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Abstract 
While individuals infected with coronavirus disease 2019 (COVID-19) manifested a broad 
range in susceptibility and severity to the disease, the pre-existing immune memory of related 
pathogens can influence the disease outcome. Here, we investigated the potential extent of T 
cell cross-reactivity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
that can be conferred by other coronaviruses and influenza virus, and generated a map of 
public and private predicted CD8+ T cell epitopes between coronaviruses. Moreover, to 
assess the potential risk of self-reactivity and/or diminished T cell response for peptides 
identical or highly similar to the host, we identified predicted epitopes with high sequence 
similarity with human proteome. Lastly, we compared predicted epitopes from coronaviruses 
with epitopes from influenza virus deposited in IEDB to support vaccine development against 
different virus strains. We believe the comprehensive in silico profile of private and public 
predicted epitopes across coronaviruses and influenza viruses will facilitate design of 
vaccines capable of protecting against various viral infections.    
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Introduction 
Faced by unprecedent health and economic crisis from the coronavirus disease 2019 (COVID-
19), the scientific community is pushing forward with efforts to develop vaccines and 
treatments to mitigate its impact. While the severity of symptoms have been reported to be 
associated with age, gender and comorbidities such as cardiovascular diseases and chronic 
respiratory diseases1, the underlying mechanism of broad variation in susceptibility and 
severity to COVID-19 is not fully understood2. It is however accepted that an altered immune 
response is a key contributor to pathology3,4, and the balance between generation of protective 
and pathological immune responses by the host may be a vital factor governing the disease 
outcome.  
 
As immune memory by related pathogens has shown to help reduce severity and spread of the 
diseases 5–7, pre-existing immunity through cross-reactivity to familial coronavirus strains may 
provide individuals with protection or enhanced susceptibility against the severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) without prior exposure8–10. Therefore, we 
aim to characterize the potential for the existing immune memory by other coronaviruses and 
influenza virus to fight against SARS-CoV-2 and further identify targets for developing a 
‘universal’ vaccine against coronaviruses.  
 
The strains infecting humans belong to either alpha and beta genera of coronavirus. The 
alphacoronavirus contains human coronavirus 229E (HCoV-229E) and HCoV-NL63, while 
the betacoronavirus contains HCoV-OC43, and HCoV-HKU1, middle east respiratory 
syndrome coronavirus (MERS-CoV), SARS-CoV and SARS-CoV-211. It is known that NL63, 
229E, OC43, and HKU1 usually cause only mild to moderate symptoms such as cough, runny 
nose, fever and sore throat like the common cold12, whereas MERS-CoV and SARS-CoV cause 
more severe symptoms including respiratory tract disease.  
 
In this study, we investigated the level of T cell antigen cross-reactivity across the seven alpha 
and betacoronavirus strains, evaluated the risk of self-reactivity from SARS-CoV-2 predicted 
epitopes and identified targets for vaccine developments against coronavirus and influenza 
virus.  We first predicted the potential of peptides to be presented by ten prevalent HLA alleles 
and eliciting CD8+ T cell responses, and generated a comprehensive in silico profile of public 
and private predicted epitopes. We also expanded the map of cross-reactivity from exact 
matching peptides to those with a high sequence similarity, resulting in addition of 264 and 
283 public SARS-CoV-2 predicted epitopes by allowing one and two amino acid mismatches, 
respectively. Moreover, to assess the risk of self-reactivity and immunopathology, we 
compared SARS-CoV-2 predicted epitopes with human proteome sequences and detected ten 
predicted epitopes that are single amino acid variant from their counterparts in the human 
proteome. Lastly, to identify peptides to support development of vaccines against coronavirus 
and influenza virus, we compared our list of predicted epitopes from coronaviruses with 
epitopes from influenza virus deposited in IEDB and detected epitopes with a modest sequence 
similarity that are shared across multiple coronavirus strains.  
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Results 
 
Shared predicted epitopes among coronavirus strains  
To first evaluate the homology of proteome sequences among alpha and betacoronavirus 
strains,  we conducted sequence alignment and generated a phylogenetic tree of encoded 
proteins between NL63, 229E, OC43, HKU1, MERS-CoV, SARS-CoV and SARS-CoV-2 (see 
Methods). Based on sequence alignments (example alignment of spike protein illustrated in 
Supplementary Figure 1) and phylogenetic trees of encoded proteins, the alpha and 
betacoronavirus strains shared a high sequence similarity within their own genera, i.e. higher 
similarity between NL63 and 229E than with betacoronaviruses. In particular, for 
betacoronavirus strains, phylogenetic analysis showed higher similarity between OC43 and 
HKU1, and between SARS-CoV and SARS-CoV-2. Notably, MERS-CoV showed relatively 
distinct proteome sequences to all other coronavirus strains included in this study (Figure 1A 
for spike protein and Supplementary Figure 2 for other encoded proteins).  
 
To identify the conserved 9-mer peptides across coronavirus strains, we first generated 9-mer 
peptides from encoded proteins of coronavirus strains (Figure 1B) and detected public peptides 
with identical matches (Figure 1C). Notably, there were 3663 shared 9-mer peptides between 
SARS-CoV and SARS-CoV. Given the longest open reading frame of replicase polyproteins 
(Orf1ab) with an average of 7002 amino acids across coronavirus strains, many public peptides 
were derived from Orf1ab, with 19 peptides shared across all studied strains (Figure 3 first 
panel).  
 
We then investigated antigen presentation potential of 9-mer peptides for 10 most prevalent 
HLA alleles corresponding to MHC class I (HLA-A, HLA-B and HLA-C alleles). These 
include HLA-A*0101, 0201, 0301, 2402,  HLA-B*0702, 4001, 0801 and HLA-C*0702, 0401, 
0701. The MHC presentation was predicted by netMHCpan v4.013 (see Methods). Generally, 
there was a relatively high number of peptides predicted to bind HLA-C alleles while HLA-B 
alleles had the lowest number of predicted binders (Figure 2A). We identified on average 1380 
(SD = 45) peptides predicted to bind at least one HLA allele (Figure 2B), which is  ~15% of 
total number of 9-mer peptides across different strains. Of interest, there were few peptides 
predicted to bind by at least 7 different HLA alleles, of which 9 peptides were derived from 
SARS-CoV-2. The peptides predicted to bind 8 HLA alleles and their derived proteins are 
listed in Supplementary Figure 3.  
 
Although viral antigen presentation is a vital step in triggering immune responses, not all MHC 
binding peptides are immunogenic. We therefore set out to predict T cell immunogenicity,  i.e. 
the ability of a peptide to elicit a T cell response, of all peptides predicted to bind at least one 
HLA allele. In an ongoing unpublished study, we have benchmarked the existing 
immunogenicity predicting models and as a result recognized a recently published model called 
Repitope14 as the best performing existing model to predict immunogenicity of viral epitopes.  
 
We therefore utilized Repitope (see Methods) and identified in total 4894 out of 16096 (~30%) 
unique predicted binders to be immunogenic (subsequently referred to as predicted epitopes), 
and the proportion of such predicted epitopes was comparable across different strains (Figure 
2C, Supplementary Figure 4). On average, we detected 429 (SD=26) epitopes predicted to bind 
at least one HLA type and trigger T cell response. The full list of predicted immunogenic and 
nonimmunogenic HLA-binders are provided in Supplementary Table 1.  
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With the pool of predicted epitopes, we generated Venn diagrams to illustrate private and 
public epitopes across different coronavirus strains (Figure 3, Supplementary Figure 5). From 
a total of 794 predicted epitopes from SARS-CoV-2, 411 were private while the remaining 
were public of which 350 were shared between SARS-CoV-2 and SARS-CoV. We detected 
only one predicted epitope SLAIDAYPL public across all strains. Given the long sequence of 
Orf1ab protein, many public epitopes were derived from Orf1ab.  
 
For a validation of predicted epitopes, we have compared the list of predicted epitopes with 
epitopes characterized by in vitro T cell assays and deposited in Immune Epitope Database and 
Analysis Resource (IEDB). We retrieved all 35,224 peptides in IEDB (as of 13-02-2020), 
presented on either MHC-I or MHC-II, reported positive in T cell assays and have human as 
the host organism, then compared with the list of 4894 unique predicted epitopes. We identified 
66 unique 9-mer predicted epitopes matching with IEDB epitopes from four coronavirus 
strains, 229E, NL63, SARS-CoV and SARS-CoV-2 (Table 1. Supplementary Table 2). In 
particular, the matching epitopes from NL63 and SARS-CoV-2 were public peptides with 229E 
and SARS-CoV respectively. Consequently, all 229E and NL63 matching epitopes in IEDB 
were derived from 229E whereas all SARS-CoV and SARS-CoV-2 matching epitopes in IEDB 
were derived from SARS-CoV.  
 
Table 1. Number of unique peptides by strain having matching pattern with epitopes deposited 
in IEDB 

Strain 
Number of unique 
peptides by strain 

229E 2 
NL63 1 
SARS 64 

SARS-2 31 
 
 
Public epitopes between SARS-coV-2 and other coronavirus strains by high sequence 
similarity  
In addition to public peptides by exact matches, predicted epitopes with a high sequence 
similarity may also trigger cross-reactivity across coronavirus strains. Here, we expanded the 
previous set of public predicted epitopes of SARS-CoV-2 to include those with up to two amino 
acid mismatches (Table 2, Supplementary Table 3). In addition to 629 predicted epitopes from 
SARS-CoV-2 shared with other coronavirus strains, there can be an increase of 264 and 283 
public epitopes by allowing one or two amino acid mismatches respectively.  
 
Table 2. Number of shared predicted epitopes between SARS-CoV-2 and other coronavirus 
strains by allowing up to two mismatches.  

Strains Exact match 1 mismatch 2 mismatches 
229E 22 10 30 

HKU1 48 44 56 
MERS 57 44 35 
NL63 17 17 36 
OC43 52 41 58 
SARS 433 108 68 
Total 629 264 283 
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Autoimmune potential of SARS-CoV-2 derived predicted epitopes  
In identifying targets for vaccination, peptides identical or highly similar to those of host 
organism may diminish the T cell response due to exclusion of high-affinity T cells by thymic 
negative selection and/or may induce autoimmune response. Thus, we analyzed the sequence 
similarity of predicted epitopes with their best matching counterparts in human proteome to 
hint on their potential risks.   
 
By comparing predicted epitopes from SARS-CoV-2 with the human proteome, none of the 
predicted epitopes had identical match but we detected 10 and 184 epitopes with one and two 
amino acid mismatches respectively with their human proteome counterparts (Figure 4A). The 
predicted epitopes differ by only one amino acid is listed in Table 3.  
 
Table 3. Predicted epitopes from SARS-CoV-2 that are single amino acid variants of human 
proteome counterparts.  

SARS-CoV-2  Human proteome 
FLALITLAT LLALITLAT 
GDAALALLL GAAALALLL 
GLPGTILRT GQPGTILRT 
GLTVLPPLL GLTVLPALL 
IPIGAGICA IYIGAGICA 
IVNSVLLFL TVNSVLLFL 
QLSLPVLQV QLLLPVLQV 
SLPINVIVF SLPINVQVF 
TPGSGVPVV EPGSGVPVV 
VLPQLEQPY VLPQNEQPY 
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Cross-reactivity between coronavirus and influenza virus  
Due to the prevalence of disease caused by influenza virus and its tendency to gain mutations 
(antigenic drift) and reassortment among subtypes of virus (antigenic shift), there have been 
multiple attempts to develop generic vaccines protective against all influenza viruses to reduce 
the severity of infection and spread of disease15. Along with cross-reactivity among influenza 
virus strains, the cross-reactivity between coronavirus and influenza virus would benefit the 
community to combat recurrence of diseases caused by both strains. Here, we compared the 
4894 unique predicted epitopes from all coronavirus strains with 1334 unique MHC-I influenza 
virus-derived epitopes (1298 influenza A virus and 36 influenza B virus) deposited in IEDB.  
 
Due to a relative sequence dissimilarity between influenza virus and coronavirus, there were 
no peptides with identical match between two strains and all peptides were distinct by at least 
three amino acids (Figure 4B). But interestingly, among those with three amino acid 
differences, there were predicted epitopes shared across multiple coronavirus strains as 
exemplified in Table 4 (full list provided in Supplementary Figure 6). These public peptides 
pose a potential to be cross-protective within coronavirus strains and given that they share a 
modest sequence similarity with epitopes derived from influenza virus, also pose a potential to 
cross-react against influenza virus.  
 
Table 4. Example of public predicted epitopes from coronavirus strains with modest sequence 
similarity with influenza virus epitopes.  

Coronavirus 
Influenza 

virus 
Hamming 
distance 

Coronavirus 
strain Influenza virus strain 

Influenza virus 
protein 

ALGGSVAIK ILRGSVAHK 3 MERS Influenza A virus Nucleoprotein 
ALGGSVAIK ILRGSVAHK 3 OC43 Influenza A virus Nucleoprotein 
ALGGSVAIK ILRGSVAHK 3 SARS-2 Influenza A virus Nucleoprotein 

ALALLLLDR ALQLLLEV 3 SARS- 2 Influenza A virus 
Nuclear export 

protein 

ALALLLLDR ALQLLLEV 3 SARS Influenza A virus 
Nuclear export 

protein 

ALGGSVAIK VLRGSVAHK 3 MERS 
Influenza A virus 

(A/Netherlands/602/2009(H1N1)) Nucleoprotein 

ALGGSVAIK VLRGSVAHK 3 OC43 
Influenza A virus 

(A/Netherlands/602/2009(H1N1)) Nucleoprotein 

ALGGSVAIK VLRGSVAHK 3 SARS -2 
Influenza A virus 

(A/Netherlands/602/2009(H1N1)) Nucleoprotein 
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Discussion 
 
The severity and recurrence of coronavirus disease outbreaks pose ongoing global threat, and 
prompts the need for better understanding of potential cross-protection by prior infection of 
familial coronaviruses to mitigate the current spread and prevent future pandemics. Hereby, 
in continuation of our previous study to identify vaccine target for SARS-CoV-216, we sought 
to determine the extent of antigen cross-reactivity amongst coronavirus strains.  
 
Taking a step ahead of previous efforts to study potential immune recognition of SARS-CoV-
2 by earlier infections of common coronaviruses based on MHC presentation predictions17–21, 
we i) shortlisted predicted epitopes by taking immunogenicity potential of predicted binders 
into account, ii) validated the prediction by comparing with epitopes deposited in IEDB, and 
iii) expanded the map of public predicted epitopes to accommodate up to two amino acid 
variants. To aid design of vaccines targeting both coronaviruses and influenza viruses, we 
further analyzed correlates of the predicted epitopes from coronaviruses with epitopes from 
influenza virus.  
 
Along with the in silico profile of predicted epitopes shared across coronaviruses, we evaluated 
the potential risk of self-reactivity imposed by high sequence similarity with the human 
proteome. Considering the reports of lung, heart, liver, intestine, genital and kidney failures by 
autoimmune disorders in COVID-19 patients22, peptides from SARS-CoV-2 may carry high 
risk of immunopathology and should be carefully selected to proceed for vaccination.  
 
In regards to the accuracy of predictive models utilized in this study, the algorithms to predict 
MHC presentation has matured significantly in the last decade by training with extensive 
datasets, especially for the most common HLA types. On the other hand, it is worth noting 
that predicting immunogenicity is challenging and not a fully solved problem. Therefore, 
although the best performing models have been used for classifying immunogenicity, the 
predictions are suboptimal and should be taken with caution.   
 
We believe that our comprehensive profile of private and public predicted epitopes across 
coronaviruses and influenza virus will assists biologists with targeted function validation, and 
facilitate design of vaccines capable of protecting against multiple prevalent virus strains. 
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Methods 
 
Retrieval of coronavirus proteome sequences 
The proteome sequences of coronavirus strains were obtained from NCBI. The reference 
numbers for these sequences are NC_002645.1 (229E), NC_006577.2 (HKU1), 
NC_019843.3 (MERS-CoV), NC_005831.2 (NL63), NC_006213.1 (OC43), NC_004718.3 
(SARS-CoV) and NC_045512.2 (SARS-CoV-2). 
 
Sequence alignment and phylogenetic tree of encoded proteins in coronaviruses  
For multiple sequence alignment and phylogenetic tree generation, the open reading frames 
were grouped by their encoded proteins – spike protein (S), envelope protein (E), membrane 
protein (M), nucleocapsid protein (N), replicase polyprotein (Orf1ab) and other encoded 
regions (Other) – prior to analysis. The multiple sequence alignment was conducted using 
‘msa’ function from R msa v1.4.3 package and visualized by ‘msaPrettyPrint’ function. The 
phylogenetic tree was produced by plotting ‘identity’ distance generated by ‘dist.alignment’ 
function from R seqinr v3.6.1 package.  
 
Peptide generation from proteome sequences 
Each encoded proteins were fragmented into 9-mer peptides by scanning the proteome with a 
window of 9 amino acids and step length of 1 amino acid. For strains containing two open 
reading frames annotated with the same functional protein e.g. 229E, MERS-CoV, SARS-CoV 
and SARS-CoV-2 having two open reading frames annotated for Orf1ab, 9-mer peptides were 
generated from both encoded proteins and unique set of peptides were selected for subsequent 
analysis.  
 
MHC presentation prediction  
The antigen presentation of MHC was predicted using NetMHCpan v4.013, a model trained on 
binding affinity and eluted ligand data, against HLA-A*0101, 0201, 0301, 2402,  HLA-
B*0702, 4001, 0801 and HLA-C*0702, 0401, 0701 alleles. Peptides with rank score <= 2.0 
were categorized as positive HLA-binder.  
 
Immunogenicity Prediction 
The immunogenicity potential was predicted by R package Repitope for peptides that passed 
netMHCpan filtering i.e those predicted to bind at least one HLA allele. The Repitope utilizes 
amino acid descriptors and TCR-peptide contact potential profiling (CPP)-based features to 
label immunogenicity. The Repitope package was retrieved from GitHub repository 
(https://github.com/masato-ogishi/Repitope.git). 
 
After feature computation and feature selection, we utilized the published Repitope 
‘MHCI_Human’ model to extrapolate probabilistic immunogenicity scores for our dataset and 
made binary classification of immunogenicity. This classification was based on a threshold 
computed from the ROC curves of the MHCI_Human immunogenicity prediction model and 
was calculated using the youden index that maximizes 1-sensitivity+specificity. Probabilistic 
scores were extracted from the original model for a subset of peptides that were identical to 
peptides in the model’s training dataset. 
 
  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 20, 2020. ; https://doi.org/10.1101/2020.05.20.107292doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.20.107292
http://creativecommons.org/licenses/by-nc-nd/4.0/


Visualization of private and public peptides 
The conservation of peptides across coronavirus strains before and after MHC binding and 
immunogenicity prediction were visualized by ‘venn’ function from R venn v1.9 package and 
upset function from R UpSetR v1.4.0 package. To identify shared peptides with up to two 
amino acid tolerance, the best matching peptides were identified by ‘pairwiseAlignment’ 
from Biostrings v2.40.2 package using BLOSUM62 matrix, gapOpening of 100 and 
gapExtension of 100, followed by hamming distance to filter only peptide pairs with less than 
or equal to two amino acid difference.  
 
Sequence similarity with human proteome and epitopes deposited in IEDB 
The sequence similarity of peptides derived from SARS-CoV-2 with human proteome 
counterparts was computed by first identifying best global-local alignment by 
‘pairwiseAlignment’ function from Biostrings v2.40.2 package with a high gap penalty, 
gapOpening of 100 and gapExtension of 100. The number of mismatches between best 
aligned pair was computed by hamming distance using ‘stringdist’ function from R stringdist 
v0.9.5.5 package. Similarly, the sequence similarity between coronavirus peptides and 
epitopes from IEDB was compared by global-local alignment following by computing 
hamming distance to find the best matching pairs.  
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Figures 
 
 

Figure 1. Sequence homology between coronavirus strains. A. Phylogenetic tree of spike 
protein sequences between NL63, 229E, OC43, HKU1, MERS-CoV, SARS-CoV and SARS-
CoV-2 strains. B. Number of 9-mer peptides generated from each coronavirus strains grouped 
by functional proteins. C. Number of shared and private 9-mer peptides between coronavirus 
strains.  
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Figure 2. Number of 9-mer peptides predicted to bind HLA alleles and are immunogenic. A. 
Number of 9-mer peptides from each coronavirus strains predicted to bind annotated HLA 
alleles. B. Number of peptides predicted to bind equal to specified number of HLA alleles. C. 
Number of peptides predicted to trigger T cell response by Repitope prediction.  
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Figure 3. Comparing private and public 9-mer peptides from a complete set of peptides to after 
MHC presentation prediction by NetMHCpan and immunogenicity prediction by Repitope.  
 
 
 

 
Figure 4. Sequence similarity with human proteome and influenza virus epitopes deposited in 
IEDB. A. Distribution of hamming distance between SARS-CoV-2 derived peptides and 
human proteome counterparts (the region most similar to corresponding virus peptides). B. 
Distribution of hamming distance between coronavirus derived peptides and all influenza virus 
epitopes deposited in IEDB.  
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Supplementary Figures 
 
Supplementary Figure 1. Alignment of proteome sequences of spike proteome among 
different coronavirus strains  
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Supplementary Figure 2. Phylogenetic tree of encoded proteins, envelope protein (E), 
membrane protein (M), nucleocapsid protein (N) and replicase polyprotein (Orf1ab) for 
seven coronavirus strains. The recurrent strain annotations are due to presence of two open 
reading frames annotated with the same functional protein.  

 
 
 
Supplementary Figure 3. List of peptides predicted to bind 8 HLA alleles by NetMHCpan 
4.0.  
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Supplementary Figure 4. (Top) Number of peptides predicted to be immunogenic by 
Repitope, facet by HLA alleles predicted to bind via NetMHCpan. (Bottom) Number of 
predicted epitopes predicted to be N number of HLA alleles for each coronavirus strain.  
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5 44 37 39 35 43 52 48 
6 13 20 26 16 20 9 14 
7 1 2 5 4 3 5 3 
8 0 0 0 1 0 0 0 
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Supplementary Figure 5. Venn diagram illustrating private and public 9-mer peptides from a 
complete set of peptides to after MHC presentation prediction by NetMHCpan and 
immunogenicity prediction by Repitope. The encoded proteins are replicase polyprotein 
(Orf1ab), nucleocapsid protein (N), envelop protein (E), membrane protein (M) and 
remaining encoded proteins combined (Other).  
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Supplementary Figure 6. List of predicted epitopes from coronavirus and epitopes from 
influenza virus deposited in IEDB with a modest sequence similarity.  

Coronavirus 
peptides Influenza virus epitopes coronavirus 

IV Parent.Protein 
from IEDB Organism.Name from IEDB 

AEIRDLICV AEIEDLIFL OC43 Nucleoprotein 
Influenza A virus H3N2 

(A/Netherlands/9/03 (H3N2)) 

AEIRDLICV AEIEDLIFS OC43 Nucleoprotein 
Influenza A virus 

(A/Bilthoven/4791/1981(H3N2)) 
SLGGSVAIK ILRGSVAHK HKU1 Nucleoprotein Influenza A virus 
ALGGSVAIK ILRGSVAHK MERS Nucleoprotein Influenza A virus 
ALGGSVAIK ILRGSVAHK OC43 Nucleoprotein Influenza A virus 

ALGGSVAIK ILRGSVAHK 
SARS-coV-

2 Nucleoprotein Influenza A virus 

NELSRVLGL NMLSTVLGV 
SARS-coV-

2 

RNA-directed RNA 
polymerase catalytic 

subunit 
Influenza A virus (A/Puerto 

Rico/8/1934(H1N1)) 

MGLFRRRSV RGLQRRRFVQNALNGNG OC43 Matrix protein 1 
Influenza A virus (A/Puerto 

Rico/8/1934(H1N1)) 
AEIRDLICV AEIEDLIFLA OC43 Nucleoprotein Influenza A virus 

ALALLLLDR ALQLLLEV 
SARS-coV-

2 
Nuclear export 

protein Influenza A virus 

ALALLLLDR ALQLLLEV SARS 
Nuclear export 

protein Influenza A virus 
FLDLRTSCF FEDLRVSSF MERS Nucleoprotein Influenza A virus 

NELSRVLGL FNMLSTVLGV 
SARS-coV-

2 

RNA-directed RNA 
polymerase catalytic 

subunit Influenza A virus 

SLLNLKLRA LLFLKVPA MERS 

RNA-directed RNA 
polymerase catalytic 

subunit Influenza A virus 

LSLLKVTAF LLFLKVPA SARS 

RNA-directed RNA 
polymerase catalytic 

subunit Influenza A virus 

SPLFLIVAA LLFLKVPA SARS 

RNA-directed RNA 
polymerase catalytic 

subunit Influenza A virus 

FLDLRTSCF VWMACHSAAFEDLRVSSF MERS Nucleoprotein 
Influenza A virus 

(A/Vietnam/CL26/2004(H5N1)) 
EQAAAAMYK SEQAAEAMEV 229E Matrix protein 1 Influenza A virus 

SLGGSVAIK VLRGSVAHK HKU1 Nucleoprotein 
Influenza A virus 

(A/Netherlands/602/2009(H1N1)) 

ALGGSVAIK VLRGSVAHK MERS Nucleoprotein 
Influenza A virus 

(A/Netherlands/602/2009(H1N1)) 

ALGGSVAIK VLRGSVAHK OC43 Nucleoprotein 
Influenza A virus 

(A/Netherlands/602/2009(H1N1)) 

ALGGSVAIK VLRGSVAHK 
SARS-coV-

2 Nucleoprotein 
Influenza A virus 

(A/Netherlands/602/2009(H1N1)) 
IIGGLHLLI IIGILHLIL OC43 Matrix protein 2 Influenza A virus 
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