportional relationship when we ignored regime shifts (Fig. S2 in 315 

Supporting Information). The steepness was 0.83 in the best model with regime shifts, 316 

but 0.35 in the model with no regime. This indicates that incorporating regime shifts 317 

made the Japanese flying squid more resilient to harvesting.  318 

 Recruitment variability was higher in the winter-spawning stock than in the 319 

autumn-spawning stock (Fig. 2). The recruitment variablity was moderately correlated 320 

between the stocks (ρ = 0.69). 321 

 322 

Fishing impact on spawners 323 

The temporal patterns of fishing mortality greatly difffered between stocks. For the 324 

autumn-spawning stock, the fishing mortality coefficient was higher than FMSY in the 325 

1980s, but gradually decreased to a much lower level than FMSY (Fig. 3a). As a result , 326 

the spawning number of autumn-spawning stock was kept at a higher level than SMSY 327 

(Fig. 3b). The relationship between the relative fishing mortality coefficient (F/FMSY) 328 

and the relative spawning abundance (S/SMSY) showed a clear negative association (Fig. 329 

4). 330 

 For the winter-spawning stock, the fishing mortality coefficient wandered 331 
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around the level of FMSY (Fig. 3a). The fishing pressure was lower than FMSY up to 1993, 332 

but became higher from 1994 to 2001. Thereafter, although the fishing impact was kept 333 

at a lower level than FMSY up to 2013, it became higher again in recent years. The 334 

spawning number thus stayed around the MSY level (SMSY) (Fig. 3b). The relative 335 

spawning abundance (S/SMSY) exhibited an opposite trend of the relative fishing 336 

mortality coefficient (F/FMSY) (Fig. 4). 337 

It is noteworthy that FMSY was constant between regimes and between stocks 338 

(Fig. 3a). This is because model selection favored the best model that shared the 339 

maximum number of rectuits per individuals (ai,y), rather than the strength of density 340 

dependence (bi,y), and FMSY depended only on ai,y. 341 

 The patterns of fishing pressure and spawner abundance were substantially 342 

different depending on whether we considered regime shifts or not, especially for the 343 

winter-spawning stock. If we had ignored regime shifts, the fishing mortality would 344 

have exceeded FMSY (i.e., overfishing) and the spawning abundance would have been 345 

lower than SMSY (overfished) for the whole period of the winter-spawning stock (Fig. S3 346 

in Supporting Information). The relationship between the relative fishing mortality 347 

coefficient (F/FMSY) and the relative spawning abundance (S/SMSY) was unclear in the 348 

model without regime (Fig. S4 in Supporting Information). 349 

  350 

DISCUSSION 351 

The state-space assessment model clarified that productivity regime shifts of the 352 

Japanese flying squid occurred twice during the analyzed period. Previous studies based 353 

on field surveys showed that the climatic shift from cool to warm condition caused the 354 

expansion of spawning areas of this species around 1989 (Sakurai et al. 2000, 2013; 355 
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Kidokoro et al. 2010). The current study provides another line of supportive evidence of 356 

regime shift for the Japanese flying squid, using population dynamics modeling. 357 

Although the climatic shift was recognized to occur in 1989 (Yasunaka and Hanawa 358 

2002), our results showed that the top model had the shifting year of 1991 (Table 2). 359 

This might suggest a time lag of biological response of productivity to the climatic 360 

effect or be a statistical artifact because the second top model selected 1989 as the 361 

shifting year. The top models suggested that the second regime shift occurred around 362 

2015 and the current state was identical to that in the 1980s, longer time-series data 363 

would be needed to decide whether the current regime is truly the same as the 1980s. 364 

Top models favored different parameter values of the strength of density dependence, 365 

rather than maximum recruits per capita spawner, between regimes (Table 2). Combined 366 

with biological studies showing that the survival rate of paralarvae varied in response to 367 

climatic regimes (Sakurai et al. 2000, 2013), climate-driven regime shifts may affect a 368 

density-dependent survival of paralarvae. Because TMB enables much faster parameter 369 

inference than Bayesian MCMC algorithm, it is now easier than ever to analyze a 370 

number of hierarchical models and perform intensive model selection like this study. 371 

Random-effect models will be increasingly applied to various kinds of stock assessment 372 

modeling (Thorson and Minto 2015). 373 

 SAMUIKA is a novel state-space stock assessment model in terms of 374 

multistock modeling of annual life-span species. To check estimability, we conducted a 375 

simple simulation test as an additional analysis by generating bootstrap data from 376 

estimated models (Supporting Information). Results showed that the best model with 377 

the lowest AICc could obtain almost unbiased estimates in abundances and fishing 378 

mortalities (Fig. S5 in Supporting Information). However, the no-regime model 379 
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obtained seriously-biased estimates: overestimation of abundances and underestimation 380 

of fishing mortalities (Fig. S6 in Supporting Information). This bias was caused because 381 

the no-regime model had larger estimation uncertainty than the regime-shift model and 382 

ignoring regime shifts was likely to mask fishing impacts (see Supporting Information 383 

for details). Indeed, the regime-shift model estimated lower abundances and higher 384 

fishing mortality coefficients than the no-regime model, suggesting that the regime-shift 385 

model possibly obtained estimates closer to true values. Incorporating productivity 386 

regime shifts into the assessment of the Japanese flying squid fundamentally important 387 

for accurately estimating stock status. 388 

 Our concern on the model results is that estimation uncertainty in spawner 389 

abundance was larger than that in recruitment (stock) abundance: average coefficient of 390 

variation was 0.18 for stock numbers but 0.55 for spawning numbers. This is because 391 

the used abundance indices were of recruitment abundance, but not spawner abundance. 392 

The large uncertainty in spawner abundance may be problematic, because spawner 393 

abundance is usually employed to judge stock status and its uncertainty is directly 394 

linked to the reliability of stock assessment. Developing an abundance index for 395 

spawners is an important future task toward more robust estimation. 396 

 Regime shifts caused twofold and threefold changes of MSY to the 397 

autumn-spawning stock and the winter-spawning stock, respectively (Fig. 1). A reason 398 

for the larger difference of MSY of the winter-spawning stock is that it migrates in large 399 

areas off east coast of Japan in the Northwest Pacific including high seas, where the 400 

Kuroshio and Oyashio Currents cause enormous decadal variation of environmental 401 

factors (Yatsu et al. 2013). Compared to small pelagic fishes, however, the magnitude of 402 

regime shifts is smaller for the stocks of the Japanese flying squid; for example, the 403 
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Pacific stock of the Japanese sardine (Sardinops melanostictus) has a 13-fold difference 404 

of MSY between regimes (S. Furuichi, personal comminucation). We recognize, 405 

therefore, that the Japanese flying squid probably exhibits the regime shift of 406 

productivity, but its intensity is not so large. 407 

 Two major differences between the results with and without regime shifts can 408 

be seen in the relationship between fishing mortality coefficient and spawner abundance 409 

relative to the MSY-based reference points (Fig. 4 vs. Fig. S4 in Supporting 410 

Information). First, the model with regime shifts showed a clearer negative correlation 411 

between the relative fishing mortality. This suggests that ignoring regime shifts is likely 412 

to obscure the impact of fishing and incorporating environmentally-driven productivity 413 

shifts can greatly change our view of fishing influences on stock status. Second, the 414 

stock status is more likely to be overfishing and overfished in the model with no regime 415 

shift than in the model with regime shifts. This is because the no-regime model 416 

presumed that the variation of recruitment was caused by the variation of spawner 417 

abundance, rather than regime shifts, causing lower steepness and resilience to fishing 418 

(Fig. 2 vs. Fig. S2 in Supporting Information). Accordingly, one may wrongly declare 419 

overfishing and/or overfished of a stock, if one ignores truly-occurring regime shifts. A 420 

similar result is obtained from a previous simulation study testing the effectiveness of 421 

regime-based HCRs (Szuwalski and Punt 2013).  422 

 Although our model has demonstrated the occurrence of regime shifts for the 423 

squid stocks, whether we should choose a regime-based HCR still remains uncertain. 424 

Previous studies presented two risky situations of overfishing (Szuwalski and Punt 425 

2013; King et al. 2015): (1) one wrongly applies a HCR for high regime when one 426 

overlooks shifting from high to low regime; and (2) one wrongly applies a regime-based 427 
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HCR when regime shifts do not occur actually. These risks may not be high for the 428 

stocks of Japanese flying squid, however. Our estimated FMSY are common between the 429 

high and low regimes (Fig. 3), and setting the FMSY as a limit reference point will 430 

possibly avoid overfishing even if one overlooks a high-to-low regime shift. In addition, 431 

the estimates of stock abundance in the regime-shift model were smaller than those in 432 

the no-regime model and, therefore, the estimated MSY in the high regime was not 433 

larger than that in the no-regime model for the winter-spawning stock, although this was 434 

not the case for the autumn-spawning stock (Fig. 1 vs. Fig. S1 in Supporting 435 

Information). The risk of overfishing may thus be sufficiently low even if applying 436 

regime-based HCRs to this species. On the other hand, we also expect that there is no 437 

sufficient profit (i.e., increased catch) of using regime-based HCRs, because the 438 

magnitude of regime shifts is not large. Management strategy evaluation (MSE) will be 439 

useful to make a judgement on this indecisive debate. The state-space model can assist 440 

the MSE as not only assessment model but also operating model. 441 

 Our state-space modeling highlights a future direction of fisheries stock 442 

assessments. Currently, stock-recruitment relationships have sometimes been estimated 443 

by ex-post analyses using the estimates in stock assessment as fixed like observed data 444 

to detect nonstationary dynamics (Vert-Pre et al. 2013; Szuwalski et al. 2015; Kurota et 445 

al. 2020). However, abundance estimates could vary depending on whether regime 446 

shifts are incoporated into assessment models, as demonstrated by this study, and it is 447 

ideal to estiamte a stock-recruitment relationship within stock assessment models 448 

(Subbey et al. 2014; Brooks and Deroba 2015). The state-space approach can be 449 

extended by two ways. First is to incoroporate environmental effects on recruitment 450 

productivity, which can be alternative to regime-shift models and has a potential to 451 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.22.111088doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.111088
http://creativecommons.org/licenses/by-nc-nd/4.0/


improve the ability of future projection of stock dynamics (King et al. 2015; Maunder 452 

and Thorson 2019). Second, joint modeling of multispecies will be feasible by inferring 453 

interspecific correlation in population dynamics. Although a multispecies 454 

spatio-temporal model has recently been developed (Thorson 2019), multispecies 455 

state-space assessment models are still rare (Thorson and Minto 2015), but will be 456 

informative for evaluating and mechanistically understanding fish comminities. These 457 

two ways correspond to ecosystem- and community-based approaches. Such approaches 458 

will play an important role in evaluating provisioning ecosystem services from fisheries 459 

production as a whole, because single-species assessment is inefficient and may be 460 

insufficient for whole-scale evaluation of ecosystem services. Integrating multispecies 461 

and environmental effects into state-space assessment models will contirubte to the 462 

understanding of community dynamics and the sustainable use of marine ecosystem 463 

services. 464 
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TABLES 594 

Table 1: List of symbols with their definitions, types, and constraint 595 

Symbol Definition Type1 Constraint 

Ii,y 

Abundance index (1981-2018 for 

autumn-spawning stock, 1979-2017 for 

winter-spawning stock) 

Data - 

Ci,y Catch biomass (1979-2017 for both stocks) Data - 

wi,y Per-capita body mass (1979-2017 for both stocks) Data - 

M Natural mortality coefficient Assumed 0.6 

τi 
Standard deviation of process error in random 

walk of fishing mortality coefficient 
Fixed Common between stocks 

ai,y 
Maximum number of recruits per spawning 

individual 
Fixed At least either ai,y or bi,y 

is common between 

stocks and regimes bi,y 
Strength of density dependence per spawning 

individual 
Fixed 

σi,y Standard deviation of recruitment variability Fixed - 

ρ 
Correlation coefficient of recruitment variability 

between stocks 
Fixed - 

qi,j Proportional constant for abundance index Fixed - 

φi 
Standard deviation of observation error for 

abundance index 
Fixed - 

ωi 
Standard deviation of observation error for catch 

biomass 
Fixed Common between stocks 

Fi,y Fishing mortality coefficient Random - 

Ni,y Number of recruits (stock number) Random - 

Si,y Number of spawning adults Derived - 

εi,y 
Recruitment deviation to stock-recruitment 

relationship 
Derived - 

i 
Stock (A: autumn-spawning, W: 

winter-spawning) 
Subscript - 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.22.111088doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.111088
http://creativecommons.org/licenses/by-nc-nd/4.0/


y Fishing year Subscript - 

1: ”Fixed”, ”Random”, and ”Derived” are the types of parameters. 596 
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Table 2: Model selection table for top ten models, the best model with one-time regime-shift, and the best model with no regime 597 

Rank AICc ΔAICc Log-likelihood 
Number of 

parameters 
Regime pattern Shifting year  

Per-regime 

parameter 

Per-stock 

parameter 

1 18.12  0.00  8.91  16 A → B → A 1991 & 2015 b b 

2 22.37  4.25  6.79  16 A → B → A 1989 & 2015 b b 

3 23.26  5.14  6.34  16 A → B → A 1990 & 2015 b b 

4 23.93  5.81  11.17  20 A → B → C 1991 & 2016 b b 

5 23.98  5.86  5.98  16 A → B → A 1989 & 2016 b b 

6 24.01  5.89  5.96  16 A → B → A 1989 & 2015 a a 

7 24.28  6.16  5.83  16 A → B → A 1991 & 2014 b b 

8 24.78  6.66  5.58  16 A → B → A 1990 & 2016 b b 

9 25.04  6.92  10.61  20 A → B → C 1991 & 2015 b b 

10 25.27  7.15  5.33  16 A → B → A 1991 & 2014 a a 

... ... ... ... ... ... ... ... ... 

101 39.80  21.68  -1.93 16 A → B 1989 b b 

153 52.22  34.10  -13.01 12 A - - a 
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FIGURES 599 

Figure 1:  600 

 601 

Time series of (a) catch biomass (thounsand MT) and (b) stock number (billion) for the 602 

autumn-spawning stock (left) and the winter-spawning stock (right). The black points 603 

indicate (a) observed catch biomass and (b) abundance index divided by the 604 

proportional constant (Ii/qi). The blue solid lines and shadowed areas indicate point 605 

estimates and their 80% confidence intervals, respectively. The orange dashed lines 606 

indicate (a) MSY and (b) the stock number at the MSY-level equilibrium (NMSY). 607 
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 608 

 609 

Figure 2:  610 

 611 

Spawner-recruitment relationships of (a) the autumn-spawning stock and (b) the 612 

winter-spawning stock. The red and blue lines indicates the low and high regimes, 613 

respectively. 614 

 615 

 616 
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Figure 3:  617 

 618 

Time series of (a) fishing mortality coefficient and and (b) spawning number (billion) 619 

for the autumn-spawning stock (left) and the winter-spawning stock (right). The blue 620 

solid lines and shadowed areas indicate point estimates and their 80% confidence 621 

intervals, respectively. The orange dashed lines indicate the MSY-level equilibrium 622 

(FMSY and SMSY) . 623 

 624 

 625 
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Figure 4: 626 

 627 

Relationships between fishing mortality coefficient and spawner abundance relative to 628 

the MSY-based reference points for the autumn-spawning stock (left) and the 629 

winter-spawning stock (right). The red and blue lines indicates the low- and 630 

high-regimes, respectively. 631 

 632 
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