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Abstract

Motivation: Protein fold recognition is a key step for template-based model-
ing approaches to protein structure prediction. Although closely related folds
can be easily identified by sequence homology search in sequence databases,
fold recognition is notoriously more difficult when it involves the identification
of distantly related homologues. Recent progress in residue-residue contact
and distance prediction opens up the possibility of improving fold recognition
by using structural information contained in predicted distance and contact
maps.
Results: Here we propose to use the congruence coefficient as a metric of sim-
ilarity between maps. We prove that this metric has several interesting math-
ematical properties which allow one to compute in polynomial time its exact
mean and variance over all possible (exponentially many) alignments between
two symmetric matrices, and assess the statistical significance of similarity be-
tween aligned maps. We perform fold recognition tests by recovering predicted
target contact/distance maps from the two most recent CASP editions and
over 27,000 non-homologous structural templates from the ECOD database.
On this large benchmark, we compare fold recognition performances of dif-
ferent alignment tools with their own similarity scores against those obtained
using the congruence coefficient. We show that the congruence coefficient over-
all improves fold recognition over other methods, proving its effectiveness as a
general similarity metric for protein map comparison.
Availability: The software CCpro is available as part of the Scratch suite
http://scratch.proteomics.ics.uci.edu/
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1 Introduction

Computational approaches for protein structure prediction generally follow
one of two broad strategies Kuhlman and Bradley (2019); Kryshtafovychet al.
(2019): template-free (or ab-initio) modeling and template-based modeling,
which uses known protein structures as templates for the structural model-
ing of the unknown protein structure. While closely related templates can
easily be detected by using protein sequence search methods, the detection of
distantly related templates needs more sophisticated fold recognition strate-
gies. Popular approaches make use of sequence profiles, predicted secondary
structure and solvent accessibility, and exploit diverse computational methods,
such as linear programming, dynamic programming, hidden Markov models,
as well as other machine learning methods Jones and Thompson (1993); Lemer
et al. (1995). However, despite considerable progress, remote homology detec-
tion remains a challenging problem.

The most recent Critical Assessment of Structure Prediction experiment
(CASP13) held in 2018 reported a dramatic improvement in protein structure
prediction for both template-free and template-based modeling Kryshtafovychet al.
(2019). This improvement has been driven primarily by the successful applica-
tions of deep-learning approaches Di Lena et al. (2012); Kandathil et al. (2019)
and direct coupling analysis De Juan et al. (2013) to predict intra-residues dis-
tances and contacts Hou et al. (2019); Zheng et al. (2019); Shrestha et al.
(2019); Senior et al. (2019); Xu and Wang (2019).

The recent progress in intra-residue distance and contact prediction opens
up the possibility to further improve fold recognition by database searches
using predicted distance/contact maps. This requires addressing two distinct
problems: i) developing efficient two-dimensional alignment procedures for
map comparison; ii) developing a good scoring function to measure the fitness
between target maps and templates.

In this work we deal explicitly with the second problem, and partially with
the first problem, by exploiting the congruence coefficient Burt (1948) as a
measure of similarity between aligned maps. The congruence coefficient bears
some similarity to the Pearson’s correlation coefficient, since its value lies in
the [−1, 1] interval and it is insensitive to multiplication (but not addition) by
a constant factor. However, unlike Pearson’s correlation coefficient, its normal-
ization factor is invariant with respect to any alignment between two maps,
which makes it particularly suitable as an objective function for alignment
procedures.

We prove some interesting statistical properties of the congruence coeffi-
cient, such as a measure of statistical significance and polynomial-time formu-
las for computing both the exact mean and variance of the coefficient over all
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possible (exponential number of) alignments between two symmetric matrices.
Such statistical properties are complementary. The statistical significance of
the congruence coefficient can be used to detect statistically significant similar-
ities between two aligned maps, which improves template ranking for predicted
target maps. Conversely, the mean and variance of the congruence coefficient
over all possible alignments can be used to compute the alignment Z-scores,
which give indications on the quality of the alignments.

We test the fold recognition performances of the congruence coefficient by
recovering predicted maps from the last two CASP editions and over 27,000
structural templates from the ECOD database Cheng et al. (2014) that do no
share sequence similarity with the CASP targets. In detail, for performance
assessment with predicted contact maps we use residue-residue predictions at
CASP12 and CASP13 and three contact map alignment software: AlEigen Di
Lena et al. (2010), EigenThreader Buchan and Jones (2017) and Map Align
Ovchinnikov et al. (2017). All three tools return an alignment between two
input maps together with a similarity score. Keeping fixed the alignments, we
compute the congruence coefficient between target and structural templates.
Performances have been then assessed by comparing fold recognition accuracy
with the congruence coefficient versus the original similarity score. A statistical
analysis of alignment quality is also provided in order to evaluate to which ex-
tend alignment quality affects fold recognition performances. Since there is no
CASP category for predicted distance maps and there are no standalone tools
for distance map alignment, we assess fold recognition accuracy by using reg-
ular protein structure predictions at CASP and structural alignment tools CE
Shindyalov and Bourne (1998) and TM-align Zhang and Skolnick (2005). In
this case, we recover predicted distance maps from predicted structures, use
the structural alignments to induce alignments between distance maps and
then compute the congruence coefficient between the aligned maps. Perfor-
mance assessment is achieved by comparison of fold recognition accuracy with
the congruence coefficient versus the specific structural alignment similarity
scores. Also in this case, alignment Z-scores are used to asses alignment qual-
ity and its impact on fold recognition performances. Although fold recognition
with distance maps recovered from structural predictions may appear artifi-
cial, it provides a fair evaluation of fold recognition by protein distance maps.
Overall our tests provide a benchmark to compare the congruence coefficient to
other structural alignment metrics, in both contact-based and distance-based
fold recognition.

As a general conclusion, fold recognition with predicted contact maps is sig-
nificantly improved by using the congruence coefficient score as a fitness func-
tion. In comparison to structural alignment metrics, the congruence coefficient
shows comparable or better fold recognition accuracy, proving its potential as
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general similarity metric for protein map comparisons.

2 Materials and methods

2.1 Congruence coefficient

2.1.1 Definition

The congruence coefficient was first introduced in Burt (1948), with the name
of unadjusted correlation, as a measure of similarity in factor analysis.

Definition 2.1. Let X,Y ∈ Rm×n be two real matrices. The congruence
coefficient between X,Y is defined by:

rc(X,Y ) =
tr(XY T )√

tr(XXT )tr(Y Y T )
(1)

The rc score is between -1 and +1, with rc = 1 representing the highest
degree of similarity. Although the congruence coefficient appears quite similar
to the Pearson’s correlation coefficient, the latter measures the deviations from
the mean whereas the congruence coefficient measures the deviations from zero.
Like the correlation coefficient, the congruence coefficient is insensitive to the
multiplication of the matrices X,Y by constant factors different from zero.
Unlike the correlation coefficient, it is sensitive to the addition of constant
factors.

Although the rc coefficient can be computed for non-square matrices, here
we focus on protein contact and distance maps, which are both represented by
square (symmetric) matrices. Typically, contact and distance maps of different
proteins have different sizes determined by the protein sequence lengths, thus
the rc coefficient between two contact/distance maps can be computed only
if an alignment between the two matrices is provided. Aligned matrices can
be simply obtained by introducing rows and (respective) columns of zeroes in
the original symmetric matrices, which correspond to gaps in the alignments.
Since zero (gap) rows/columns do not contribute in the trace of the products
in Equation (1), an equivalent and simpler formulation of the congruence coef-
ficient with respect to some alignment can be obtained by leaving unchanged
the X matrix and by removing all rows/columns in the Y matrix that match
a gap row/column in the aligned X matrix (Section 3, Suppl.) In this way, we
can just recode the Y matrix as follows.

Definition 2.2. A partial function α : {1, ..,m} → {1, .., n} is an alignment
if ∀i 6= j such that α(i) 6= ⊥ and α(j) 6= ⊥ then:
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α(i) < α(j) ⇐⇒ i < j

where α(i) = ⊥ means that α is not defined on i. Given a matrix Y ∈ Rn×n
and an alignment α : {1, ..,m} → {1, .., n}, we define the new matrix Y α ∈
Rm×m by:

Y α
ij =

{
Yα(i)α(j) if α(i) 6= ⊥ and α(j) 6= ⊥
0 otherwise

Now, let X ∈ Rm×m, Y ∈ Rn×n be two symmetric matrices and α : {1, ..,m} →
{1, .., n} an alignment. We define (Section 3, Suppl.) the congruence coefficient
with respect to the alignment α by

rαc (X,Y ) =
tr(XY α)√

tr(XX)tr(Y Y )
(2)

Note that, the normalization factor in Equation (2) is invariant with re-
spect to any possible alignment α. Such property does not hold for Pearson’s
correlation which measures the deviation from the mean value and is thus af-
fected by the number of zero rows and columns introduced in the alignment.
The alignment that maximizes the rc coefficient in Equation (2) is thus simply
the alignment that maximizes the trace of the product between the two aligned
matrices.

2.1.2 Statistical properties of the congruence coefficient

Here we show that the congruence coefficient has several desirable mathemat-
ical properties: its statistical significance can be rigorously assessed, and its
mean and variance can be estimated in polynomial time. The details of our
proofs are given in the Supplementary file.

Statistical hypothesis testing of the congruence coefficient between two
aligned maps, under the null hypothesis that the coefficient is zero, can be
reframed as a statistical hypothesis testing on the angle between two unitary
vectors on some N -dimensional unit sphere, under the null hypothesis that
the two vectors are orthogonal. The dimension N depends on the size and
topology of the two input matrices. The p-value can be then computed as the
ratio between the volume of the N -dimensional unit sphere and the volume
of the hyper-spherical cap Li (2011) identified by the angle between the two
unitary vectors. In summary, let X ∈ Rm×m and Y ∈ Rn×n be two symmetric
matrices with zero main diagonal, and α : {1, ..,m} → {1, .., n} an alignment.
Then (Section 6 in Suppl.) the right-tailed p-value of the congruence coefficient
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rαc (X,Y ) is given by:

Pr(rc > p | X) =


1

2
I1−p2

(
N + 1

2
,
1

2

)
p ≥ 0

1− 1

2
I1−p2

(
N + 1

2
,
1

2

)
p < 0

(3)

where I is the regularized incomplete beta function, p = rαc (X,Y ), and the de-
gree of freedom N is the number of non-zero elements in the upper (or lower)
triangular portion of X. Given any symmetric matrix X ∈ Rm×m, Equation
(3) gives the probability of uniformly sampling a random symmetric matrix
Y ′ ∈ Rm×m (with zero main diagonal), such that rαc (X,Y ′) > rαc (X,Y ). We
can symmetrically use Equation (3) with known Y , where the degree of freedom
N is the number of non-zero elements in the upper triangular portion of Y .
The condition of having zero- main-diagonal is necessary, and trivially satisfied
by distance maps, as well as contact maps (contacts between adjacent residues
are typically ignored). In database searches, we use Equation (3) to asses
whether two aligned matrices are significantly similar. That is, given a target
matrix X, a template matrix Y and an alignment α between X and Y , we
ignore template Y if Pr(rc > rαc (X,Y ) | X) ≥ t or Pr(rc > rαc (X,Y ) | Y ) ≥ t,
where t is the Bonferroni-corrected p-value cutoff 0.05.

The exact mean and variance of the rc score under all possible alignments
can be used to test the quality of a given alignment between two maps (i.e.
Z-score). Given two symmetric matrices X ∈ Rm×m and Y ∈ Rn×n, the ex-
pected value of the congruence coefficient between X and Y with respect to
all possible alignments α is given by (Section 4.2 in Suppl.):

E[rαc (X,Y )] =
tr(XE[Y α])√
tr(XX)tr(Y Y )

(4)

where E[Y α] ∈ Rm×m is the expectation matrix, that averages all Y α ∈ Rm×m
matrices. The expectation matrix can be computed from Y and m, without
the need of X. Equivalently, the variance of the congruence coefficient between
X and Y with respect to all possible alignments α is given by (Section 4.3 in
Suppl.):

V ar[rαc (X,Y )] =
tr((X ⊗X)V ar[Y α])

tr(XX)tr(Y Y )
(5)

where ⊗ is the Kronecker product and:

V ar[Y α] = E[Y α ⊗ Y α]− E[Y α]⊗ E[Y α] ∈ Rm2×m2
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Dataset #Targets (#FM) #RR Pred #REG Pred #ECOD templates

CASP12 34 (12) 1,109 2,567 27,677
CASP13 24 (9) 980 1,880 27,721

Table 1: Benchmark set statistics. #Targets: number of CASP targets with fold annotation. #FM: number of targets
containing FM domains. RR Pred: residue-residue contact predictions. REG Pred: regular structure predictions.
#ECOD templates: number of sequence homology-free ECOD templates

Method Avg Time CASP12 Avg Time CASP13

EigenThreader 41m 52m
AlEigen 2.8h 3.9h
Map Align 6d 8.7d
CE 4.7d 4.9d
TM-align 2.2h 2.2h

Table 2: Average running time per prediction. m=minutes, h=hours, d=days

is the variance-covariance matrix of random matrices Y α ∈ Rm×m. The
variance-covariance matrix can also be computed using only Y and m. The
computational time for the expectation matrix in Equation (4) is quadratic
in the product of the lenghts mn, which is reasonably fast for native con-
tact/distance maps. Instead, the computational time for the variance-covariance
matrix in (5) is quartic in mn, which is challenging for large matrices. How-
ever, an ad-hoc sampling of alignments (i.e. proportional to the fraction of
alignments of a given size) provides an almost exact estimation of the variance
(Section 7.3, Suppl.).

In addition, following the combinatorial approach described in Kazi-Aoualaet al.
(1995), we can derive closed expressions for the expectation and variance of
the congruence coefficient between two symmetric maps X and Y over all pos-
sible permutations of Y , and with respect to all possible alignments between
X and Y (Section 5, Suppl.). We tried to exploit permutation statistics as a
fast approach for approximating variance calculations over all possible align-
ments. However, tests on real protein contact/distance maps show that both
expectation and variance over permutations poorly approximate expectation
and variance over all possible alignments (Section 7.3, Suppl.). Thus the for-
mula obtained do not seem to have an immediate application in protein map
comparison, although they have intrinsic theoretical interest and may be useful
in other contexts.
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2.2 Template and Benchmark Data

Benchmark data sets were obtained from the CASP repository (Section 7.1 in
Suppl.). For contact-based fold recognition assessment, we selected all residue-
residue contact predictions submitted to the CASP12 and CASP13 experi-
ments. For distance-based fold recognition assessment, we decided to simulate
predicted distance maps by recovering them from the structural predictions
at CASP12 and CASP13. This was necessary since distance map predictions
were used as an intermediary step, rather than as a standalone problem, and
such predictions were not available. We considered only the CASP targets
for which the experimentally determined structure was available in the PDB
and the fold annotation was available in the ECOD classification Cheng et al.
(2014).

Template data were obtained from the ECOD database (Section 7.1 in
Suppl.). ECOD protein domains are classified with respect to four groups:
the F-group groups domains with significant sequence similarity; the T-group
groups domains with similar topological connections; the H-group groups do-
main that are considered homologous based on different attributes (e.g. func-
tional similarity, literature); and the X-group groups domains that are po-
tentially homologous although there is not yet adeguate evidence to support
their homology relationship. We downloaded the ECOD pre-filtered subset
at 40% sequence identity. In order to prevent any sequence homology bias in
our tests, we removed from the ECOD dataset all protein domains found by a
hmmsearch Eddy (2011) scan of the CASP12 and CASP13 targets against the
ECOD database. In order to identify a subset of hard targets, we matched the
FM (Free Modeling) domains of the CASP targets with the domains identified
in ECOD. Native contact and distance maps were extracted from the ECOD
pdb domain files.

The exact number of ECOD templates used in our experiments, as well as
the targets and FM targets in the two CASP benchmark datasets, are shown
in Table 1.

2.3 Benchmark tools

Contact Maps. We considered three contact map alignment tools for per-
formance comparison (Section 7.2 in Suppl.): AlEigen Di Lena et al. (2010),
EigenThreader Buchan and Jones (2017), and Map Align Ovchinnikov et al.
(2017). We used the three tools to first align target and template maps and
then to rank the templates: i) using the tool-specific scores; ii) using the con-
gruence coefficient with respect to the alignments returned by the tools.
Distance Maps. Unlike contact map alignment, the standalone distance
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map alignment problem has received little or no attention in the literature.
For this reason, for performance comparison, we decided to use two popular
structural alignments tools (Section 7.2 in Suppl.), CE Shindyalov and Bourne
(1998) and TM-Align Zhang and Skolnick (2005), and recover the distance map
alignments from the structural alignments computed by both tools. Also in
this case we rank the templates: i) using the tool-specific scores; ii) using the
congruence coefficient with respect to the alignments returned by the tools.

Our choice of alignment tools has been driven mainly by speed consider-
ations due to the very large number of comparison performed in our tests: a
total of 58M contact map comparisons, and 123M structure comparisons, per
method (see Table 1). The average running times of the benchmarked methods
are summarized in Table 2.

3 Results

3.1 Fold recognition with predicted contacts

For performance comparison, we search all residue-residue contact predictions
submitted at CASP for a single target against the ECOD templates. This
implies a maximum number of 38 predictions per target at CASP12 and 46
at CASP13, corresponding to the number of residue-residue prediction groups
in the two CASP editions. True Positive Rate (TPR) fold recognition perfor-
mances are assessed by selecting the top-1, top-5, top-10, and top-20 unique
templates identified by the search with multiple predicted maps. For each
top-k set, the TPR score is computed by counting the fraction of targets for
which at least one template with similar fold is in the top-k hits. We assess
the TPR performances separately for the four ECOD classes: Family Level
(F), Topology Level (T), Homology Level (H), and Possible Homology Level
(X). This implies that, for example, for TPR assessment at the Family Level
we consider only the CASP targets that have been annotated at the Family
Level in ECOD. The TPR performances on the CASP12 and CASP13 bench-
mark datasets, for the three map alignment tools AlEigen, EigenThreader, and
Map Align are summarized in Table 3. The table compares the performances
of the three tools with their specific scoring schemes against those obtained
using the congruence coefficient, indicated by AlEigen+rc, EigenThreader+rc,
and Map Align+rc, respectively.

Fold recognition performances with predicted contact maps are influenced
by three main factors: i) contact map prediction accuracy; ii) accurate align-
ments between target and templates; iii) proper scoring of the fitness between
target and templates. The influence of a good scoring function is particularly
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top-1 hit top-5 hits top-10 hits top-20 hits

Method Benchmark set F T H X F T H X F T H X F T H X

AlEigen CASP12 0.00 0.07 0.07 0.06 0.00 0.07 0.07 0.09 0.00 0.07 0.10 0.12 0.00 0.07 0.10 0.15
AlEigen+rc 0.25 0.29 0.37 0.38 0.25 0.39 0.43 0.47 0.25 0.39 0.47 0.56 0.25 0.54 0.57 0.62
EigenThreader 0.00 0.00 0.00 0.00 0.00 0.07 0.07 0.06 0.00 0.07 0.07 0.09 0.00 0.11 0.10 0.15
EigenThreader+rc 0.25 0.32 0.40 0.41 0.25 0.54 0.57 0.62 0.25 0.57 0.60 0.68 0.25 0.61 0.63 0.68
Map Align 0.00 0.07 0.07 0.06 0.00 0.07 0.07 0.06 0.00 0.07 0.10 0.12 0.00 0.07 0.10 0.15
Map Align+rc 0.25 0.57 0.60 0.65 0.25 0.61 0.63 0.65 0.25 0.68 0.70 0.71 0.25 0.71 0.73 0.74

AlEigen CASP13 0.00 0.15 0.23 0.25 0.00 0.25 0.32 0.38 0.00 0.25 0.32 0.42 0.00 0.25 0.32 0.42
AlEigen+rc 0.00 0.35 0.36 0.46 0.00 0.45 0.45 0.62 0.00 0.60 0.59 0.67 0.50 0.70 0.73 0.79
EigenThreader 0.00 0.10 0.09 0.12 0.00 0.15 0.18 0.25 0.00 0.15 0.18 0.29 0.00 0.20 0.23 0.33
EigenThreader+rc 0.00 0.50 0.50 0.58 0.00 0.70 0.68 0.71 0.00 0.80 0.77 0.79 0.00 0.80 0.77 0.83
Map Align 0.50 0.35 0.41 0.50 0.50 0.40 0.45 0.54 0.50 0.40 0.45 0.54 0.50 0.40 0.45 0.54
Map Align+rc 0.50 0.60 0.59 0.62 1.00 0.75 0.73 0.71 1.00 0.85 0.82 0.83 1.00 0.85 0.86 0.83

Table 3: Fold recognition performances with predicted contacts. True Positive Rate (TPR) fold recognition perfor-
mances on CASP12 and CASP13 benchmark sets. The TPR performances are assessed with respect to the top-1,
top-5, top10 and top-20 ranked hits. ECOD hierarchy: (F) Family Level (4 targets in CASP12, 2 targets in
CASP13), (T) Topology Level (28 targets in CASP12, 20 targets in CASP13), (H) Homology Level (30 targets in
CASP12, 22 targets in CASP13), (X) Possible Homology Level (34 targets in CASP12, 24 targets in CASP13). Eigen-
Threader, Map Align and AlEigen use their own scoring system EigenThreader+rc, Map Align+rc and AlEigen+rc
use statistically significant congruence coefficient. Best TPR performances per column on CASP12 and CASP13
benchmark sets are highlighted in bold.

CASP12 CASP13

Method T H X T H X

AlEigen 0.14 0.12 0.08 0.14 0.25 0.22
AlEigen+rc 0.14 0.25 0.33 0.43 0.38 0.56
EigenThreader 0.00 0.00 0.17 0.14 0.12 0.11
EigenThreader+rc 0.29 0.38 0.42 0.57 0.50 0.67
Map Align 0.14 0.12 0.08 0.14 0.25 0.22
Map Align+rc 0.43 0.50 0.42 0.57 0.62 0.56

Table 4: Fold recognition performances with predicted contacts on FM targets (top-20 hits). ECOD hierarchy: (T)
Topology Level (7 targets in both CASP12 and CASP13), (H) Homology Level (8 targets in both CASP12 and
CASP13), (X) Possible Homology Level (12 targets in CASP12, 9 targets in CASP13). Best TPR performances per
column are highlighted in bold

evident for fold recognition performances in the CASP12 benchmark set (see
Table 3), where the fold recognition precision is dramatically improved by the
usage of the congruence coefficient for fitness ranking. We remark that for
the computation of the rc coefficient we use the alignments returned by the
three packages, thus the low TPR performances of the three tools with their
specific fitness functions are not an immediate consequence of poor contact
map predictions or poor alignments. The improvement in fold recognition ac-
curacy with rc scoring can be observed also on the CASP13 benchmark set
(see Table 3). In this case, the improvement is still significant, although less
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Figure 1: Estimated ranking distribution of templates searched with pre-
dicted contacts. Comparison of the ranking distribution for templates related to
the target proteins in CASP12 and CASP13.
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pronounced, since all the three methods show overall better performances with
their own scoring functions in comparison to those achieved for CASP12. To
a large extent, this can be imputed to better contact predictions for CASP13,
which compensate for the lack of a good scoring function. In fact, if we restrict
our tests to contact predictions submitted only by the top ranked predictors
(using the official CASP rankings), we notice a general improvement in fold
recognition accuracy for all methods (Section 7.4.1, Suppl.). Interestingly, the
improvement is almost negligible or absent for rc ranking performances, which
indicates that the congruence coefficient can filter out most of the noisy simi-
larities. This is partially a consequence of the statistically significant p-value
cutoff applied to the rankings (Section 7.4.3, Suppl.).

For each CASP target in our benchmark set there is a highly variable
number of related (i.e. similar) templates in ECOD. In particular, the number
of related templates per target varies from 2 to 3540 for CASP12 targets, and
from 1 to 1512 for CASP13 targets. In Table 3 we assess fold recognition
performances by considering only the top-scored templates, but this does not
tell us how all the templates related to a given target are ranked during a
search. In Figure 1, we show the ranking distributions of all the templates
related to the CASP12 and CASP13 targets. The probability density functions
in Figure 1 are estimated from the observed rankings in our tests for both
CASP12 and CASP13 targets, using the density function available in R. It is
clear that the congruence coefficient shifts the ranking distribution of related
templates closer towards 1, uniformly for all methods. However, in Figure 1 we
can see that the peak of the rc-related distributions is around ranking position
607, which is still quite far from the top-20 interval considered in Table 3.

A more stringent analysis of the fold recognition performances can be done
on CASP targets that contain at least one FM (Free Modeling) domain. There
the fold recognition performances are assessed only for the FM domains of
such targets. The TPR performances are summarized in Table 4. We do not
consider fold recognition at the family level, since FM targets are classified as
completely new folds1. To improve readability, we show only the results for the
top-20 recovered templates (complete results in Section 7.4.1, Suppl). With
Map Align+rc we can exceed 40% fold recognition accuracy on FM targets
at the topology level for both CASP12 and CASP13. While leaving room
for improvements, such performance is still interesting. Recall that for both
CASP12 and CASP13, the ECOD database was pre-filtered by removing all
domains that share a significant sequence similarity with the CASP targets.

1For the sake of completeness, we report that two CASP12 targets have been annotated at the
Family level in ECOD. These two cases were ignored, not withstanding that no approach can detect
the templates related to such targets.
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Hence, although we do not have many FM targets in our benchmark sets, the
results in Table 4 suggest that contact prediction is at a sufficiently high level
of accuracy to improve fold recognition for distantly related homologs.

Finally, we look at the quality of the alignments provided by the three
methods. We measure the alignment quality through the Z-score of the con-
gruence coefficient between two aligned maps, where the mean and standard
deviation are computed over all possible alignments between the two maps.
The alignment quality measure is independent of the similarity between the
two maps being aligned: optimal alignments can be computed for two unre-
lated maps, and poor alignments can be computed for similar maps, which may
affect fold recognition performances. In Figure 2, we plot the Z-score distri-
bution of all the alignments between CASP12/CASP13 targets and templates
maps. The Z-scores are computed using the true mean of the congruence
coefficient over all possible alignments, and the sampled standard deviations
(Section 7.3, Suppl.). The Z-score distributions are computed separately for all
the alignments between a target map and all its related templates in ECOD,
and between a target map and all unrelated templates. First of all, in Figure 2
we can notice that, independently of the chosen method, the alignment Z-score
distribution is similar for related and unrelated templates. This indicates that
the alignment quality of each method is independent of the similarity between
the two input maps, i.e. on average one cannot expect to see better align-
ments for related maps than for unrelated maps. Overall, Map Align provides
better alignments that the two other methods. This is consistent with the
performances reported in Table 3, where Map Align, especially with the corre-
lation coefficient as its scoring function, achieves overall best fold recognition
accuracy. In contrast, EigenTHREADER provides on average lower quality
alignments. In particular, in a non-trivial number of cases the rc scores with
respect to the alignments computed by EigenTHREADER are lower that the
expected mean. However, EigenTHREADER’s fold recognition performances
are no dramatically affected when coupled with the congruence coefficient.
This is further evidence that the congruence coefficient provides an effective
measure of map similarity.

3.2 Fold recognition with predicted distances

For distance maps, we run tests similar to those performed with contact maps.
Here we use two structural alignment tools, CE and TM-Align. Also here we
compare the fold recognition capabilities of CE and TM-Align with their own
scoring schemes, CE’s Z-score and TM-score, respectively, against those ob-
tained by using the congruence coefficient, CE+rc and TM-Align+rc, respec-
tively. The goal of these tests is to show whether the congruence coefficient is
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top-1 hit top-5 hits top-10 hits top-20 hits

Method Benchmark set F T H X F T H X F T H X F T H X

CE CASP12 0.00 0.39 0.43 0.41 0.00 0.57 0.63 0.62 0.00 0.57 0.63 0.62 0.00 0.57 0.63 0.62
CE+rc 0.00 0.43 0.47 0.41 0.00 0.54 0.57 0.56 0.00 0.57 0.60 0.59 0.00 0.61 0.63 0.62
TM-Align 0.00 0.29 0.37 0.38 0.00 0.50 0.53 0.56 0.00 0.57 0.60 0.59 0.50 0.64 0.63 0.62
TM-Align+rc 0.00 0.39 0.47 0.41 0.25 0.50 0.57 0.53 0.25 0.61 0.63 0.59 0.50 0.61 0.63 0.59

CE CASP13 0.50 0.60 0.64 0.67 0.50 0.60 0.64 0.67 0.50 0.60 0.64 0.71 0.50 0.60 0.64 0.71
CE+rc 0.50 0.50 0.50 0.54 0.50 0.65 0.68 0.67 0.50 0.65 0.68 0.71 0.50 0.70 0.73 0.79
TM-Align 0.00 0.60 0.64 0.67 0.50 0.60 0.64 0.71 0.50 0.60 0.68 0.75 0.50 0.60 0.68 0.75
TM-Align+rc 0.50 0.50 0.50 0.54 0.50 0.70 0.73 0.71 0.50 0.70 0.73 0.75 0.50 0.85 0.86 0.83

Table 5: Fold recognition performances with predicted distances/structures. True Positive Rate (TPR) fold recogni-
tion performances on CASP12 and CASP13 benchmark sets. The TPR performances are assessed with respect to the
top-1, top-5, top10 and top-20 ranked hits. ECOD hierarchy: (F) Family Level (4 targets in CASP12, 2 targets
in CASP13), (T) Topology Level (28 targets in CASP12, 20 targets in CASP13), (H) Homology Level (30 targets
in CASP12, 22 targets in CASP13), (X) Possible Homology Level (34 targets in CASP12, 24 targets in CASP13).
CE and TM-Align use their own scoring system. CE+rc, and TM-Align+rc use statistically significant congruence
coefficient. Best TPR performances per column on CASP12 and CASP13 benchmark sets are highlighted in bold.

CASP12 CASP13

Method T H X T H X

CE 0.29 0.38 0.33 0.43 0.50 0.56
CE+rc 0.29 0.38 0.42 0.43 0.50 0.56
TM-Align 0.29 0.38 0.33 0.43 0.50 0.56
TM-Align+rc 0.29 0.38 0.33 0.43 0.50 0.56

Table 6: Fold recognition performances with predicted distances/structures on FM targets (top-20 hits). ECOD
hierarchy: (T) Topology Level (7 targets in both CASP12 and CASP13), (H) Homology Level (8 targets in both
CASP12 and CASP13), (X) Possible Homology Level (12 targets in CASP12, 9 targets in CASP13).

suitable also for distance map comparisons and thus for distance map-based
fold recognition. Furthermore, this provides a preliminary comparison between
contact-based versus distance-based fold recognition.

The true positive rate performances on the CASP12 and CASP13 sets are
summarized in Table 5, while performances on the FM targets are in Table
6 (Section 7.4.2, Suppl. for the complete table). Unlike the contact results,
in these tests fold recognition capabilities are mainly affected by the quality
of the predicted structures. In particular, the overall fold recognition perfor-
mance for CASP13 is better than for CASP12, a direct consequence of the
improvements in protein structure prediction reported at CASP13. Further-
more, the restriction to structural predictions by the top performing methods
only does improve fold recognition on CASP12, but not on CASP13 (Section
7.4.2, Suppl.).

In terms of fold recognition performances, the congruence coefficient is
comparable to TM-score and CE’s Z-score, two metrics adopted by CASP. In
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Figure 3: Estimated ranking distribution of templates searched with pre-
dicted structures/distances. Comparison of the ranking distribution for tem-
plates related to the target protein. Probability density function estimated from
observed rankings in CASP12 and CASP13 benchmark sets.

some cases, the congruence coefficient achieves slightly better accuracy, such
as on the CASP13 benchmark set for top-5 hits and above. However, we do
not observe a significantly strong differences between the TM-Align vs CE, and
TM-score/Z-score vs congruence coefficient, since no approach is overall better
than another in all cases. This is more evident in Figure 3, which shows that
the ranking distributions of related templates are practically undistinguishable
among all benchmarked approaches.

In Figure 4, we show the Z-scores distributions of the alignments provided
by CE and TM-Align. Unlike map alignment tools, structural alignment tools
tend to compute slightly better alignments between a target and its related
templates than against unrelated templates. However, not surprisingly, in
most of the cases the rc coefficients related to such alignments are lower than
the expected coefficient over all possible alignments. This is because CE and
TM-Align perform local alignments, while the maximum rc score between two
maps is achieved by performing a global alignment. Specific distance map
alignment tools may provide better global alignments and may further im-
prove fold recognition with predicted distances. Although most of the local
alignments computed by CE and TM-Align are not optimal global alignments,
the rc p-value is generally statistically significant, due to the large degree of
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Figure 4: Estimated Z-score distribution of distance map alignments. Com-
parison of the Z-score distribution for templates related and unrelated to the target
proteins in CASP12 and CASP13.

freedom associated with distance maps. Thus, unlike the case of contact-
based searches, the p-value cutoff for distance maps does not seem to improve
database searches.

Finally, distance-based fold recognition does not outperform contact-based
fold recognition. If anything, the converse is true when looking at Tables 4
and 6 summarizing fold recognition performances on FM targets. While the
limited number of targets in our benchmark sets does not allow one to draw
strong conclusions, these tests at least confirm that contact map comparison
is a valuable approach for detecting protein structure similarities.

4 Conclusion

We exploited the congruence coefficient as a measure for detecting map similar-
ities. We proved that the congruence coefficient has several important mathe-
matical properties allowing one to rigorously assess its statistical significance
and efficiently compute its average and standard deviation. We compared con-
tact map-based and distance map-based fold recognition performances of the
congruence coefficient against those of contact map alignment and structural
alignment tools. Overall, the congruence coefficient score improves the fold
recognition accuracy, particularly for contact-based fold recognition, proving
its effectiveness as a general similarity metric for protein map comparisons.
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Furthermore, contact-based fold recognition accuracy is comparable or better
than distance/structure-based fold recognition, suggesting its potential as a
general approach for improving the detection of protein structure similarities.
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