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Abstract 

There is growing support for the use of genetic risk scores (GRS) in routine clinical settings. Due to the 

limited diversity of current genomic discovery samples, there are concerns that the predictive power of 

GRS will be limited in non-European ancestry populations. Here, we evaluated the predictive utility of 

GRS for 12 cardiometabolic traits in sub-Saharan Africans (AF; n=5200), African Americans (AA; n=9139), 

and European Americans (EA; n=9594). GRS were constructed as weighted sums of the number of risk 

alleles. Predictive utility was assessed using the additional phenotypic variance explained and increase in 

discriminatory ability over traditional risk factors (age, sex and BMI), with adjustment for ancestry-

derived principal components. Across all traits, GRS showed upto a 5-fold and 20-fold greater predictive 

utility in EA relative to AA and AF, respectively. Predictive utility was most consistent for lipid traits, with 

percent increase in explained variation attributable to GRS ranging from 10.6% to 127.1% among EA, 

26.6% to 65.8% among AA, and 2.4% to 37.5% among AF. These differences were recapitulated in the 

discriminatory power, whereby the predictive utility of GRS was 4-fold greater in EA relative to AA and 

up to 44-fold greater in EA relative to AF. Obesity and blood pressure traits showed a similar pattern of 

greater predictive utility among EA. This work demonstrates the poorer performance of GRS in AF and 

highlights the need to improve representation of multiethnic populations in genomic studies to ensure 

equitable clinical translation of GRS. 

 

  

Key Messages 

 

 

• Genetic Risk Score (GRS) prediction is markedly poorer in sub-Saharan Africans 

compared with African Americans and European Americans 

 

• To ensure equitable clinical translation of GRS, there is need need to improve 

representation of multiethnic populations in genomic studies  
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Background 

The use of aggregate genetic risk, as summed up in genetic risk scores (GRS), to identify subgroups of 

individuals at increased risk of disease or more likely to benefit from early intervention, is gaining 

recognition as a practical translational strategy of genomic findings for both public health and clinical 

care. This trend is supported by evidence showing that risk associated with GRS for certain common 

complex diseases, such as severe obesity and coronary artery disease, can be as high as the risk 

conferred by some rare monogenic mutations, and that incorporating such GRS in disease risk prediction 

models can substantially increase prediction accuracy.
1-4

 However, GRS derived from existing genome-

wide association studies (GWAS) show greater predictive value in European populations than in non-

European populations, a reflection of the fact that most GWAS have been conducted in European-

ancestry populations. For example, GRS derived from the largest available datasets show up to 2- to 5-

fold greater predictive power in European-ancestry populations relative to African Americans and East 

Asians for a number of complex traits including anthropometric indices and mental health disorders.
5-8

 

 

There are concerns that the adoption of routine use of GRS in clinical setting could exercebate existing 

health diaprities because of suboptimal utility in non-European-ancestry populations. Therefore, as the 

use of GRS moves from research to clinical settings, it is essential to clarify its utility in populations that 

are currently underrepresented in genomic discoveries. While there are limited data on the predictive 

utility of GRS in populations such as East Asians and African Americans, similar information is lacking in 

populations from continental Africa.
6-9

  In the present study, we sought to assess the predictive utility of 

GRS for a range of cardiometabolic traits in sub-Saharan Africans (AF) and make comparisons with 

European Americans (EA) and African Americans (AA). We aimed to do this using GRS constructed from 

genetic variants reported in publically available databases of GWAS to exemplify the potential use of 

such resources.   

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted May 25, 2020. ; https://doi.org/10.1101/2020.05.21.109199doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.21.109199


4 

 

Methods 

Study participants 

The predictive utility of GRS was assessed in up to 5200 sub-Saharan Africans (AF), 9139 African 

Americans (AA), and 9594 individuals of European Americans (EA). AF were drawn from the AADM study 

10,11
 that enrolled participants aged 18 years or older from Nigeria, Ghana and Kenya as described 

previously .
12

 Data on AA were obtained from the Howard University Family Study (HUFS)
13

, and from 

the following dbGAP studies: Cleveland Family Study (CFS, phs000284)
14

, Jackson Heart Study (JHS, 

phs000286)
15

, Multi-Ethnic Study of Atherosclerosis (MESA, phs000209)
16

 and Atherosclerosis Risk in 

Communities Cohort (ARIC, phs000280)
17

;. CFS, JHS, HUFS, MESA and ARIC participants are aged 35-84 

years and were recruited from different parts of the United States. Data on EA were obtained from the 

ARIC study.
17

 

 

Cardiometabolic traits studied 

We studied body mass index (BMI), waist circumference (WC), hip circumference (HC) , waist-to-hip 

ratio (WHR), systolic blood pressure (SBP) , diastolic blood pressure (DBP), fasting plasma glucose (FPG), 

triglycerides (TG), total cholesterol (TC), low-density lipoprotein (LDL) and high-density lipoprotein 

(HDL), all measured in standard units; type 2 diabetes (T2D) status was determined according to the 

American Diabetes Association criteria. Additionally, we derived the following binary traits based on 

commonly used clinical definitions: general obesity (BMI ≥ 30 Kg/m
2
), abdominal obesity (WC: ≥ 94 cm, 

men; ≥ 80 cm, women), raised WHR (WHR: ≥ 1.0, men; ≥ 0.85, women), raised TG (TG ≥ 2.26 mmol/L), 

raised TC (TC ≥ 6.22 mmol/L), raised LDL (LDL ≥ 4.14 mmol/L), raised FPG (FPG≥ 7.0 mmol/L), raised SBP 

(SBP ≥ 140 mmHg), and raised DBP (DBP ≥ 90 mmHg).
18-21

 

 

SNP selection 

We accessed all data (regardless of the ancestry of the population studied) for each trait in the NHGRI-

EBI database of published genome-wide association studies (GWAS Catalog) as of May 25, 2019.
22

 The 

GWAS catalog is a curated comprehensive public repository of published GWAS reporting single 

nucleotide polymorphism (SNP)-trait associations with P-value <1 x 10
-5

.  From the GWAS Catalog, we 

extracted the SNP identifier (RefSeq rs number) and the risk allele for each SNP reported. Each of the 

SNPs was then mapped to Ensembl release version 92 to identify the reference and alternate alleles. The 

set of overlapping SNPs between those extracted from the GWAS catalog and the target dataset were 

retained for constructing GRS. Further, we performed sensitivity analyses using independent SNPs 
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obtained by pruning out the above SNPs with a variance inflation factor > 2 within a sliding “window” of 

size 50 bp shifted over 5 SNPs at every step.
23

 

 

Construction of GRS 

An individual’s GRS was constructed as a weighted sum of the number of risk alleles over all the SNPs 

identified for each trait using PLINK 1.9.
24

 Effects sizes used for weighting were obtained from the UK 

Biobank
25

 for BMI, WC, HC, WHR, SBP, DBP, and T2D, or the largest study in the GWAS catalog for the 

other traits (Spracklen et al.
26

 for TC, TG, HDL, and LDL and Manning et al.
27

 for FPG). UK Biobank data 

were from White Bristish individuals, while  Spracklen et al. study data were from European and East 

Asian indivuals. Manning et al. study data were from Europen-ancestry individuals. For FPG, GRS was 

constructed for non-T2D cases only. The sign of the effect size was appropriately flipped when the 

reported risk allele in the weight-source dataset was the alternate of the risk allele in the target dataset.  

 

Statistical analysis 

Calibration of the GRS was assessed using correlations between GRS and traits and by plotting the 

observed mean or prevalence of a trait against its GRS deciles. Predictive utility of GRS was assessed 

using two metrics: (1) additional trait variability attributable to GRS in terms of adjusted R-Squared of 

the regression model, and, (2) additional discriminatory power attributable to GRS in terms of area 

under the Receiver Operating Characteristic Curve (AUC). R-squared assessments were based on 

comparisons of regression models fitted for each quantitative trait against traditional risk factors (age, 

sex, and principal components of ancestry and BMI [except when BMI was the trait under study]), with 

(GRS model) and without GRS (traditional model). Logistic regression models were fitted for T2D and 

Efron’s R
2
 used to estimate the additional variation in the probability of T2D explained by GRS.

28
 AUCs 

based on logistic regression models fitted for binary traits and additional discriminatory power of GRS 

were assessed by comparing the model of GRS plus traditional risk factors with the model of only 

traditional risk factors. All downstream analyses were performed in STATA version 15.1 (STATA Corp, 

Texas) and two-tailed value of P <0.05 were considered significant. The P-values referred to here relate 

to regresson and correlation coefficients of association between each trait and its corresponding GRS. 

These tests are not a ‘family of tests’ for which adjustment for a Family-wise Error Rate or other multiple 

testing adjustment is appropriate.
29
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Results 

Distribution of GRS 

Information about the cardiometabolic traits studied, number of SNPs, sources of weights and numbers 

of individuals studied are shown in Table 1. The number of SNPs used to construct GRS did not 

significantly differ between the three groups. The distribution of GRS for the cardiometabolic traits 

studied differed among the three groups, except for total cholesterol (TC) (Figure 1). Higher mean GRS 

were observed for type 2 diabetes (T2D) relative to other traits (Table 1), but this reflected a difference 

in weighting; the GRS for T2D was weighted using odds ratios while linear regression coefficients were 

used for the other traits. Overall, relative to AF and AA, EA had significantly higher GRS for six (waist 

circumference, WC; waist-hip ratio, WHR; systolic blood pressure, SBP; diastolic blood pressure, DBP; 

triglycerides, TG; low-density lipoprotein, LDL) out of the 12 traits studied. On the other hand, AF had a 

significantly higher GRS for hip circumference (HC), fasting plasma glucose (FPG) and T2D. The overlap of 

GRS distributions was greater between AF and AA (nearly identical for HC, WHR, TG, and high-density 

lipoprotein (HDL)) than between any one of them and EA, except for T2D and LDL for which there was 

greater overlap of GRS distributions between AF and EA. Generally, the GRS distributions among AA 

were consistently below or between the distributions among AF and EA. 

 

Association of GRS with cognate outcomes 

GRS were more strongly associated with their respective traits among EA relative to AF and AA (Table 2). 

Among EA, 11 of the 12 GRS-trait associations were statistically significant (P<0.001) while 10 and 8 of 

12 GRS-trait associations were statistically significant among AA and AF, respectively (Supplementary 

Figure 1). In addition, the strongest GRS-trait associations were observed for lipid traits in all three 

groups. 

 

Predictive utility of GRS 

 In regression models adjusted for traditional risk factors and population genetic structure (represented 

by the first three principal components of ancestry), GRS was significantly associated with body mass 

index (BMI), DBP, lipid traits and T2D in all three groups (Table 3). Furthermore, among AA and EA, GRS 

was also significantly associated with WC, SBP and FPG, and, additionally, with HC among EA only. The 

effect sizes of the above seven GRS-trait associations (GRS association with BMI, DBP, lipid traits and 

T2D) ranked in roughly the same order, with the GRS-TC association being the strongest and GRS-BMI 

association the weakest. Notably, among these GRS-trait associations, the largest effect size was 
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observed among EA for TG, TC, LDL and T2D, while the other three (BMI, DBP and T2D) had their largest 

effect sizes among AA. As an example, among GRS-trait associations common to all three groups, the 

GRS-TC association was the strongest and the effect sizes were 0.226, 0.216 and 0.281 mmol/l per unit 

increase in GRS (all P<0.0001) among AF, AA and EA, respectively. Furthermore, odds ratios for binary 

traits (comparing individuals in the top 10% of GRS with the rest) were statistically significant for lipids, 

FPG and T2D, except for raised TG and raised FPG among AF. (Figure 2). 

 

The predictive utility of GRS was assessed in terms of additional variation explained by the model 

including GRS (GRS model) relative to variation explained by the model of traditional risk factors only 

(traditional model). The predictive utility of GRS showed significant variation both among traits and 

among groups (Figure 3). We observed substantial predictive utility of GRS for lipid traits and T2D in all 

groups, and additionally among EA for BMI and FPG. Among AA, GRS also appeared to have predictive 

power for DBP. However, the predictive power of GRS was significantly greater in EA compared with AF 

and AA, showing up to 5-fold and 20-fold greater predictive utility of GRS in EA relative to AA and AF, 

respectively. However, exceptions were observed for HDL and DBP, for which the predictive utility of 

GRS was greater among AF (HDL, 4-fold) and AA (HDL, 6-fold; DBP, 3.8-fold) compared with EA. Between 

AF and AA, disparity in the predictive value of GRS was less consistent and less profound, but still 

substantial for some traits. For example, the predictive utility of GRS for TG was 13-fold greater among 

AA relative to AF but 1.5-fold greater among AF relative to AA for HDL. 

 

The predictive utility of GRS based on additional trait variation explained was limited for traits whose 

variability was substantially explained by the model of traditional risk factors. This was especially true 

for anthropometric traits across groups except for BMI among EA. Whereas GRS increased the 

proportion of variation explained in BMI by only 3.5% and 7.0% among AF and AA, respectively, the 

corresponding increase was 118.6% among EA, representing a 34-fold and 17-fold greater predictive 

utility in EA compared with AF and AA, respectively. 

 

We assessed the predictive utility of GRS for dichotomized transformations of the quantitative traits in 

addition to T2D using Area Under the Receiver Operating Characteristic curve (AUC). The heterogeneity 

among traits and disparity among groups of the predictive utility of GRS were similar under this 

approach. We observed a substantial predictive utility of GRS for components of lipid dysregulation and 

T2D across groups but more so among EA (Figure 4). Among AF, the greatest increases in AUC (lesss 
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than 2% gains) were observed for lipid traits and T2D. Among AA, lipid traits and T2D had increases of up 

to 5.7%. Among EA, increases up to 23.2% were observed for nine of 12 traits , again showing predictive 

disparities in favor of EA. 

 

These figures correspond to a greater predictive utility of GRS among EA compared with AF of 116-, 44-, 

25-, 5-, 4-, and 4-fold, for raised SBP, raised DBP, raised TC, raised LDL,  raised TG and raised FPG, 

respectively. In the single instance where the disparity was in favor of AF relative to EA, the predictive 

utility of GRS for low HDL was 4-fold greater among AF compared with EA. Comparing EA with AA, the 

greatest disparities in favor of EA were observed for SBP (20-fold), raised FPG (8-fold), raised TG, raised 

LDL and raised T2D (4-fold). Between AF and AA, the greatest disparities were observed in favor of AA as 

follows: raised TG (11-fold), raised SBP (6-fold) and low HDL (1.4-fold); while disparities in favor of AF 

relative to AA were relatively modest, in that the predictive utility of GRS was 2-fold greater for raised 

FPG and raised T2D among AF. 

 

As with the R-squared method, we found limited predictive utility of GRS among AF and AA under the 

AUC approach for traits such as general obesity and abdominal obesity, whether defined by WC or WHR. 

Thus, disparity in predictive utility of GRS in favor of EA relative to AF were extremely large for these 

traits. For example, the predictive utility of GRS for general obesity and raised WHR was 249- and 172-

fold, respectively, greater among EA compared with AF. The disparity was reduced between EA and AA 

for general obesity but not for raised WHR, thus the predictive utility of GRS was 17- and 172-fold, 

respectively, greater among EA compared with AA. For abdominal obesity, where GRS had no predictive 

utility beyond traditional risk factors among AF and AA, the predictive disparity in favor of EA was 

infinite. 

 

Sensitivity analyses 

As a sensitivity analysis, we assessed the predictive utility of GRS constructed from only independent 

SNPs (i.e., with SNPs in high linkage disequilibrium (LD) removed) (prunedGRS). The predictive utility of 

prunedGRS broadly recapitulated the above results: consistent GRS-trait associations for lipids with 

greater predictive power among EA compared with AF and AA (Supplementary Figure 2). Predictive 

utility was lower for prunedGRS compared with GRS based on all SNPs in all three groups except for LDL 

among AF and AA. The number of SNPs removed due to high LD was lower for AF compared with AA and 

EA across traits, but largely comparable between AA and EA (Supplementary Table 1). 
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Discussion 
 

Using a dataset of about 24,000 individuals, we demonstrate that the predictive utility of GRS showed 

significant variation among 12 cardiometabolic traits and among populations with differing proportion 

of African ancestry and in comparison with European ancestry populations. GRS was well calibrated for 

lipids in all three  groups but was only calibrated well for the other traits in EA. Additionally, the 

predictive utility of GRS was often strongest in EA and poorest among AF. Between AF and AA, 

differences in GRS performance were less pronounced but tended to favor AA, perhaps reflecting 

European admixture in AA. To our knowledge, this is the first study of GRS for complex traits in 

continental Africans and the first comparison of GRS predictive utility between continental Africans and 

African Americans. These findings have important implications for the potential benefits to be derived 

from the application of GRS in routine clinical risk prediction across populations of different ancestries. 

 

The variation in the predictive performance of GRS among traits likely reflects differential heritability—a 

measure of the relative influence of genetic and environmental factors on a trait. The predictive power 

of GRS has been shown to correlate with heritability and greater heritability has been reported for lipids 

compared with obesity/anthropometric, blood pressure and glycemic traits.
30,31

 This is consistent with 

the observations from the present study in which lipid traits stood out in terms of association with GRS. 

However, we note that among EA, the predictive utility of GRS was higher for BMI than some lipid 

components, suggesting that differences in heritability among traits may not be consistent across 

populations due to varying gene-environmental interactions. Additionally, among EA, GRS showed no 

predictive utility for WHR and WC under the additional explained phenotypic-variation approach but 

showed some utility, although limited, under the discriminatory power approach. This observation is 

likely the consequence of minimal variability in quantitative WHR versus the substantial variance of the 

binomial distribution of the corresponding binary transformation. 

 

The predictive utility of GRS among AA was better than in AF but worse than in EA in the present study. 

Reduced prediction accuracy in AA relative to EA is consistent with previous reports of lower predictive 

utility of similarly constructed GRS in admixed individuals compared with Europeans.
5,7,9,32

 The observed 

pattern of predictive performance of GRS is consistent with the disproportionately large number  of 

individuals of European ancestry in current genome-wide discovery studies and the degree of genetic 

divergence of AF and AA from EA. EA contribute nearly four-fifths of individuals included in current 

GWAS, and AF is more genetically distant from EA than admixed AA, who have about 20% European 
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ancestry.
33

 In addition, under-representation of diverse global populations in available genomic 

resources (including genotyping arrays and imputation panels) means that these resources do not 

adequately capture global genetic diversity due to differences in allele frequencies and linkage 

disequilibrium patterns among populations.
9,32,34,35

 When population differences in variant effect sizes 

are factored in, an expected consequence is poorer prediction accuracy of GRS in the underrepresented 

populations. These considerations highlight the need for genomic resources, methods, and tools that 

take into account global genetic diversity. Indeed, there is increasing evidence demonstrating improved 

GRS predictive accuracy when GRS are constructed from ancestry-matched variants and GWAS summary 

statistics.
9,36,37

 Other factors that are important in disparities of GRS predictive utility include differences 

in polygenic adaptation due to natural selection, historical population size, residual uncorrected 

population structure and etiological differences between populations.
38-41

 Other possible factors include 

differences in genetic architecture due to gene-environment or gene-gene interactions in admixed 

populations or monomorphism of the causal variant in an ancestral population.
42,43 In this regard, it is 

important to note that AF differ from AA not just in genetic variation but also in environmental factors 

that influence cardiometabolic phenotypes, including dietary, behavioral, socio-economic, and other 

lifestyle factors.
44

 

 

The intriguing lack of predictive utility of GRS for TG among AF is unclear but parallels the existence of 

lower TG observed in African ancestry individuals compared with non-African-ancestry individuals.
45

 A 

significant role for a genetic influence characterized by ancestry-specific loci has been suggested 

because of the consistency of lower TG levels across African-ancestry populations despite divergent 

environmental contexts and the persistence of lower TG among AA compared with EA in spite of similar 

environments.
33,46

 Therefore, poor predictive utility of GRS for TG among AF may be a reflection of non-

transferability of current GWAS loci to AF possibly due to differences in sample size, effect size, allele 

frequency and gene-environment interactions. For HDL, the role of a genetic influence is less clear 

because of inconsistent differences in HDL levels among populations of different ancestry. Whereas AA 

tend to have higher HDL levels compared with EA, AF from West Africa have been shown to have lower 

levels of HDL, suggesting an important role for environmental factors.
33

 Further research is needed to 

clarify the potential role of underlying genetic differences as the force behind HDL variation among 

populations of different ancestry and its impact on the predictive utility of GRS in the context of 

environmental differences. 
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Inspite of concerns about the impact on health disparities, our findings are indicative of a promising role 

for GRS in predicting the risk of hypercholesteroleamia across populations of different ancestral 

backgrounds. A potential application of GRS in this context could be assessing additive risk of elevated 

LDL beyond the causative monogenic mutations of Familial Hypercholesteroleamia (FH). As high GRS has 

been shown to be associated with severity of the FH phenotype, carriers of monogenic FH-mutations 

with etreme GRS could be prioritsied for early intervention including treatment with statins, while 

knowledge of concomitant high GRS could encourage adherence to treatment among FH patients.
47,48

 

 

Important strengths of this study are the large sample size, use of independent datasets for discovery, 

and assessment of predictive utility in different populations. Additionally, SNPs were identified from the 

NHGRI-EBI GWAS Catalog (a curated comprehensive public repository of published GWAS) and highly 

precise summary statistics used for weighting were obtained from the UK Biobank, which has genotype 

and extensive phenotypic data on ~500,000 individuals.
22,25

 However, our findings should be interpreted 

in the context of the limitations of the study. First, we only included SNPs that reached the GWAS-

Catalog criteria of 1 x 10
-5 

level of significance for constructing GRS. It is possible that there are SNPs not 

yet identified with the current sample sizes, but which may be associated with the traits studied. 

Second, we did not account for gene-gene and gene-environment interactions, which may limit the 

predictive utility of GRS. Finally, the predictive utility of GRS observed in this study might be understated 

if most of the variants used to construct GRS do not tag the causal variants for the traits studied. This is 

particularly relevant because LD is weaker in African-ancestry individuals compared with European-

ancestry individuals in whom the majority of current genetic variants were discovered. 

 

This first evaluation of GRS in continental Africans demonstrates that the predictive performance of GRS 

for cardio-metabolic traits is markedly poor among sub-Saharan Africans and currently provides little or 

no benefit over traditional risk factors. We also confirm that GRS is worse in African Americans 

compared to European Americans. Therefore, unlike for EA populations, GRS for cardiometabolic 

disorders remain suboptimal for clinical translation in continental Africans as well as in African 

Americans. These findings add to the growing understanding of the strengths and limitations of the 

applications of GRS in routine clinical and/or public health settings and highlights  the need to increase 

the inclusion of underrepresented populations in genomic discovery to promote equity in translation of 

such discovery.  
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Table 1:  Sample size, descriptive summary of SNPs and source of weights. 
 

 

Abbreviations: AF, Sub-Saharan Africans; AA, African Americans; EA, European Americans; BMI, Body mass index;  WC, Waist circumference; HC, Hip circumference; WHP, Waist-

to-hip ratio;  SBP, Systolic blood pressure; Diastolic blood pressure; TG, Triglycerides; TC, Total cholesterol; LDL, Low-density lipoprotein; HDL, High-density lipoprotein; FPG, 

Fasting-plasma glucose; T2D, Type 2 diabetes; UKBB, UK Biobank; N, Number; GRS, Genetic risk score; SD, Standard deviation, * High mean because score is weighted by odds 

ratio  

 

      AF  AA  EA 

Trait 

Number of 

SNPs 

identified 

in GWAS 

catalog Source of weights (sample size) 

Number of GWAS 

catalog SNPs in 

UKBB or largest 

study in GWAS 

catalog  
Number of 

SNPS 

present 
Individuals 

(N) Mean GRS (SD)  SNPS (N) 
Individual

s (N) Mean GRS (SD)  SNPS (N) 
Individuals 

(N) Mean GRS (SD) 
BMI 650  UKBB (360, 564) 650  620 5187 15.271 (2.3)  626 9139 13.06 (1.2)  615 9594 15.22 (3.4) 
WC 253  UKBB (360, 564) 251  242 5197 6.953 (1.7)  245 9119 7.297 (1.5)  242 9584 7.786 (2.0) 
HC 157  UKBB (360, 564) 156  148 5200 13.536 (1.6)  149 6939 13.492 (1.6)  147 9584 11.989 (1.5) 

WHR 214  UKBB (484, 900) 212  189 5195 4.782 (0.7)  189 6460 5.002 (0.8)  189 9583 5.985 (0.9) 
SBP 183  UKBB (360, 564) 170  159 4646 22.845 (2.3)  163 7223 17.112 (2.2)  157 9589 25.004 (2.8) 
DBP 208  UKBB (360, 564) 198  187 4646 11.991 (1.3)  189 7223 10.825 (1.3)  186 9589 13.287 (1.7) 
TG 480  Spracklen study (222, 097) 225  207 4140 3.325 (0.8)  209 8573 3.216 (0.9)  207 9575 3.665 (1.3) 
TC 420  Spracklen study (222, 097) 188  174 4140 7.371 (0.6)  174 8576 7.369 (0.7)  174 9573 7.395 (0.7) 
LDL 423  Spracklen study (222, 097) 186  173 4108 4.786 (0.8)  174 8517 3.24 (0.6)  173 9418 5.753 (0.8) 
HDL 499  Spracklen study (222, 097) 263  246 4140 8.098 (1.2)  249 8572 8.132 (1.3)  247 9575 7.84 (1.5) 
FPG 42  Manning study (58, 074) 35  31 2149 0.761 (0.1)  31 7255 0.728 (0.1)  31 8745 0.573 (0.1) 
T2D 374 

 

UKBB (N=360, 564) 362   339 4662 
*354.034 

(13.3)  341 9021 
*317.509 

(14.0)  339 9576 341.843 (16.9) 

and is also m
ade available for use under a C

C
0 license. 

w
as not certified by peer review

) is the author/funder. T
his article is a U

S
 G

overnm
ent w

ork. It is not subject to copyright under 17 U
S

C
 105 

T
he copyright holder for this preprint (w

hich
this version posted M

ay 25, 2020. 
; 

https://doi.org/10.1101/2020.05.21.109199
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/2020.05.21.109199


17 

 

Table 2: Correlations between traits and genetic risk score. 

    AF   AA   EA 

Trait 

Correlation 

coefficient P-value 

Correlation 

coefficient P-value 

Correlation 

coefficient P-value 

BMI 0.051 <0.001 0.041 <0.001 0.091 <0.001 

WC 0.028 0.047 0.023 0.026 0.054 <0.001 

HC 0.043 0.002 0.033 0.006 0.081 <0.001 

WHR 0.012 0.376 0.007 0.564 0.010 0.342 

SBP 0.008 0.583 0.034 0.004 0.071 <0.001 

DBP 0.023 0.122 0.049 <0.001 0.062 <0.001 

TG 0.102 <0.001 0.093 <0.001 0.192 <0.001 

TC 0.113 <0.001 0.124 <0.001 0.186 <0.001 

LDL 0.141 <0.001 0.095 <0.001 0.186 <0.001 

HDL 0.100 <0.001 0.199 <0.001 0.182 <0.001 

FPG 0.001 0.962 0.020 0.061 0.084 <0.001 

T2D   0.111 <0.001   0.069 <0.001   0.100 <0.001 

Abbreviations: AF, sub-Saharan Africans; AA, African Americans; EA, European Americans; BMI, Body mass index;  

WC, Waist circumference; HC, Hip circumference; WHP, Waist-to-hip ratio;  SBP, Systolic blood pressure; Diastolic 

blood pressure; TG, Triglycerides; TC, Total cholesterol; LDL, Low-density lipoprotein; HDL, High-density 

lipoprotein; FPG, Fasting-plasma glucose; T2D, Type 2 diabetes 
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Table 3: GRS effect size and R-squared. 

 
  AF, sub-Saharan Africans; AA, African Americans; EA, European Americans; GRS effect size=β Linear regression coefficient (for quantitative 

trait) or odds ratio (for disease trait); SE, Standard error; R2, Adjusted R-squared; GRS Model: Trait α age+sex+BMI+PC1+PC2+PC3+GRS  (BMI 

excluded in covariates when it’s the trait understudy); BMI, Body mass index;  WC, Waist circumference; HC, Hip circumference; WHP, Waist-to-

hip ratio;  SBP, Systolic blood pressure; Diastolic blood pressure; TG, Triglycerides; TC, Total cholesterol; LDL, Low-density lipoprotein; HDL, 

High-density lipoprotein; FPG, Fasting-plasma glucose; T2D, Type 2 diabetes; PC1, PC2, PC3, the first three principal components of ancestry; 

Additional variation explained is in percentage points 
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Abbreviations: GRS, Genetic risk score; AF, Sub-Saharan Africans; AA, African Americans; EA, European Americans; 

BMI, Body mass index;  WC, Waist circumference; HC, Hip circumference; WHP, Waist-to-hip ratio;  SBP, Systolic 

blood pressure; Diastolic blood pressure; TG, Triglycerides; TC, Total cholesterol; LDL, Low-density lipoprotein; 

HDL, High-density lipoprotein; FPG, Fasting-plasma glucose; T2D, Type 2 diabetes 
Figure 1: Distribution of genetic risk scores by group. 
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AF, Sub-Saharan Africans; AA, African Americans; EA, European Americans; WHR, Waist-to-hip ratio; SBP, Systolic 

blood pressure; Diastolic blood pressure; TG, Triglycerides; TC, Total cholesterol; LDL, Low-density lipoprotein; 

HDL, High-density lipoprotein; FPG, Fasting-plasma glucose; T2D, Type 2 diabetes, OR Odds ratio 

Figure 2: Association between GRS (individuals in the top 10% versus the others) and binary 

traits. 
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AF, Sub-Saharan Africans; AA, African Americans; EA, European Americans; BMI, Body mass index; WC, Waist 

circumference; HC, Hip circumference; WHP, Waist-to-hip ratio;  SBP, Systolic blood pressure; Diastolic blood 

pressure; TG, Triglycerides; TC, Total cholesterol; LDL, Low-density lipoprotein; HDL, High-density lipoprotein; FPG, 

Fasting-plasma glucose; T2D, Type 2 diabetes 

Figure 3: Percentage increase in R-squared attributable to genetic risk score. 
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AF, Sub-Saharan Africans; AA, African Americans; EA, European Americans; WHR, Waist-to-hip ratio;  SBP, Systolic 

blood pressure; Diastolic blood pressure; TG, Triglycerides; TC, Total cholesterol; LDL, Low-density lipoprotein; 

HDL, High-density lipoprotein; FPG, Fasting-plasma glucose; T2D, Type 2 diabetes 

Figure 4: Percentage increase in Area Under the Receiver Operating Characteristic curve (AUC) 

attributable to genetic risk score. 
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