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Abstract: 1 

Recombination is an essential part of meiosis as it facilitates novel combinations of 2 

homologous chromosomes, following their successive segregation in offspring. Founder 3 

population size, demographic changes (eg. population bottlenecks or rapid expansion) 4 

can lead to variation in recombination rates across different populations. Previous 5 

research has shown that using population-specific reference panels has a significant 6 

effect on downstream population genomic analysis like haplotype phasing, genotype 7 

imputation and association, especially in the context of population isolates. Here, we 8 

developed a high-resolution recombination rate mapping at 10kb and 50kb scale using 9 

high-coverage (20-30x) whole-genome sequencing (WGS) data of 55 family trios from 10 

Finland and compared it to recombination rates of non-Finnish Europeans (NFE). We 11 

then tested the downstream effects of the population-specific recombination rates in 12 

statistical phasing and genotype imputation in Finns as compared to the same analyses 13 

performed by using the NFE-based recombination rates . Finnish recombination rates 14 

have a moderately high correlation (Spearman’s ρ =0.67-0.79) with non-Finnish 15 

Europeans, although on average (across all autosomal chromosomes), Finnish rates 16 

(2.268±0.4209 cM/Mb) are 12-14% lower than NFE (2.641±0.5032 cM/Mb).  17 

Population-specific effective population sizes were found to have no significant effect 18 

in haplotype phasing accuracy (switch error rates, SER ~ 2%) and average imputation 19 

concordance rates (with reference panels in phasing:  rates were 97-98% for common, 20 

92-96% for low frequency and 78-90% for rare variants) irrespective of the 21 

recombination map used. Similarly, we found no effect of population-specific (Finnish) 22 

recombination maps in phasing with comparable switch error rates (SER) across 23 

autosomes when compared to HapMap based maps. Our results suggest that 24 
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downstream population genomic analyses like haplotype phasing and genotype 25 

imputation mostly depend on population-specific contexts like appropriate reference 26 

panels and their sample size, but not on population-specific recombination maps or 27 

effective population sizes. Currently, available HapMap recombination maps seem 28 

robust for population-specific phasing and imputation pipelines, even in the context of 29 

relatively isolated populations like Finland. 30 

Keywords: recombination, phasing, imputation, Finland, population genomics 31 

 32 

1. Introduction: 33 

Recombination is not uniform across the human genome with large areas having lower 34 

recombination rates, so-called ‘coldspots’, which are then interspersed by shorter 35 

regions marked by a high recombinational activity called ‘hotspots’ [1]. With long 36 

chunks of human genome existing in high linkage disequilibrium, LD [2], and organised 37 

in the form of ‘haplotype blocks’, the ‘coldspots’ tend to coincide with such regions of 38 

high LD [3].  39 

Direct estimation methods of recombination are quite time-consuming, and evidence 40 

has suggested that they do not easily scale up to genome-wide, fine-scale 41 

recombinational variation estimation [4]. A less time-consuming but computationally 42 

intensive alternative is to use the LD patterns surrounding the SNPs [5]. Such methods 43 

have been used in the past decade or so, to create fine-scale recombination maps [6]. 44 

Besides the International HapMap project that focused on capturing common variants 45 

and haplotypes in diverse populations, international  WGS-based collaborations like 46 

1000 Genomes Project, provided genetic variation data for 20 worldwide populations 47 
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[7]. This led to further refinement of the recombination maps coupled with 48 

methodological advances of using coalescent methods for recombination rate  [8, 9]. 49 

With the rise of international collaborative projects, it was realised that founder 50 

populations can often have very unique LD patterns  [10], subsequently also displaying 51 

unique  increased genetics-driven health risks  [11], suggesting that population-specific 52 

reference datasets should be used to leverage the LD patterns to better detect disease 53 

variants in downstream genetic analysis  [12].  Genomic analysis methods like 54 

haplotype phasing and imputing genotypes require recombination maps and other 55 

population genetic parameters as input to obtain optimal results  [13, 14, 15, 16] 56 

In theis study, we set to test this by 1) estimating recombination rates along the genome 57 

in Finnish population using ~55 families of whole-genome sequenced (20-30x) Finns, 58 

2) comparing these rates to some other European populations, and 3) comparing the 59 

effect of using Finnish recombination rate estimates and cosmopolitan estimates in 60 

phasing and imputation errors in Finnish samples. 61 

2. Materials & Methods: 62 

2.1 Datasets used: 63 

Finnish Migraine Families Collection  64 

Whole-genome sequenced trios (n = 55) consisting of the parent-offspring combination 65 

were drawn from a large Finnish migraine families collection consisting of 1,589 66 

families totalling 8,319 individuals [17].  The trios were used for the recombination map 67 

construction using LDHAT version 2. The families were collected over 25 years from 68 

various headache clinics in Finland (Helsinki, Turku, Jyväskylä, Tampere, Kemi, and 69 

Kuopio) and via advertisements in the national migraine patient organisation web page 70 

(https://migreeni.org/). The families consist of different pedigree sizes from small to 71 
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large (1-5+ individuals). Of the 8319 individuals, 5317 have a confirmed migraine 72 

diagnosis based on the third edition of the established International Classification for 73 

Headache Disorders (ICHD-3) criteria  [18]. 74 

EUFAM cohort 75 

To check the phasing accuracy of our Finnish recombination map, we used an 76 

independently sourced 49 trios from the European Multicenter Study on Familial 77 

Dyslipidemias in Patients with Premature Coronary Heart Disease (EUFAM). Finnish 78 

familial combined hyperlipidemia (FCH) families were identified from patients initially 79 

admitted to hospitals with premature cardiovascular heart disease (CHD) diagnosis who 80 

also had elevated levels of total cholesterol (TC), triglycerides (TG) or both in the ≥ 81 

90th Finnish population percentile. Those families who had at least one additional first-82 

degree relative also affected with hyperlipidemia were also included in the study apart 83 

from individuals with elevated levels of TG. [19, 20, 21]. 84 

FINRISK cohort 85 

The imputation accuracy of the Finnish and previously published HapMap based 86 

recombination maps  [8, 9] was subsequently tested on an independent FINRISK 87 

CoreExome chip dataset consisting of 10,481 individuals derived from the national-88 

level FINRISK cohort. Primarily, it comprises of respondents of representative, cross-89 

sectional population surveys that are conducted once every 5 years since 1972 to get a 90 

national assessment of various risk factors of chronic diseases and other health 91 

behaviours among the working-age population drawn from 3 to 4 major cities in 92 

Finland  [22]. 93 

FINNISH reference panel cohort 94 
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The whole-genome sequenced samples used were obtained from PCR-free methods and 95 

PCR-amplified methods, which was followed by sequencing on a Illumina HiSeq X 96 

platform with a mean depth of ~30×. The obtained reads were then aligned to the 97 

GRCh37 (hg19) human reference genome assembly using BWA-MEM. Best practice 98 

guidelines from Genome Analysis Toolkit (GATK) were used to process the BAM files 99 

and variant calling. Several criteria were used in this stage for sample exclusion: 100 

relatedness (identity-by-descent (IBD) > 0.1), sex mismatches, among several others. 101 

Furthermore, samples were filtered based on other criteria such as: non-reference 102 

variants, singletons, heterozygous/homozygous variants ratio, insertion/deletion ratio 103 

for novel indels, insertion/deletion ratio for indels observed in dbSNP, and 104 

transition/transversion ratio. 105 

After this stage, some exclusion criteria were applied to set some variants as missing: 106 

GQ < 20, phred-scaled genotype likelihood of reference allele < 20 for heterozygous 107 

and homozygous variant calls, and allele balance <0.2 or >0.8 for heterozygous calls. A 108 

truth sensitivity percentage threshold of 99.8% for SNVs and of 99.9% for indels was 109 

used based on the GATK Variant Quality Score Recalibration (VQSR) to filter variants 110 

with, quality by depth (QoD) < 2 for SNVs and < 3 for indels, call rate < 90%, and 111 

Hardy-Weinberg equilibrium (HWE) p-value < 1×10-9. Some other variants like 112 

monomorphic, multi-allelic and low-complexity regions  [23] were further excluded.  113 

The final reference dataset used in this study for imputation consisted of high coverage 114 

(20-30x) whole-genome sequence-based reference panel of 2690 individuals from the 115 

SISu project (Sequencing Initiative Suomi, http://www.sisuproject.fi/,  [24]). 116 

2.2 Recombination map construction: 117 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 22, 2020. ; https://doi.org/10.1101/2020.05.20.106831doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.20.106831
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

 

Coalescent-based fine-scale recombination map construction  [8] is greatly eased by 118 

using trios which provide more accurate haplotype phasing resolution  [25]. Hence, we 119 

used trio data (n=55, 110 independent parents) from the Finnish Migraine Families 120 

Cohort described above. These were filtered primarily using VCFtools  [26] and custom 121 

R scripts. Firstly, sites were thinned with within 15bp of each other such that only one 122 

site remained followed by a filtering step of removing variants with a minor allele 123 

frequency of <5%  [27]. The resultant data were then phased using family-aware 124 

method of SHAPEIT  [28] using the standard HapMap recombination map  [8, 9], 125 

which was then split into segments of ~10000 SNPs with a 1000 SNP overhang on each 126 

side of the segments. LDhat version 2 was run for 107 iterations with a block penalty of 127 

5, every 5000 iterations of them of which the first 10% observations were discarded  [8, 128 

29]. The CEU based maps, used here for comparison, were obtained similarly using 129 

LDhat  [29]. 130 

However, LDHat is computationally intensive, and calculations suggest that the 1000 131 

Genomes OMNI data set  [30] would be too much computationally intensive to 132 

complete  [31], hence limiting the maximum number of haplotypes which could be 133 

used.  134 

To overcome this and make the recombination map independent of the underlying 135 

methodology, we used a machine learning method implemented in FastEPRR [31, 32]. 136 

It supports the use of larger sample sizes, than LDHat and the recombination estimates 137 

for sample sizes > 50, yields smaller variance than LDHat based estimates  [31]. The 138 

method was then applied to each autosome with overlapping sliding windows (i.e., 139 

window size, 50 kb and step length, 25 kb) under default settings for diploid organisms. 140 
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As seen in  [31] both methods produce similar estimates, with only variance of the 141 

estimate of mean being different.  142 

The output of LDHat and FastEPRR is in terms of population recombination rate (p) 143 

and to convert them into per-generational rate (r) used in phasing/imputation algorithms 144 

we used optimal effective population size values derived from our testing (as explained 145 

in the Supplementary Text). The estimates from LDHat and FastEPRR were then 146 

averaged, to obtain a new combined estimate with the lowest variance amongst all the 147 

three  [31].  148 

 2.3 Phasing and imputation accuracy 149 

To test whether the usage of different recombination maps affects the efficiency of 150 

haplotype phasing and imputation , we used the aforesaid Finnish genotype data to 151 

evaluate: (i) switch error rates across all chromosomes and (ii) imputation concordance 152 

rates for chromosome 20.  153 

2.3.1 Phasing Accuracy 154 

The gold standard method to estimate haplotype phasing accuracy is to count the 155 

number of switches (or recombination events) needed between the computationally 156 

phased dataset and the true haplotypes  [33].The number of such switches divided by 157 

the number of all possible switches is called switch error rate (SER).  158 

For testing the influence of recombination maps on phasing accuracy, we used three 159 

different recombination maps: HapMap, fine-scale Finnish recombination map and a 160 

constant background recombination rate (1cM/Mb), to phase the 55 offspring 161 

haplotypes without using any reference dataset. To check whether reference panels used 162 

during haplotype phasing made any impact on the switch error rates, we used the 163 
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Finnish SISU based reference (n=2690), to check whether the size of the reference 164 

panel made any impact on the results in phasing the offspring’s haplotypes (Figure 1).  165 

The SER in the offspring’s phased haplotypes were then calculated by determining the 166 

true offspring haplotypes using data from the parents (98 individuals) with a custom 167 

script [34]. 168 

2.3.2 Imputation Accuracy 169 

Imputation concordance was used as the metric for calculating the imputation accuracy. 170 

For this, we randomly masked FINRISK CoreExome chip data consisting of 10,480 171 

individuals [22] from chromosome 20. To test the role of reference panel size in 172 

influencing the imputation accuracy in conjunction with varying the population genetics 173 

parameters, we imputed the masked dataset with BEAGLE (Browning et al., 2016) 174 

using the Finnish reference panel (n = 2690). The concordance was then calculated 175 

between the imputed genotypes and the original masked variants. Masking was done by 176 

randomly removing ~10% of variants from the chip dataset.  177 

The influence of recombination maps on imputation accuracy was checked by 178 

calculating the concordance values between imputed and original variants, using the 179 

Finnish reference panel in various combinations of recombination maps (constant rate, 180 

HapMap, Finnish map) during the imputation (Figure 1).  181 

3. Results: 182 

3.1 Finnish recombination map and its comparison to the HapMap recombination 183 

map: 184 

The primary aim of our study was to derive a high-resolution genetic recombination 185 

map for Finland and use it for comparative tests in commonly used analyses like 186 

haplotype phasing and imputation. To derive a population-specific Finnish 187 
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recombination map, we used the high-coverage WGS data and an average of different 188 

estimation methods (LDHat and FastEPRR). We used the Ne value of 10,000 derived 189 

from our extensive testing of different Ne values (See supplementary text) to get the 190 

per-generation recombination rates. The average recombination rates of Finnish 191 

population isolate depicted 12-14% lower values (autosome-wide average 2.268±0.4209 192 

cM/Mb) for all chromosomes compared to CEU based maps (2.641±0.5032 cM/Mb) 193 

(Figure 2). 194 

These differences in average recombination rates are reflected in the correlation values 195 

across all chromosomes (Spearman’s ρ ~ 0.67 - 0.79) between the developed Finnish 196 

map and HapMap based one  (Figure 2). We also present a direct comparison between 197 

the two maps, of the recombination rates at 5Mb scales, which presents a similar visual 198 

pattern of rates across the genome (Supplementary Figure 1).  199 

3.2 Effects of the population-specific recombinations map on haplotype phasing  200 

Variation in population-specific recombination maps (and effective population sizes) 201 

can  affect the downstream genomic analyses like haplotype phasing and imputation.  202 

We tested the Finnish map, HapMap map and a constant recombination rate map 203 

(1cM/Mb) to understand the effects of population-specific maps on downstream 204 

genomic analyses. The phasing accuracy was tested under two different conditions: 205 

using no additional reference panel and using an population-specific . SISu v2 reference 206 

panel (n= 2690) in phasing. We observed that, on average, SER ranged between 1.8-207 

3.7% (Supplementary Figure 2) across the different chromosomes and recombination 208 

maps. We found statistically significant differences within both no-reference panel and 209 

the Finnish reference panel results (Kruskal Wallis, p-value = 5.3e-10 and 4.7e-10, 210 

respectively; Figure 3). The constant recombination map (1cM/Mb) had significantly 211 
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higher SER values when compared to the Finnish map or the HapMap map (Figure 3) 212 

both when no reference panels were used (p-value = 2.9e-11 and 2.6e-09, respectively) 213 

and when the Finnish reference panel was used (p-value = 2.9e-11 and 9.5e-13, 214 

respectively). The choice of recombination maps mattered more when no reference 215 

panel was used (p-value = 0.0046), however when using the Finnish reference panel, the 216 

difference in SER was statistically insignificant (p-value = 0.25).  217 

3.3 Effects of the population-specific recombinations map on genotype imputation  218 

Imputation accuracy was similarly tested using the reference panel under three different 219 

recombination map settings. We observed that when the imputation target dataset was 220 

phased and imputed using the Finnish reference panel (n=2690) irrespective of the 221 

population-specific recombination maps, it had a high imputation accuracy (overall 222 

concordance rate ~98%, Figure 4) across MAF bins (>0.1%). Though some differences 223 

in concordance rates are seen in for rare variants (MAF <0.1%). The concordance rate 224 

was lower when the test dataset was phased without reference panels (concordance rate 225 

72~77%, Figure 5).  226 

4. Discussion: 227 

Population isolates like Finland, have had a divergent demographic history as compared 228 

to the outbred European populations, with a less historic  migration, more fluctuating 229 

population sizes and higher incidences of bottleneck events and founder effects [35, 36] 230 

This unique demographic history then affects different population genetic parameters, 231 

like recombination rates [37]. It has been shown previously that using population-232 

specific genomic reference panels augmented the accuracy of imputation accuracy 233 

leading to better mapping of diseases specific variants in GWAS [12]. Since 234 

recombination rates (in the form of recombination maps), features in much of the 235 
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downstream genomic analyses’ methods like imputation and haplotype phasing [15, 236 

34], we wanted to study their effect on downstream analyses.  237 

Firstly, we characterised the Finnish recombination map using high-coverage (~30x) 238 

whole-genome sequencing (WGS) samples  from large SISu v2 reference panel 239 

(n=2690). Previously used recombination maps hail from the HapMap and 240 

1000Genomes projects which used sparse genotypic datasets or low-depth sequencing 241 

samples. This is a first attempt in creating a recombination map for Finland using 242 

population-specificWGS samples. We used two different methods in estimating the 243 

recombination rates, to achieve accurate estimates with lower variance [29,31]. In 244 

addition, we estimated effective population sizes using identity-by-descent (IBD) based 245 

methods [15] for both Finnish and CEU based datasets. The obtained recombination 246 

map was then used to test their role and importance in two selected downstream 247 

genomic analyses – haplotype phasing and imputation concordance. Since the 248 

recombination rate determination requires effective population size estimates, we also 249 

tested the role of varying effective population size on these two analyses (See 250 

Supplementary Text). The extensive testing of Ne yielded the estimate of 10,000 251 

originally derived theoretically [38] and most used commonly for humans fits quite 252 

rightly for the recombination map.  253 

The Finnish recombinational landscape when compared to the HapMap based map, 254 

showed, on average, a high degree of correlation across scales (10, 50kb and 5Mb), 255 

however, on average, Finnish recombination rates across chromosomes were found to 256 

be lower. Such moderate to high correlations (Figure 2) and similar recombinational 257 

landscape (Supplementary Figure 1) could be due to high sharing of recombinations in 258 

individuals from closely-related populations. The degree of dissimilarity in the 259 
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population-level differences between Finnish and mainland Europeans in terms of 260 

recombination rates could be due to population-specific demographic processes like 261 

founder effects, bottleneck events and migration [39], or chromatin structure PRDM9 262 

binding locations, for example [40]. And the broad similarity in terms of correlational 263 

structure seen here, reflects a shared ancestral origin of Finns and other mainland 264 

Europeans [41]. Other studies on population isolates like Iceland [9] have previously 265 

found a high degree of correlation with CEU based maps, albeit with substantial 266 

differences as seen here. Previous studies [42] have additionally explored the 267 

relationship between recombination rate differences between populations and allele 268 

frequency differences, with evidence suggesting that the differences between rates show 269 

the selection impact in the past 100,000 years since the out-of-Africa movement of 270 

humans.  271 

As seen in previous studies, much of the downstream genomic analyses like getting 272 

more refined GWAS hits or, accurate copy number variants (CNV) imputation, can be 273 

highly improved with the addition/use of population-specific datasets [12]. To test this 274 

in the context of population-specific recombination maps, we used them to test the 275 

haplotype phasing and imputation accuracy and observed that despite large differences 276 

in the effective population sizes between populations, it did not affect the tested metrics. 277 

One possible explanation for the insignificant effect seen here is that the role of 278 

parameters like effective population size and recombination maps is to scale over the 279 

haplotypes for efficient coverage of the whole genome. However, when sufficiently 280 

large, population-specific genomic reference panels are available with tens of thousands 281 

of haplotypic combinations, such scaling over for specific populations, does not  yield 282 

in substantial improvements. As we showed here, reference panel size could play an 283 
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important role in the downstream genomic analyses and in most cases, the current 284 

practice of using the standard HapMap recombination map can be reasonably used. 285 

Another point of interest here is that the use of different Ne parameters during 286 

phasing/imputation might be redundant as we observed no change in the accuracy of our 287 

estimates on varying the Ne parameters. Similarly, when using population-specific 288 

recombination maps, we did not find any tangible benefits in using them over the 289 

current standard maps based on the HapMap data.  290 

Our study suggests a couple of important points for future studies: (a) varying effective 291 

population size for downstream genomic analyses, such as phasing and imputation, 292 

might have a relatively small impact, and it might be better to use the default option of 293 

the particular software; (b) when available, it is beneficial to use a population-specific 294 

genomic reference panel as they increase the accuracy; (c) HapMap can be used for 295 

current downstream genomic analyses like haplotype phasing or genotype imputation in 296 

European-based populations. And, if need be, can be substituted for using population-297 

specific maps, as the accuracy rates are quite similar to the population-based maps.  298 

Though the sample used here is from a disease cohort but is nevertheless representative 299 

of Finland’s population and hence provides a reasonable recombination rate estimates. 300 

On the other hand, our reliance on disease cohorts could lead to minor variation in the 301 

resultant recombination. Though as we share a similar out-of-Africa origin, much of our 302 

history is shared and though biological differences in the recombinational landscape do 303 

exist between different populations, much of the downstream genomic analyses 304 

(haplotyping, imputation or, GWAS), might not be affected by recombination map or 305 

values of effective population size. 306 
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 440 

Figure 1: Flowchart overview of the analyses  and comparisons  performed. 441 

Figure 2: Average (± standard deviation) recombination rates of Finnish v/s CEU per 442 

autosome measured in cM/Mb and Correlation between Finnish and CEU 443 

recombination rates across all chromosomes. The comparisons are made for similar 444 

physical positions. 445 

Figure 3: Statistical comparison of Switch Error Rates across all autosomes calculated 446 

for all children in the trios using different recombination maps with respect to different 447 
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reference panel conditions (absent or present). The p-values are shown at the top of each 448 

panel from Kruskal Wallis ANOVA testing between panel groups and ones between 449 

boxplots for within-group comparisons. 450 

Figure 4: Comparison of Imputation Concordance across different Minor Allele 451 

Frequency (MAF) groups for a range of different recombination map combinations 452 

phased with NO reference panels 453 

Figure 5: Comparison of Imputation Concordance across different Minor Allele 454 

Frequency (MAF) groups for a range of different recombination map combinations 455 

phased with reference panels. 456 
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