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 2 

Abstract 17 

 Triple-negative breast cancer (TNBC) constitutes 12% of all breast cancer and is 18 

associated with worse prognosis compared to other subtypes of breast cancer. Current therapies 19 

are limited to cytotoxic chemotherapy, radiation, and surgery, leaving a need for targeted 20 

therapeutics to improve outcomes for TNBC patients. Mammalian orthoreovirus (reovirus) is a 21 

nonenveloped, segmented, dsRNA virus in the Reoviridae family. Reovirus preferentially kills 22 

transformed cells and is in clinical trials to assess its efficacy against several types of cancer. We 23 

previously engineered a reassortant reovirus, r2Reovirus, that infects TNBC cells more 24 

efficiently and induces cell death with faster kinetics than parental reoviruses. In this study, we 25 

sought to understand the mechanisms by which r2Reovirus induces cell death in TNBC cells. We 26 

show that r2Reovirus infection of TNBC cells of a mesenchymal-stem like (MSL) lineage 27 

downregulates the MAPK/ERK pathway and induces non-conventional cell death that is caspase 28 

dependent, but caspase 3-independent. Infection of different MSL lineage TNBC cells with 29 

r2Reovirus results in caspase 3-dependent cell death. We map the enhanced oncolytic properties 30 

of r2Reovirus in TNBC to epistatic interactions between the Type 3 Dearing M2 gene segment 31 

and Type 1 Lang genes. These findings suggest that the genetic composition of the host cell 32 

impacts the mechanism of reovirus-induced cell death in TNBC. Together, our data show that 33 

understanding host and virus determinants of cell death can identify novel properties and 34 

interactions between host and viral gene products that can be exploited for the development of 35 

improved viral oncolytics. 36 

  37 
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Importance 38 

Triple negative breast cancer (TNBC) is unresponsive to hormone therapies, leaving 39 

patients afflicted with this disease with limited treatment options. We previously engineered an 40 

oncolytic reovirus (r2Reovirus) with enhanced infective and cytotoxic properties in TNBC cells. 41 

However, how r2Reovirus promotes TNBC cell death is not known. In this study, we show that 42 

reassortant r2Reovirus can promote non-conventional caspase-dependent but caspase 3-43 

independent cell death and that the mechanism of cell death depends on the genetic composition 44 

of the host cell. We also map the enhanced oncolytic properties of r2Reovirus in TNBC to 45 

interactions between a Type 3 M2 gene segment and Type 1 genes. Our data show that 46 

understanding the interplay between the host cell environment and the genetic composition of 47 

oncolytic viruses is crucial for the development of efficacious viral oncolytics.  48 
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 4 

Introduction 49 

 Breast cancer is the leading cause of cancer in women and second leading cause of death 50 

by cancer in women in the United States (https://seer.cancer.gov/). Triple-negative breast cancer 51 

(TNBC) constitutes 10-15% of breast cancer diagnoses, has a higher rate of relapse, and lower 52 

survival after metastasis than other types of breast cancer (1). TNBC is characterized by its lack 53 

of expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal 54 

growth factor receptor 2 (HER-2). These characteristics render TNBC cells unresponsive to 55 

hormone therapies that have been efficacious in treating other types of breast cancer (2, 3).  56 

Mammalian orthoreovirus (reovirus) is a segmented double-stranded RNA (dsRNA) 57 

virus in the Reoviridae family (4). Reovirus has three large (L1, L2, L3), three medium (M1, M2, 58 

M3), and four small (S1, S2, S3, S4) gene segments that encode 8 structural and 3 non-structural 59 

proteins (5, 6). There are three reovirus serotypes (types 1, 2, and 3) determined by the 60 

recognition of the S1-enconded σ1 attachment protein by neutralizing antibodies (4, 7). In 61 

humans, reovirus infection usually occurs during childhood, though infection is generally 62 

asymptomatic (4, 8-10). Additionally, reovirus preferentially replicates and kills tumor cells (11-63 

14). Because of these features, a lab adapted type 3 reovirus is currently in Phase I-III clinical 64 

trials to test its efficacy against a variety of cancers (https://clinicaltrials.gov). However, little is 65 

known about the biology of reovirus infection in TNBC. 66 

TNBC cells are categorized into subtypes based on their genetic composition (1, 15). 67 

Cells in the mesenchymal stem-like (MSL) subtype, including MDA-MB-231 and MDA-MB-68 

436 cells, are characterized by enriched expression of genes involved in motility, cellular 69 

differentiation, and growth factor pathways (15-23). The K-Ras G13D and B-Raf G464V B-Raf 70 

mutations found in MDA-MB-231 cells result in an upregulated Ras pathway (24, 25). 71 
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Constitutively active Ras mutations have been identified in many human tumors and signaling 72 

through Ras increases tumor cell proliferation and survival in some cancers (26-29). B-Raf 73 

regulates the Raf–mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase 74 

(ERK) pathway by phosphorylation of MEK 1/2, which activates the kinase (30). MAPK/ERK 75 

signaling promotes cancer cell proliferation, survival, and metastasis (31). Small-molecule 76 

inhibitors that target various steps of the MAPK/ERK pathway are currently in clinical trials to 77 

test their efficacy against several cancers (32).    78 

Activated Ras signaling regulates various aspects of reovirus biology, including virus 79 

uncoating, infectivity, replication, and release from infected cells (13, 14, 33-40). However, 80 

reovirus can also infect and kill cancer cells independent of Ras activation (41-44). In some cells, 81 

reovirus downregulates Ras signaling during infection, inducing programmed cell death (45). 82 

Reovirus can induce cell death by apoptosis, necroptosis, cell cycle arrest or autophagy (36, 46-83 

60). Reovirus can trigger apoptosis through recognition of viral nucleic acid by cellular pattern 84 

recognition receptors and subsequent activation of caspase 8, Bid cleavage, and disruption of the 85 

mitochondrial membrane. This results in cytochrome c release, caspase 9 activation, and 86 

activation of executioner caspases 3 and 7 (4, 46-49, 52, 54, 55, 61-68). Reovirus can also induce 87 

caspase-independent cell death through induction of RIPK3 and MLKL-dependent necroptosis 88 

(50, 51, 57). The mode of cell death induced by reovirus appears to be largely dependent on the 89 

host cell. 90 

We previously engineered an oncolytic reovirus with enhanced infective and cytotoxic 91 

properties in TNBC (r2Reovirus) (69). Oncolytic r2Reovirus is a reassortant virus with 9 gene 92 

segments from serotype 1 Lang (T1L) reovirus and a serotype 3 Dearing (T3D) M2 gene 93 

segment, as well as several synonymous and non-synonymous point mutations. Strain-specific 94 
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differences in infectivity, replication, and induction of cell death indicate a vital role of specific 95 

viral factors in defining the host cell response and outcome of infection (70-72) (46, 55, 63, 64, 96 

73). It is not known how r2Reovirus promotes TNBC cell death or the contribution of specific 97 

viral factors to the enhanced oncolytic properties of the virus. 98 

In this study, we sought to better understand how reovirus induces programmed cell death 99 

in a subtype of TNBC and the viral factors associated with this phenotype. We show that 100 

reassortant r2Reovirus can promote TNBC cell death by inhibiting MAPK/ERK signaling and 101 

inducing a non-conventional cell death that is caspase dependent, but caspase 3-independent 102 

conditional on the genetic composition of the host cell. These data suggest that the genetic 103 

composition of the host cell can greatly impact the type of cell death induced by reovirus. We 104 

also show that the enhanced oncolytic properties of r2Reovirus in TNBC likely map to the 105 

presence of a T3D M2 gene segment in the context of an otherwise T1L virus. Together, our data 106 

show that an improved understanding of host cell and virus interactions can identify biological 107 

properties and interactions between viral gene products to better understand how viruses promote 108 

cell death and exploited for the development of improved viral oncolytics.  109 
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Results 110 

r2Reovirus impairs MAPK/ERK signaling. 111 

 We previously generated a reassortant reovirus with enhanced infective and cytotoxic 112 

properties in TNBC cells (69). The mechanisms through which this virus promotes TNBC cell 113 

death is not known. It is also largely unclear how reoviruses promote TNBC cell death. The 114 

MDA-MB-231 TNBC cell line has an upregulated Ras pathway from mutations in Ras (G13D) 115 

and B-Raf (G464V) (24). To determine the effect of parental reoviruses (T1L and T3D) and 116 

r2Reovirus on MAPK/ERK, MDA-MB-231 cells were infected with mock, T1L, T3D, or 117 

r2Reovirus at an MOI of 500 PFU/cell or treated with 10 μM MEK1/2 inhibitor U0126. Whole 118 

cell lysates were collected at 0, 1, and 2 days post-infection (dpi) and probed for phosphorylated 119 

and total MEK1/2 and ERK1/2 by immunoblot (Fig. 1A). Infection with T1L and T3D did not 120 

affect the levels of phosphorylated MEK1/2 or ERK1/2 when compared to uninfected cells 121 

(mock) at the times tested (Fig. 1B). In cells infected with r2Reovirus, levels of phospho- and 122 

total MEK1/2 and total ERK1/2 were slightly lower than mock and levels of phospho-ERK1/2 123 

were significantly lower at 2 dpi than mock. These data suggest that infection with r2Reovirus, 124 

but not T1L nor T3D, results in downregulation of MAPK/ERK pathway in these cells. 125 

 To determine the effect of inhibiting MAPK/ERK signaling on reovirus-infected MDA-126 

MB-231 cell viability, cells were treated with increasing concentrations of U0126 for 1 h, 127 

adsorbed with mock, T1L, T3D, or r2Reovirus at an MOI of 100 PFU/cell or 50 μM etoposide as 128 

a positive control, and cell viability was assessed over 6 days (Fig. 2A). Similar to that observed 129 

previously (69), r2Reovirus impaired cell viability with faster kinetics than T1L and T3D did not 130 

impact cell viability. Treatment of cells with U0126 alone resulted in a dose-dependent cytostatic 131 

effect on cell viability, with cell viability leveling at 2 dpi when treated with 10 µM U0126 (red 132 
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line). This was expected as MAPK/ERK signaling is necessary for cell proliferation in these cells 133 

(74-80). Treatment with 0.1 μM U0126 had no significant effect on cell viability in the presence 134 

or absence of reovirus. Infection of cells with T3D in addition to U0126 did not significantly 135 

impact U0126-induced cytotoxicity. Infection with T1L in the presence of U0126 enhanced the 136 

cytotoxicity kinetics, with infection in the presence of 5 or 10 µM U0126 having an additive 137 

effect on cytotoxicity (Fig. 2B). Similar to that observed with T1L, Infection of cells with 138 

r2Reovirus in the presence of U0126 enhanced the kinetics of cytotoxicity, with 10 µM U0126 139 

having a significant combinatorial effect on cytotoxicity induced by the drug and virus alone. 140 

These data show that inactivation of MEK-ERK signaling in MDA-MB-231 cells impairs 141 

cellular proliferation without having a cytotoxic effect on cells and that in the context of 142 

infection with T3D, does not promote viral cell killing. While inactivation of this pathway in the 143 

context of infection with T1L or r2Reovirus enhances the cytotoxic effect of the virus, a 144 

statistically significant impairment on cell viability was only observed in the presence of 145 

r2Reovirus and 10 µM U0126. Together, these data show r2Reovirus downregulates 146 

MAPK/ERK signaling and infection with a serotype 1 reovirus in the presence of a MEK 147 

inhibitor enhances the kinetics of viral-mediated cytotoxicity in these cells. 148 

 149 

Induction of cell death by r2Reovirus is partially dependent on caspases. 150 

 Inhibition of MAPK/ERK signaling can result in the induction of apoptosis (45, 81-84) 151 

and reovirus can induce apoptosis in vitro and in vivo (4, 46-49, 52, 54, 55, 61-68). To determine 152 

if r2Reovirus induces caspase-dependent cell death in TNBC cells, MDA-MB-231 cells were 153 

treated with vehicle (DMSO) or 25 µM pan-caspase inhibitor Q-VD-OPH for 1 h, infected with 154 

mock or r2Reovirus at an MOI of 500 PFU/cell, and assessed for cell death by annexin V-155 
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fluorescein isothiocyanate (FITC)/propidium iodide (PI) staining over 3 days (Fig. 3A). 156 

Following r2Reovirus infection, 35.43% of infected cells were annexin V+/PI+ by 2 dpi and 157 

49.24% by 3 dpi. Infection in the presence of Q-VD-OPH decreased the percentage of annexin 158 

V+/PI+ cells to 19.09% at 2 dpi and 30.79% by 3 dpi. In etoposide-treated cells, 48.39% of cells 159 

were annexin V+/PI+ by day 2 post treatment and 78.12% by day 3 post treatment. Q-VD-OPH 160 

treatment decreased the percentage of annexin V+/PI+ to 10% by day 2 post treatment and 20% 161 

by day 3 post treatment. Q-VD-OPH also increased the number of annexin V-/PI- cells during 162 

infection or etoposide treatment, especially at 2 dpi. Interestingly, we did not observe a 163 

significant number of annexin V+/PI- cells under any condition tested. These data show that the 164 

pan caspase inhibitor Q-VD-OPH dampens, but does not fully block, r2Reovirus-induced cell 165 

death. 166 

 To further assess if r2Reovirus is dependent on caspases to promote cell death, MDA-167 

MB-231 cells were treated with DMSO or 25 µM Q-VD-OPH for 1 h, infected with mock or 168 

r2Reovirus at an MOI of 500 PFU/cell or treated with 50 µM etoposide, and cell viability was 169 

assessed over 6 days (Fig. 3B). Infection of cells with r2Reovirus in the presence of Q-VD-OPH 170 

significantly impacted viral-induced cytotoxicity at 4 and 6 dpi, with cell viability over two times 171 

greater compared to infection in the absence of the drug. These data show that inhibition of 172 

caspase activity results in a significant, but not total, reduction of viral-mediated cell death. 173 

 174 

Reovirus does not affect mitochondrial permeability during infection of MDA-MB-231 175 

cells. 176 

Reovirus can induce extrinsic and intrinsic apoptosis (4, 46-49, 52, 54, 55, 61-68). 177 

During intrinsic apoptosis, mitochondrial membrane permeabilization leads to loss of 178 
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mitochondrial transmembrane potential, and release of cytochrome c into the cytoplasm (68, 85-179 

88). To assess if reovirus infection of MDA-MB-231 cells impacts mitochondrial membrane 180 

potential, cells were infected with mock, T1L, T3D or r2Reovirus at an MOI of 500 PFU/cell or 181 

treated with DMSO or 50 µM etoposide and analyzed by flow cytometry over a 3 day time 182 

course of infection using tetramethylrhodamine, ethyl ester (TMRE), a positively-charged dye 183 

that accumulates in the mitochondria (Fig. 4A). Infection with T1L or T3D did not significantly 184 

affect mitochondrial membrane potential at any of the times tested, while infection with 185 

r2Reovirus slightly reduced mitochondrial membrane potential at 3 dpi. Treatment with 186 

etoposide significantly reduced mitochondrial membrane permeabilization at all times tested, 187 

with stark changes at days 2 and 3 post treatment. These results suggest reovirus induces cell 188 

death in MDA-MB-231 cells without major disruption of the mitochondrial membrane. 189 

Cytochrome c release from the mitochondria is a key event that can lead to apoptosome 190 

formation and subsequent caspase 3 activation. It is possible for cytochrome c to be released 191 

from the mitochondria without impacting mitochondrial membrane integrity (89-91). To 192 

determine if cytochrome c is released following reovirus infection of MDA-MB-231 cells, cells 193 

were infected with mock, T1L, T3D, or r2Reovirus at an MOI of 500 PFU/ml or treated with 50 194 

µM etoposide and assessed for intracellular localization of cytochrome c (green), mitochondria 195 

(red), or reovirus antigen (blue) by confocal microscopy at 3 dpi (Fig. 4B). In uninfected cells, 196 

cytochrome c largely co-localized with mitochondria. In etoposide-treated cells, cytochrome c 197 

localized to areas surrounding swollen mitochondria. In cells infected with T1L, T3D, and 198 

r2Reovirus, cytochrome c largely co-localized with mitochondria with no observable swollen 199 

mitochondria. These data indicate that during reovirus infection of MDA-MB-231 cells, 200 

cytochrome c remains largely associated with mitochondria. Together with TMRE data, these 201 
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results show that reovirus induces MDA-MB-231 cell death independent of disruption of 202 

mitochondrial membrane potential and cytochrome c release. 203 

 204 

Infection with serotype 1 reoviruses increases caspase 9 activity. 205 

 We next assessed the activation status of caspase 9, a component of the apoptosome that 206 

can be activated independent of cytochrome c release in a caspase 8-dependent manner (62, 92). 207 

MDA-MB-231 cells were adsorbed with mock, T1L, T3D or r2Reovirus at an MOI of 500 208 

PFU/cell or treated with DMSO or 50 µM etoposide for 1 h, and assessed for caspase 9 activity 209 

over a 3 day time course of infection (Fig. 5A). Infection with T1L and r2Reovirus significantly 210 

induced caspase 9 activation, with caspase 9 activity levels increasing by 2 dpi and reaching up 211 

to 2-fold over mock by 3 dpi. Infection with T3D and treatment with etoposide did not impact 212 

caspase 9 activation at the times tested. To measure the requirement of caspase 9 activity in 213 

r2Reovirus-mediated cell death of MDA-MB-231 cells, cells were treated with DMSO, 25 µM 214 

caspase 9 inhibitor z-LEHD-fmk, or 25 µM Q-VD-OPH for 1 h, infected with mock or 215 

r2Reovirus at an MOI of 500 PFU/cell or treated with 10 µM doxorubicin, and assessed for cell 216 

viability over 6 days (Fig. 5B). As observed previously, treatment of cells with the pan-caspase 217 

inhibitor (Q-VD-OPH) partially blocked reovirus-induced cytotoxicity. Treatment of cells with 218 

the caspase 9 inhibitor (z-LEHD-fmk) reduced virus-induced cytotoxicity, albeit not to the same 219 

extent as the pan-caspase inhibitor. Together these data show that although infection with T1L 220 

and r2Reovirus does not affect mitochondrial membrane potential or promote release of 221 

cytochrome c, infection promotes caspase 9 activation. These data also show that although 222 

activation of caspase 9 is not solely responsible for viral-mediated cytotoxicity in MDA-MB-231 223 
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cells, caspase 9 activation is necessary for the full cytotoxic effects of serotype 1 infection in 224 

these cells. 225 

 226 

r2Reovirus blocks caspase 3/7 activity in a replication-dependent manner. 227 

 Caspase 9 activates caspase 3 and 7 during intrinsic apoptosis (93-95). To determine if 228 

caspase 3 is activated during reovirus infection of MDA-MB-231 cells, cells were infected with 229 

mock, T1L, T3D or r2Reovirus at an MOI of 500 PFU/cell or treated with 50 µM etoposide, and 230 

caspase 3/7 activity was assessed over a 3 day time course of infection (Fig. 6A). Caspase 3/7 231 

activity was not observed in MDA-MB-231 cells infected with mock, T1L, T3D, or r2Reovirus 232 

during the times tested. Caspase 3/7 activity was also not observed in cells infected with T1L, 233 

T3D, or r2Reovirus at days 4-6 post-infection (data not shown). Treatment of cells with 234 

etoposide induced robust caspase 3/7 activity by day 2 post treatment. These data show that 235 

etoposide can activate caspase 3 in MDA-MB-231 cells, although in a caspase 9-independent 236 

manner. Interestingly, infection with T1L or r2Reovirus does not lead to activation of caspase 3 237 

despite robust caspase 9 activation. These data also show that in MDA-MB-231 cells caspase 3 238 

can be activated. 239 

 To determine if reovirus can impact the activation of caspases 3 and 7, MDA-MB-231 240 

cells were infected with mock, T1L, T3D, or r2Reovirus for 1 day, treated with DMSO or 50 µM 241 

etoposide, and assessed for caspase 3/7 activity 2 days post etoposide treatment (Fig. 6B). As 242 

previously seen, infection with reovirus did not induce caspase 3/7 activity, whereas etoposide 243 

treatment resulted in robust caspase 3/7 activation. Infection of cells with T1L or T3D prior to 244 

etoposide treatment did not significantly affect etoposide-induced activation of caspase 3/7. In 245 

contrast, infection with r2Reovirus prior to etoposide treatment fully blocked etoposide-induced 246 
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caspase 3/7 activation. To determine if the ability of r2Reovirus to impair etoposide-induced 247 

caspase 3/7 activation is dependent on viral replication, MDA-MB-231 cells were infected with 248 

mock or UV-inactivated T1L, T3D, or r2Reovirus one day prior to etoposide treatment, and 249 

caspase 3/7 activity was assessed 2 days post etoposide treatment (Fig. 6C). In contrast to that 250 

observed with replicating virus, infection of cells with UV-inactivated T1L, T3D, or r2Reovirus 251 

did not affect etoposide-induced caspase 3/7 activation. Interestingly, infection with UV-252 

inactivated T1L, T3D, and r2Reovirus resulted in a small, but consistent activation of caspase 253 

3/7 compared to uninfected cells. These results indicate that r2Reovirus blocks etoposide-254 

induced caspase 3/7 activation in MDA-MB-231 cells in a replication-dependent manner.  255 

 256 

PARP-1 cleavage during reovirus infection results in a cleavage fragment that does not 257 

correspond to caspase 3 proteolysis. 258 

 Poly (ADP-ribose) polymerase (PARP-1) is involved in many cellular processes, 259 

including DNA repair, genomic stability, and programmed cell death (96-99). During apoptosis, 260 

PARP-1 is cleaved into an 89 kDa fragment by caspase 3 (100) (101-103). PARP-1 can also be 261 

cleaved by various proteases during non-apoptotic cell death (100). To assess if PARP-1 is 262 

cleaved during reovirus-infection of MDA-MB-231 cells, cells were infected with mock, T1L, 263 

T3D or r2Reovirus at an MOI of 500 PFU/cell or treated with 50 µM etoposide, and whole cell 264 

lysates were collected at 0, 1, and 2 dpi. Lysates were resolved by SDS-PAGE and 265 

immunoblotted with antisera specific for PARP-1, reovirus, and tubulin (Fig. 7). Etoposide 266 

treatment resulted in an 89 kDa PARP-1 cleavage fragment at day 2 post treatment, consistent 267 

with etoposide activation of caspase 3. In contrast, infection with T1L and r2Reovirus resulted in 268 

a 70 kDa PARP-1 cleavage fragment while infection with T3D, which does not impair MDA-269 
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MB-231 cell viability, did not result in PARP-1 proteolysis. Treatment with caspase 3 inhibitor 270 

(Q-VD-OPH) did not reduce PARP-1 cleavage following reovirus infection (data not shown). 271 

Calpains, cathepsins, granzyme A and B, and matrix metalloprotease 2 (MMP-2) can 272 

proteolytically cleave PARP into fragments of the molecular weight observed during reovirus 273 

infection (100). These data suggest that during T1L and r2Reovirus infection of MDA-MB-231 274 

cells PARP-1 is cleaved by a protease other than caspase 3. 275 

 276 

Reovirus infection of MDA-MB-436 cells promotes caspase 3/7 activation and cell death. 277 

 r2Reovirus induces cell death with enhanced kinetics in TNBC cells, including MDA-278 

MB-436 cells, a mesenchymal-stem like (MSL) subtype TNBC cell line with different mutations 279 

than MDA-MB-231 cells (15, 69). To assess if host heterogeneity affects the mode of cell death 280 

induced by reovirus, r2Reovirus oncolysis was tested in MDA-MB-436 cells. To determine if 281 

reovirus cell death induction is caspase dependent, MDA-MB-436 cells were treated with DMSO 282 

or 25 µM pan-caspase inhibitor Q-VD-OPH for 1 h, infected with mock or r2Reovirus at an MOI 283 

of 500 PFU/cell or treated with 50 µM etoposide, and assessed for cell viability over 6 days (Fig. 284 

8A). Infection with r2Reovirus impaired MDA-MB-436 cell viability, with significant 285 

cytotoxicity observed by day 4 pi. Treatment of cells with Q-VD-OPH significantly reduced 286 

reovirus-mediated cytotoxicity, although cell viability levels were not fully restored to those 287 

observed in mock. To determine if r2Reovirus infection of MDA-MB-436 cells impacts 288 

mitochondrial membrane potential, cells were infected with mock or r2Reovirus or treated with 289 

DMSO or 50 µM etoposide, and assessed for TMRE levels by flow cytometry over 3 days (Fig. 290 

8B). At 2 and 3 dpi, there is a significant decrease in mitochondrial membrane potential in 291 

r2Reovirus-infected cells, and to a lesser degree in etoposide-treated cells. To assess if 292 
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r2Reovirus infection of MDA-MB-436 cells promotes caspase 3/7 activation, cells were infected 293 

with mock or r2Reovirus for at an MOI of 500 PFU/cell or treated with DMSO or 50 µM 294 

etoposide, and caspase 3/7 activity was assessed over 3 days (Fig. 8C). In contrast to that 295 

observed in MDA-MB-231 cells, r2Reovirus infection induced significant caspase 3/7 activation 296 

by 1 dpi, with sustained activation over the times tested. Etoposide induced a slight increase in 297 

caspase 3/7 activation, but to a lesser degree than reovirus, mirroring that observed by cell 298 

viability and TMRE staining. These results show r2Reovirus infection of MDA-MB-436 cells 299 

robustly disrupts the mitochondrial membrane and promotes caspase 3/7 activation. These data 300 

also show etoposide is not as effective at inducing cell death in MDA-MB-436 cells compared to 301 

MDA-MB-231 cells. Together, these data show that the mechanism of cell death induced by 302 

r2Reovirus is host cell context-dependent and independent of the ability of the virus to activate 303 

caspase 3.  304 

 305 

Enhanced r2Reovirus oncolysis maps to the T3D M2 gene segment. 306 

 The reassortant r2Reovirus is composed of 9 T1L gene segments and an M2 gene 307 

segment from T3D in addition to several synonymous and non-synonymous point mutations 308 

(69). To determine the contribution of the M2 gene segment to r2Reovirus oncolysis in TNBC 309 

cells, reoviruses were engineered by reverse genetics with T1L and T3D M2 gene segment 310 

swaps in otherwise isogenic backgrounds (55, 70, 104, 105). To confirm the presence of 311 

swapped M2 gene segments, the genetic composition of parental T1L and T3D reoviruses, 312 

r2Reovirus, and T1L-T3M2 and T3D-T1M2 was assessed by SDS-gel electrophoresis (Fig. 9A). 313 

The electromobility of the reovirus gene segments confirmed that T1L and T3D-T1M2 contain a 314 
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T1L M2 gene segment, whereas T3D, r2Reovirus, and T1L-T3M2 contain a T3D M2 gene 315 

segment (asterisks). 316 

 To assess the role of the M2 gene segment in reovirus-induced cytotoxicity of TNBC 317 

cells, MDA-MB-231 (Fig. 9B) and MDA-MB-436 cells (Fig. 9C) were infected with mock, T1L, 318 

T3D, T1L-T3M2, T3D-T1M2, or r2Reovirus at an MOI of 500 PFU/cell or treated with DMSO, 319 

50 µM etoposide (MDA-MB-231), or 1 µM staurosporine (MDA-MB-436), and assessed for cell 320 

viability over 6 days. In both cell lines, T1L-T3M2 impaired cell viability with similar kinetics 321 

as r2Reovirus and with faster kinetics than T1L, especially in MDA-MB-436 cells. In contrast, 322 

T3D-T1M2 and T3D did not significantly impact cell viability in either MDA-MB-231 or MDA-323 

MB-436 cells. To assess if cytopathic differences observed with the recombinant viruses were a 324 

result of differences in infectivity, MDA-MB-231 cells were infected with mock, T1L, T3D, 325 

T1L-T3M2 or T3D-T1M2. T1L-T3M2 infected MDA-MB-231 cells at a slightly higher rate than 326 

T1L and T3D, while T3D-T1M2 had slightly diminished infectivity when compared to the 327 

parental viruses (data not shown). These data indicate that the T3D M2 gene segment is 328 

sufficient to enhance the cytotoxic properties of an otherwise T1L virus, without significant 329 

impact on infectivity. These data also indicate that the enhanced cytotoxic properties of 330 

r2Reovirus map to the T3D M2 gene segment and that mutations found in r2Reovirus likely have 331 

little or no effect on the virus’ enhanced oncolysis. Further, the addition of the T1L M2 gene 332 

segment to an otherwise T3D virus does not affect the infective or cytopathic properties of the 333 

virus. Additionally, even though r2Reovirus induces cell death by different modes in MDA-MB-334 

231 and MDA-MB-436 cells, enhanced cell death induction by the reassortant virus maps to the 335 

same viral factor in both cell lines. 336 
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To determine if the M2 gene segment impacts the activation of caspase 3/7 following 337 

etoposide treatment, MDA-MB-231 cells were infected with mock, T1L, T3D, T1L-T3M2, T3D-338 

T1M2, or r2Reovirus at an MOI of 500 PFU/cell for 1 day, treated with DMSO or 50 µM 339 

etoposide, and assessed for caspase 3/7 activity 2 days post etoposide treatment (Fig. 9D). As 340 

observed previously, infection with all the reoviruses tested did not induce caspase 3/7 activation 341 

and treatment of cells with etoposide resulted in robust activation of caspase 3/7. Infection with 342 

T1L-T3M2 or r2Reovirus prior to etoposide treatment robustly impaired caspase 3/7 activation. 343 

Conversely, infection with T1L, T3D, or T3D-T1M2 did not impact etoposide-induced caspase 344 

3/7 activation. These results indicate that the ability for r2Reovirus to block etoposide-induced 345 

caspase 3/7 activation maps to the T3D M2 gene segment.  346 
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Discussion 347 

 Reassortant r2Reovirus infects TNBC cells more efficiently and induces cell death with 348 

enhanced kinetics when compared to prototypic strains of reovirus, including the oncolytic 349 

reovirus currently in clinical trials. r2Reovirus was obtained from co-infection of MDA-MB-231 350 

cells with T1L, Type 2 Jones (T2J), and T3D followed by serial passaging. r2Reovirus has 9 351 

gene segments from T1L, an M2 gene segment from T3D, and several synonymous and non-352 

synonymous point mutations (69). In this study, we sought to better understand how r2Reovirus, 353 

and reoviruses in general, promote TNBC cell death. We focused on MDA-MB-231 cells, a 354 

TNBC cell line belonging to the MSL subtype (15). There are limited treatment options against 355 

TNBC and the MSL subtype is associated with enrichment of genes involved in cell motility, 356 

cellular differentiation, and growth factor signaling pathways (1-3, 15). MDA-MB-231 cells 357 

have mutations in BRAF, CDKN2A, KRAS, NF2, TP53, and PDGFRA genes (15). Mutations in 358 

BRAF (G464V) and KRAS (G13D) result in constitutive activation of MAPK/ERK signaling, 359 

promoting survival, proliferation, cell cycle progression, and cell growth (24, 106). Constitutive 360 

activation of MAP/ERK is found in several cancers (24, 27-29, 106-109). Constitutive Ras 361 

activation can enhance reovirus oncolysis by affecting multiple steps of the viral replication 362 

cycle, including enhancing virus uncoating and disassembly, negative regulation of retinoic acid-363 

inducible gene I (RIG-I) signaling and impairing dsRNA-activated protein kinase (PKR) 364 

activation, increasing progeny, and enhancing viral spread (35, 40, 110). In some cells, reovirus 365 

downregulation of MAP/ERK results in induction of apoptosis (45). In the context of MDA-MB-366 

231 cells, r2Reovirus, but not T1L or T3D, decreased activation of MAPK/ERK signaling. The 367 

observed downregulation of MEK 1/2 and ERK 1/2 activation suggests r2Reovirus inhibits this 368 

pathway by either directly targeting MEK 1/2 or upstream of MEK 1/2 on Ras and B-Raf, or B-369 
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Raf alone. The combination of r2Reovirus and MEK inhibitor U0126 resulted in increased cell 370 

death compared to inhibitor or virus alone, highlighting the importance of this pathway in 371 

serotype 1 reovirus-mediated cell killing of TNBC cells. The lack of enhancement of cell death 372 

by U0126 when combined with T3D suggests that downregulation of MAPK/ERK signaling is 373 

not sufficient to promote virus killing.  374 

 Downregulation of MAPK/ERK signaling can lead to apoptosis and reovirus can induce 375 

programmed cell death by intrinsic and extrinsic apoptosis or necroptosis  (36, 45-57). We did 376 

not observe an effect on r2Reovirus-induced cell death in the presence of a RIPK3 inhibitor (data 377 

not shown), suggesting that reovirus does not promote TNBC cell death by necroptosis. Infection 378 

of MDA-MB-231 and MDA-MB-436 cells in the presence of a pan-caspase inhibitor resulted in 379 

a significant, but not complete, reduction of virus-mediated cytotoxicity, indicating the need for 380 

caspases to promote cell death. During reovirus-induced apoptosis, caspase 8-cleaved Bid 381 

translocates to mitochondria, cytochrome c is released following mitochondrial membrane 382 

permeabilization, resulting in caspase 9 and caspase 3 activation (4, 46-49, 52, 54, 55, 61-68). In 383 

MDA-MB-231 cells, etoposide treatment disrupted mitochondrial membrane potential and 384 

promoted cytochrome c release from mitochondria. In reovirus-infected MDA-MB-231 cells, the 385 

mitochondrial membrane was largely unaffected and cytochrome c was not released. Despite the 386 

lack of disruption of the mitochondrial membrane during reovirus infection, caspase 9 was 387 

significantly activated during infection with T1L and r2Reovirus. Caspase 9 can be activated in a 388 

cytochrome c-independent manner via caspase 8-activation of caspase 3, which in turn cleaves 389 

and activates caspase 9 (62, 92). These results indicate that at least in the context of MDA-MB-390 

231 cells, caspase 9 activation is a property of serotype 1 reoviruses, but not serotype 3 391 

reoviruses. The lack of activation of caspase 3 during reovirus infection suggests a novel 392 
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mechanism for caspase 9 activation, with the possibility of a viral protein directly activating 393 

caspase 9. These findings suggest that in MDA-MB-231 cells, reovirus promotes programmed 394 

cell death through a non-canonical pathway. 395 

Activation of caspase 9 can subsequently activate caspase 3 and caspase 7 (93-95). In 396 

reovirus-infected MDA-MB-231 cells, caspase 3/7 activity was not observed. Reovirus infection 397 

can result in secretion of tumor necrosis factor (TNF)-associated death-inducing ligand (TRAIL), 398 

activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), and 399 

induction of apoptosis (47, 56, 61). There are conflicting data on secretion and sensitivity to 400 

TRAIL in MDA-MB-231 cells (111-116). It is possible the lack of effects on the mitochondrial 401 

membrane during reovirus infection are linked to MDA-MB-231 cells being insensitive to 402 

TRAIL. However, we also observed that r2Reovirus blocks caspase 3/7 activation following 403 

etoposide treatment and that this effect is dependent on viral replication.  404 

We show that the ability of r2Reovirus to block caspase 3/7 activation maps to the T3D 405 

M2 gene segment. Interestingly, this phenotype is only observed when the T3D M2 gene 406 

segment is expressed in the context of T1L, as infection with T3D did not block caspase 3/7 407 

activation. This suggests an epistatic effect of T3D M2 with a T1L-encoded gene. Expression of 408 

the T3D-M2 gene segment in the context of an otherwise T1L virus also promoted cell death of 409 

MDA-MB-231 and MDA-MB-436 cells with similar kinetics as r2Reovirus and faster kinetics 410 

compared to T1L. These data suggest the enhanced cytopathic effects of r2Reovirus in TNBC 411 

cells is largely linked to the expression of the T3D M2 gene segment in the context of an 412 

otherwise T1L virus, with the point mutations present in r2Reovirus having little or no effect on 413 

enhanced oncolysis. T1L-T3M2 reovirus has enhanced attachment and infectivity in L929 and 414 

HeLa cells likely due to an interaction between the T3D M2 gene encoded μ1 protein and the 415 
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T1L attachment protein σ1 (105). In various cells, the S1 and M2 genes are also key factors in 416 

reovirus-induced inhibition of cellular DNA synthesis and programmed cell death (46, 63))(49, 417 

64, 117). Though not significant, T1L-T3M2 infected MDA-MB-231 cells at a slightly higher 418 

rate than T1L, while T3D-T1M2 showed diminished infectivity when compared to T3D (data not 419 

shown). It is possible that in TNBC cells, the interaction between T3D µ1 and T1L s1 promote 420 

enhanced oncolysis. These findings further highlight the epistatic effects of reovirus genes in 421 

various aspects of reovirus biology. 422 

Several viruses exploit host cell caspases, including caspase 3, to promote viral 423 

replication (118-121). Avian reovirus utilizes caspase 3 to proteolytically process viral 424 

nonstructural protein μNS, which is involved in the formation of viral factories (122). 425 

Mammalian reovirus recruits host proteins to viral factories, including cytoskeletal elements, 426 

cellular chaperones, intrinsic immune system proteins, as well as the endoplasmic reticulum (ER) 427 

and ER-Golgi intermediate compartment (123-127). It is possible reovirus recruits caspase 3 to 428 

viral factories to aid in a step in the replication cycle. Viral protein synthesis and expression of 429 

µ1 is required to block necroptosis in L929 cells (57). While we did not observe induction of 430 

necroptosis in TNBC cells (data not shown), it is possible that newly synthesized µ1 in 431 

conjunction with a T1L gene product blocks caspase 3/7 activation, which results in 432 

unconventional cell death in these cells.  433 

During programmed cell death, PARP-1 can be proteolytically cleaved by various 434 

proteases (100). As such, PARP-1 cleavage is commonly used as a downstream marker of 435 

programmed cell death. Etoposide treatment of MDA-MB-231 cells resulted in an 89 kDa 436 

cleaved PARP-1 fragment that is characteristic of caspase 3 cleavage during apoptotic cell death 437 
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(100, 128) (101-103).  Infection with T3D did not result in PARP-1 proteolytic cleavage, which 438 

concurs with T3D not promoting cytopathic effects during infection of MDA-MB-231 cells. 439 

Infection with T1L or r2Reovirus resulted in a 70 kDa cleaved PARP-1 fragment. Proteases, 440 

including calpains, cathepsins, E64-d, Granzyme A and B, and MMP-2 can proteolytically 441 

cleave PARP into cleavage fragments of this molecular weight (100). Infection in the presence of 442 

a calpain inhibitor blocked PARP-1 cleavage, but the calpain inhibitor also blocked infectivity 443 

(data not shown). In addition, treatment with caspase 3 inhibitor did not result in reduced PARP-444 

1 cleavage (data not shown). These results suggest proteolysis of PARP-1 during T1L and 445 

r2Reovirus infection is mediated by an enzyme other than caspase 3. These data further suggest 446 

that serotype 1 reoviruses promote caspase 3-independent programmed cell death in MDA-MB-447 

231 cells.  448 

The mechanism by which r2Reovirus promotes cell death of another TNBC cell line, 449 

MDA-MB-436, was assessed to better understand how host cell heterogeneity impacts virus 450 

induced cell death. MDA-MB-436 cells have mutated BRCA1 and TP53 genes, and BRAF and 451 

KRAS do not have mutations, creating a different cellular environment compared to MDA-MB-452 

231 cells (15). In contrast to that observed in MDA-MB-231 cells, r2Reovirus infection of 453 

MDA-MB-436 cells decreases mitochondrial membrane potential and increases caspase 3/7 454 

activity, suggestive of canonical apoptosis. These data suggest that although both TNBC cell 455 

lines are more susceptible to r2Reovirus-mediated cell death than parental reoviruses, infection 456 

promotes different types of cell death in each cell line. These results suggest that the host cell 457 

environment plays a key role in the type of cell death promoted following reovirus infection and 458 

that the type of cell death induced by the virus can be independent of the viral genetic 459 

composition. 460 
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In conclusion, this study identifies a non-conventional virus-induced cell death 461 

mechanism in TNBC cells driven by a reassortant oncolytic reovirus. We further map the 462 

enhanced cytopathic properties of this reassortant reovirus in TNBC cells to an epistatic effect of 463 

the T3D M2 gene with a T1L viral gene product. Better understanding of the interplay between 464 

the genetic composition of oncolytic viruses and the host cell environment is crucial for the 465 

development of improved reoviruses for oncolytic therapy.  466 
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Materials and Methods 467 

Cells, viruses, and antibodies 468 

MDA-MB-231 cells (gift from Jennifer Pietenpol, Vanderbilt University) and MDA-MB-469 

436 cells (ATCC® HTB-130™) were grown in Dulbecco’s Modified Eagle’s Medium (DMEM) 470 

supplemented with 10% fetal bovine serum (FBS) (Life Technologies), 100 U per ml penicillin 471 

and streptomycin (Life Technologies). Spinner-adapted L929 cells (gift from Terry Dermody, 472 

University of Pittsburgh) were grown in Joklik’s modified minimal essential medium (MEM) 473 

with 5% FBS, 2 mM L-glutamine (Life Technologies), penicillin and streptomycin, and 0.25 mg 474 

per ml amphotericin B (Life Technologies). 475 

Reovirus strains Type 1 Lang (T1L) and Type 3 Dearing (T3D) working stocks were 476 

prepared following rescue with reovirus cDNAs in BHK-T7 cells (gift from Terry Dermody, 477 

University of Pittsburgh), followed by plaque purification, and passage in L929 cells (129). 478 

r2Reovirus is a reassortant strain obtained from co-infection of MDA-MB-231 cells with T1L, 479 

T2J, and T3D reovirus strains followed by serial passage in these cells. (69). T1L-T3M2 and 480 

T3D-T1M2 (gift from Pranav Danthi, Indiana University (130)) were obtained through reovirus 481 

reverse genetics (129). Purified virions were prepared using second-passage L929 cell lysate 482 

stocks. Virus was purified from infected cell lysates by Vertrel XF (TMC Industries Inc.) 483 

extraction and CsCl gradient centrifugation as described (131). The band corresponding to the 484 

density of reovirus particles (1.36 g/cm3) was collected and dialyzed exhaustively against virion 485 

storage buffer (150 mM NaCl, 15 mM MgCl2, 10 mM Tris-HCl [pH 7.4]). Reovirus particle 486 

concentration was determined from the equivalence of 1 unit of optical density at 260 nm to 487 

2.1×1012 particles (132). Viral titers were determined by plaque assay using L929 cells (133, 488 

134).  489 
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Reovirus polyclonal rabbit antiserum raised against reovirus strains T1L and T3D was 490 

purified as described (135) and cross-adsorbed for MDA-MB-231 cells. Secondary IRDye 680 491 

and 800 antibodies (LI-COR Biosciences) and goat anti-rabbit Alexa Fluor 405 (A405) (Life 492 

Technologies).  493 

 494 

Immunoblotting to assess activation of MAPK/ERK signaling and proteins involved in 495 

apoptosis pathway 496 

MDA-MB-231 cells and MDA-MB-436 cells were adsorbed with T1L, T3D, and 497 

r2Reovirus at an MOI of 500 PFU/cell for 1 h at room temperature or treated with DMSO or 10 498 

µM U0126, washed with PBS, and incubated for 0-2 days at 37°C. Whole cell lysates were 499 

prepared using RIPA buffer (20 mM Tris-HCl [pH 7.5], 150 mM NaCl, 1 mM EDTA, 1% NP-500 

40, 0.1% sodium dodecyl sulfate, 0.1% sodium deoxycholate) and fresh Protease Inhibitor 501 

Cocktail (P8340, Sigma-Aldrich), Phosphatase Inhibitor Cocktail 2 (P5726, Sigma-Aldrich), 1 502 

mM sodium vanadate, and 1 mM phenylmethylsulfonyl fluoride (PMSF) and collected at times 503 

shown. Protein concentration was determined using the DC protein assay (Bio-Rad), measuring 504 

absorbance at 695nm in a Synergy HT or Synergy H1 Plate Reader (Biotek). Whole cell lysates 505 

were resolved by SDS-PAGE in 4-20% gradient Mini-PROTEAN TGX gels (Bio-Rad) and 506 

transferred to 0.2 µm pore size nitrocellulose membranes (Bio-Rad). Membranes were incubated 507 

for 1 h in blocking buffer (Tris-buffered saline [TBS] with 5% powdered milk), incubated with 508 

primary antibodies specific for phospho–ERK 1/2 (Thr202/Tyr204, #9101) and –MEK 1/2 509 

(Ser217/221, clone 41G9, #9154), total ERK 1/2 (#9102) and MEK (#9122), PARP (clone 510 

46D11, #9532), caspase 3 (clone D3R6Y, #14220), reovirus polyclonal antiserum, and a-tubulin 511 

(clone DM1A, #3873) overnight at 4°C. Antibodies are from Cell Signaling Technology. 512 
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Membranes were washed with TBS-T (TBS with 0.1% Tween 20) and incubated with secondary 513 

antibodies conjugated to IRDye 680 or IRDye 800 (LI-COR Biosciences). Membranes were 514 

imaged using a LiCor Odyssey CLx. Images were processed and band density measured in 515 

ImageStudio (LI-COR Biosciences). 516 

 517 

Cell viability assay  518 

Metabolic activity was used as a measurement of cell viability by using Presto Blue 519 

reagent (Invitrogen). MDA-MB-231 and MDA-MB-436 cells were untreated or treated with 520 

DMSO, increasing concentrations of MEK1/2 inhibitor U0126 or 25 µM pan-caspase inhibitor 521 

Q-VD-OPH for 1 h at room temperature and adsorbed with reovirus at an MOI of 500 PFU/cell 522 

for 1 h at room temperature or treated with 50 µM etoposide. Cells were washed with PBS and 523 

incubated for 0-6 days at 37°C in the absence or presence of DMSO, U0126 or Q-VD-OPH. 524 

Presto Blue (Thermo Fisher Scientific) was added at each time point for 30 min at 37°C and 525 

fluorescence (540 nm excitation/590 nm emission) was measured using black 96-well plates with 526 

clear bottom (Corning, 3904) with a Synergy HT or Synergy H1 plate reader (Biotek).  527 

 528 

Flow cytometric analysis of reovirus cell death  529 

 Cell viability was assessed by measuring FITC-labeled Annexin V (BioVision) (525/40 530 

nm) and propidium iodide (690/50 nm) fluorescence using flow cytometry. MDA-MB-231 cells 531 

were pretreated with vehicle (DMSO) or 25 µM pan-caspase inhibitor Q-VD-OPH for 1 h at 532 

room temperature prior to being adsorbed with T1L, T3D, and r2Reovirus at an MOI of 500 533 

PFU/cell for 1 h at room temperature or treated with 50 µM etoposide, washed with PBS, and 534 

incubated for 1-3 days at 37°C in the presence of DMSO or Q-VD-OPH. Cells were collected at 535 
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each time point and resuspended in Annexin Cocktail (1X Annexin Buffer [10 mM HEPES, 0.14 536 

M NaCl, and 2.5 mM CaCl2 in water], Annexin V-FITC, and propidium iodide). Mean 537 

fluorescence intensity (MFI) was assessed using a CytoFLEX flow cytometer (Beckman Coulter) 538 

and quantified using FlowJo software (BD Biosciences). 539 

 540 

Flow cytometric analysis of mitochondrial membrane potential 541 

 Mitochondrial membrane potential was measured by using tetramethylrhodamine, ethyl 542 

ester (TMRE) (Abcam). MDA-MB-231 and MDA-MB-436 cells were adsorbed with reovirus at 543 

an MOI of 500 PFU/cell or treated with 50 µM etoposide for 1 h at room temperature, washed 544 

with PBS, and incubated at 37°C for 1-3 days post-infection. Cells were stained with 100 nM 545 

TMRE at 37°C for 1 h at each time point. Cells were collected and resuspended in PBS 546 

containing 2% FBS. MFI was assessed using a CytoFLEX flow cytometer (Beckman Coulter) 547 

and quantified using FlowJo software (BD Biosciences). 548 

 549 

Confocal microscopy to assess cytochrome c intracellular localization 550 

 MDA-MB-231 cells plated on #1.5 glass coverslips were adsorbed with T1L, T3D or 551 

r2Reovirus at an MOI of 100 PFU/cell or treated with 50 µM etoposide for 1 h at room 552 

temperature, washed with PBS, and incubated at 37°C for 0-4 days post-infection. At each time 553 

point, cells were collected and incubated with media containing 300 nM MitoTracker Red-CMX 554 

Ros (Thermo Fisher) for 1 h at 37°C. Stained cells were fixed with 4% paraformaldehyde (PFA) 555 

in PBS for 20 min at room temperature. PFA was quenched with equal volume of 0.1 M glycine, 556 

cells were washed with PBS and stored at 4°C. Cells were treated with 0.1% Triton X100 and 557 

washed with PBS-BGT (PBS/0.5% BSA/0.1% Glycine/0.05% Tween 20), incubated with 558 
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reovirus polyclonal antiserum for 1 h at room temperature, and washed with PBS-BGT. Cells 559 

were incubated with secondary antibody (Alexa 405, Thermo Fisher Scientific) and 560 

AlexaFluor488-conjugated cytochrome C monoclonal antibody (BD Pharmingen, cat. 560263), 561 

washed with PBS-BGT and mounted on coverslips with Aqua Poly/Mount (Polysciences Inc.). 562 

Cells were imaged by confocal microscopy using Olympus IX81 laser-scanning confocal 563 

microscope using a PlanApo N 60× oil objective with a 1.42 numerical aperture (NA). Pinhole 564 

size was the same for all fluorophores. Single sections of 0.44 μm thickness from a Z-stack are 565 

presented. Whole images were only adjusted for brightness and contrast. 566 

 567 

Measuring caspase 9 activity 568 

Caspase 9 activity was measured by using Caspase-9 Colorimetric Assay Kit (Biovision). 569 

MDA-MB-231 cells were adsorbed with T1L, T3D, and r2Reovirus at an MOI of 500 PFU/cell 570 

for 1 h at room temperature or treated with 50 µM etoposide, washed with PBS, and incubated 571 

for 1-3 days at 37°C. Caspase 9 activity was measured at each time point using manufacturer’s 572 

instructions and reading absorbance in a clear 96-well plate (Greiner) with a Synergy HT or 573 

Synergy H1 plate reader (Biotek). 574 

 575 

Measuring caspase 3/7 activity 576 

 Caspase 3/7 activity was measured by using Caspase Glo reagent (Promega). MDA-MB-577 

231 and MDA-MB-436 cells were adsorbed with reovirus at an MOI of 500 PFU/cell for 1 h at 578 

room temperature or treated with 50 µM etoposide, washed with PBS, and incubated for 1-3 days 579 

at 37°C. Alternatively, MDA-MB-231 cells were adsorbed with reovirus at an MOI of 500 580 

PFU/cell for 1 h at room temperature, washed with PBS, incubated at 37°C, and treated with 50 581 
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µM etoposide 1 day post-infection. Caspase 3/7 activity was measured at each time point by 582 

incubating cells in equal amounts of Caspase Glo solution and cell media for 30 min at RT and 583 

reading luminescence in a white 96-well plate (Greiner) with a Synergy HT or Synergy H1 plate 584 

reader (Biotek). 585 

 586 

Electrophoretic mobility of reovirus  587 

5 ´ 1010 particles of purified reovirus were mixed with 2´ SDS sample buffer (20% 588 

glycerol, 100mM Tris-HCl [pH 6.8], 0.4% SDS, and 3 mg bromophenol blue) and separated by 589 

SDS-PAGE using 4-to-20% gradient polyacrylamide gels (Bio-Rad Laboratories) at 10 mAmps 590 

for 16 h. The gel was stained with 5 µg/ml ethidium bromide for 20 min and imaged using the 591 

ChemiDoc XRS+ system (Bio-Rad). 592 

 593 

Statistical analysis 594 

Mean values for independent experiments were compared using one or two-way analysis of 595 

variance (ANOVA) with Tukey’s or Dunnett’s multiple-comparison test (Graph Pad Prism). P 596 

values of < 0.05 were considered statistically significant.  597 
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Figure Legends 987 

FIG 1. r2Reovirus downregulates MAPK/ERK signaling. MDA-MB-231 cells were adsorbed 988 

with mock, T1L, T3D, or r2Reovirus (r2Reo) at an MOI of 500 PFU/cell or treated with 10 μM 989 

U0126 for 1 h. A) Whole cell lysates were collected at 0-2 dpi, resolved by SDS-PAGE, and 990 

immunoblotted with antibodies specific for phosphorylated and total MEK and ERK, reovirus, 991 

and tubulin. Representative data of independent experiments shown. B) Quantitation of band 992 

intensity from five independent experiments for phosphorylated MEK (p-MEK) and total MEK 993 

and nine independent experiments for phosphorylated ERK (p-ERK) and total ERK and SEM. 994 

Data are normalized to mock. *, P ≤ 0.002; **, P < 0.0001 in comparison to mock at each time 995 

point, as determined by two-way ANOVA with Tukey's multiple-comparison test. 996 

 997 

FIG 2. Inhibition of MEK activity increases cytotoxicity induced by T1L and r2Reovirus. MDA-998 

MB-231 cells were treated for 1 h with vehicle (DMSO) or increasing concentrations of U0126 999 

and adsorbed with mock, T1L, T3D or r2Reovirus at an MOI of 100 PFU/ml or treated with 50 1000 

μM etoposide for 1 h. A) Cell viability was assessed at times shown. Results are presented as 1001 

mean fluorescence intensity (MFI) and SEM for three independent experiments. B) Cell viability 1002 

for data shown in A for day 4 pi. *, P ≤ 0.04; **, P = 0.001; ***, P ≤ 0.005 in comparison to 1003 

virus alone, as determined by two-way ANOVA with Tukey's multiple-comparison test. 1004 

 1005 

FIG 3. r2Reovirus induced cell death is partially dependent on caspases. MDA-MB-231 cells 1006 

were treated for 1 h with vehicle (DMSO) or 25 μM caspase inhibitor Q-VD-OPH and adsorbed 1007 

with mock or r2Reovirus at an MOI of 500 PFU/ml or treated with 50 μM etoposide for 1 h. A) 1008 

Cells were assessed for annexin V and PI levels by flow cytometry at times shown. Data shown 1009 
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as percentage of cells that are AV-/PI-, AV+/PI- or AV+/PI+. B) Cell viability was assessed at 1010 

the times shown. Results are shown as mean fluorescence intensity (MFI) and SEM for three 1011 

independent experiments. *, P ≤ 0.0002 in comparison to r2Reovirus, as determined by two-way 1012 

ANOVA with Tukey's multiple-comparison test.  1013 

 1014 

FIG 4. Reovirus does not affect the mitochondria during infection of MDA-MB-231 cells. 1015 

MDA-MB-231 cells were adsorbed with mock, T1L, T3D, and r2Reovirus for 1 h at an MOI of 1016 

500 PFU/cell or treated with 50 μM etoposide. A) Cells were assessed for levels of 1017 

tetramethylrhodamine, ethyl ester (TMRE) by flow cytometry at times shown. Results are 1018 

presented as the percentage of TMRE-positive cells and SEM for three independent experiments. 1019 

*, P ≤ 0.008; **, P < 0.0001. B) Cells were fixed at 3 dpi and stained with antibodies specific for 1020 

reovirus (blue) or cytochrome c (green) or with MitoTracker to visualize the mitochondria (red). 1021 

Images are representative of two independent experiments. Scale bar, 10 μm.  1022 

 1023 

FIG 5. Caspase 9 is activated but not necessary for reovirus-mediated cell death. A) MDA-MB-1024 

231 cells were infected with mock, T1L, T3D or r2Reovirus at an MOI of 500 PFU/cell or 1025 

treated with 50 μM etoposide for 1 h. Cells were assessed for caspase 9 activity at times shown. 1026 

Results are shown for caspase 9 activity normalized to mock at each time point and SEM for 1027 

three independent experiments. B) MDA-MB-231 cells were treated with vehicle (DMSO), 25 1028 

μM caspase 9 inhibitor z-LEHD-fmk or 25 μM pan-caspase inhibitor Q-VD-OPH and adsorbed 1029 

with mock or r2Reovirus at an MOI of 500 PFU/cell or treated with 10 μM doxorubicin for 1 h. 1030 

Cell viability was assessed at times shown. Results are presented as mean fluorescence intensity 1031 

(MFI) and SEM for three independent experiments. *, P = 0.003; **, P < 0.0001 in comparison 1032 
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to A) mock and B) r2Reovirus, as determined by two-way ANOVA with Tukey's multiple-1033 

comparison test.  1034 

     1035 

FIG 6. r2Reovirus blocks etoposide-induced caspase 3/7 activity in a replication-dependent 1036 

manner. A) MDA-MB-231 cells were infected with mock, T1L, T3D or r2Reovirus at an MOI of 1037 

500 PFU/cell or treated with 50 μM etoposide for 1 h. Caspase 3/7 activity was measured at 1038 

times shown in relative luminometer units (RLU) and SEM for three independent experiments. 1039 

Cells were infected with mock, B) untreated or C) UV-inactivated reovirus at an MOI of 500 1040 

PFU/cell, treated with DMSO or 50 μM etoposide 1 dpi, and assessed for caspase 3/7 activity 3 1041 

dpi in relative luminometer units (RLU) and SEM for three independent experiments. *, P < 1042 

0.0001 in comparison to etoposide, as determined by one-way ANOVA with Dunnett's multiple-1043 

comparison test. 1044 

 1045 

FIG 7. Differential PARP cleavage in reovirus-infected cells. MDA-MB-231 cells were 1046 

adsorbed with mock, T1L, T3D, or r2Reovirus (r2Reo) at an MOI of 500 PFU/cell or treated 1047 

with 50 μM etoposide (eto) for 1 h. Whole cell lysates were collected at 0-2 dpi, resolved by 1048 

SDS-PAGE, and immunoblotted with antibodies specific for PARP, reovirus, and tubulin. 1049 

Representative experiment of nineteen. 1050 

 1051 

FIG 8. Caspase 3-dependent cell death is observed in MDA-MB-436 cells. A) MDA-MB-436 1052 

cells were treated for 1 h with vehicle (DMSO) or 25 μM caspase inhibitor Q-VD-OPH and 1053 

adsorbed with mock or r2Reovirus at an MOI of 500 PFU/ml for 1 h. Cells were assessed for cell 1054 

viability over times shown. B, C) MDA-MB-436 cells were infected with mock or r2Reovirus at 1055 
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an MOI of 500 PFU/cell or treated with 50 μM etoposide for 1 h. B) Cells were assessed for 1056 

TMRE levels by flow cytometry at times shown. Results are presented as the percentage of cells 1057 

that are TMRE-positive and SEM for three independent experiments. C) Caspase 3/7 activity 1058 

was measured at times shown. Results are shown as relative luminometer units (RLU) and SEM 1059 

and normalized to mock for three independent experiments. *, P ≤ 0.05; **, P ≤ 0.008; ***, P < 1060 

0.0001 as determined by two-way ANOVA with Tukey's multiple-comparison test. 1061 

 1062 

FIG 9. Impact of the M2 gene segment in virus-induced cytotoxicity of TNBC cells. A) SDS-1063 

PAGE gel electrophoresis of T1L, T3D, r2Reovirus (r2Reo), and recombinants T1L-T3M2 and 1064 

T3D-T1M2. Strains are differentiated by migration patterns of three large (L), three medium 1065 

(M), and four small (S) gene segments. Asterisk denotes M2 gene segment. B) MDA-MB-231 1066 

cells were infected with mock, T1L, T3D, T1L-T3M2, T3D-T1M2 or r2Reovirus at an MOI of 1067 

500 PFU/cell and treated with vehicle (DMSO) or 50 μM etoposide 1 day post-infection. 1068 

Caspase 3/7 activity was measured 3 days post-infection. Data are shown as relative luminometer 1069 

units (RLU) and SEM for three independent experiments. C) MDA-MB-231 and D) MDA-MB-1070 

436 cells were infected with mock, T1L, T3D, T1L-T3M2, T3D-T1M2 or r2Reovirus at an MOI 1071 

of 500 PFU/cell or treated with C) 50 μM etoposide or D) 1 μM staurosporine for 1 h. Cell 1072 

viability was assessed at times shown. Results are presented as mean fluorescence intensity 1073 

(MFI) and SEM for three independent experiments. *, P ≤ 0.04; **, P = 0.009; ***, P = 0.0003; 1074 

****, P < 0.0001 in comparison to T1L, as determined by two-way ANOVA with Tukey's 1075 

multiple-comparison test. 1076 
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