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Abstract. Understanding how certain brain regions relate to a spe-
cific neurological disorder or cognitive stimuli has been an important
area of neuroimaging research. We propose BrainGNN, a graph neural
network (GNN) framework to analyze functional magnetic resonance im-
ages (fMRI) and discover neurological biomarkers. In contrast to feedfor-
ward neural networks (FNN) and convolutional neural networks (CNN)
in traditional functional connectivity-based fMRI analysis methods, we
construct weighted graphs from fMRI and apply a GNN to fMRI brain
graphs. Considering the special property of brain graphs, we design novel
brain ROI-aware graph convolutional layers (Ra-GNN) that leverages
the topological and functional information of fMRI. Motivated by the
need for transparency in medical image analysis, our BrainGNN con-
tains ROI-selection pooling layers (R-pool) that highlight salient ROIs
(nodes in the graph), so that we can infer which ROIs are important
for prediction. Furthermore, we propose regularization terms - unit loss,
topK pooling (TPK) loss and group-level consistency (GLC) loss - on
pooling results to encourage reasonable ROI-selection and provide flex-
ibility to preserve either individual- or group-level patterns. We apply
the BrainGNN framework on two independent fMRI datasets: Autism
Spectral Disorder (ASD) fMRI dataset and Human Connectome Project
(HCP) 900 Subject Release. We investigate different choices of the hyper-
parameters and show that BrainGNN outperforms the alternative FNN,
CNN and GNN-based fMRI image analysis methods in terms of classifica-
tion accuracy. The obtained community clustering and salient ROI detec-
tion results show high correspondence with the previous neuroimaging-
derived evidence of biomarkers for ASD and specific task states decoded
in task-fMRI.
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1 Introduction1

The brain is an exceptionally complex system and understanding it’s functional2

organization is the goal of modern neuroscience. Using fMRI, large strides in3

understanding this organization have been made by modeling the brain as a4

graph—a mathematical construct describing the connections or interactions (i.e.5

edges) between different discrete objects (i.e. nodes). To create these graphs,6

nodes are defined as brain regions of interest (ROIs) and edges are defined as the7

functional connectivity between those ROIs, computed as the pairwise correla-8

tions of functional magnetic resonance imaging (fMRI) time series, as illustrated9

in Fig. 1. Traditional graph-based analyses for fMRI have focused on using graph10

theoretical metrics to summarize the functional connectivity for each node into11

a single number [46,23]. However, these methods do not consider higher-order12

interactions between ROIs, as these interactions cannot be preserved in a sin-13

gle number. Additionally, due to the high dimensionality of fMRI data, usually14

ROIs are clustered into highly connected communities to reduce dimensionality.15

Then, features are extracted from these smaller communities for further analysis16

[32,12]. For these two-stage methods, if the results from the first stage are not17

reliable, significant errors can be induced in the second stage.18

The past few years have seen the growing prevalence of the use of graph19

neural networks (GNN) for end-to-end graph learning applications. GNNs are20

the state-of-the-art deep learning methods for most graph-structured data anal-21

ysis problems. They combine node features, edge features, and graph structure22

by using a neural network to embed node information and pass information23

through edges in the graph. As such, they can be viewed as a generalization of24

the traditional convolutional neural networks (CNN) for images. Due to their25

high performance and interpretability, GNNs have been a widely applied graph26

analysis method. [26,25,50,28,51]. Most existing GNNs are built on graphs that27

do not have correspondence between the nodes of different instances, such as28

social networks and protein networks, limiting interpretability. These methods29

– including the current GNN methods for fMRI analysis – use the same ker-30

nel over different nodes, which implicitly assumes brain graphs are translation31

invariant. However, nodes in the same brain graph have distinct locations and32

unique identities. Thus, applying the same kernel over all nodes is problematic.33

In addition, few GNN studies have explored both individual-level and group-level34

explanations, which are critical in neuroimaging research.35

In this work, we propose a graph neural network-based framework for map-36

ping regional and cross-regional functional activation patterns for classification37

tasks, such as classifying neurodisorder patients versus healthy control subjects38

and performing cognitive task decoding. Our framework jointly learns ROI clus-39

tering and the downstream whole-brain fMRI analysis. This not only reduces pre-40

conceived errors, but also learns particular clustering patterns associated with41

the downstream tasks. Specifically, from estimated model parameters, we can42
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BrainGNN: Interpretable Brain Graph Neural Network for fMRI Analysis 3

retrieve ROI clustering patterns. Also, our GNN design facilitates model inter-43

pretability by regulating intermediate outputs with a novel loss term, which44

provides the flexibility to choose between individual-level and group-level expla-45

nations.46

Fig. 1: The overview of the pipeline. fMRI images are parcellated by an atlas and
transferred to graphs. Then, the graphs are sent to our proposed BrainGNN,
which gives the prediction of specific tasks. Jointly, BrainGNN selects salient
brain regions that are informative to the prediction task and clusters brain re-
gions into prediction-related communities.

2 Methods and Materials47

2.1 Preliminaries48

Notation and Problem Definition49

First we parcellate the brain into N regions of interest (ROIs) based on its T150

structural MRI. We define ROIs as graph nodes V = {v1, . . . , vN} and the nodes51

are preordered. As brain ROIs can be aligned by brain parcellation atlases based52

on their location in the structure space, we define the brain graphs as ordered53

aligned graphs. We define an undirected weighted graph as G = (V, E), where54

E is the edge set, i.e., a collection of (vi, vj) linking vertices from vi to vj . In55

our setting, G has an associated node feature set H = {h1, . . . ,hN}, where hi is56

the feature vector associated with node vi. For every edge connecting two nodes,57

(vi, vj) ∈ E , we have its strength eij ∈ R and eij > 0. We also define eij = 058

for (vi, vj) 6∈ E and therefore the adjacency matrix E = [eij ] ∈ RN×N is well59

defined.60

Architecture Overview61

Classification on graphs is achieved by first embedding node features into a low-62

dimensional space, then grouping nodes and summarizing them. The summarized63
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(a) BrainGNN Architecture

(b) Operations in Ra-GNN layer

(c) Operations in R-pool Layer

Fig. 2: (a) introduces the BrainGNN architecture that we propose in this work.
BrainGNN is composed of Ra-GNN and R-pool blocks. It takes graphs as inputs
and outputs graph-level predictions. (b) shows how the Ra-GNN layer embeds
node features. First, nodes are softly assigned to communities based on their
membership scores to the communities. Each community is associated with a
different basis vector. Each node is embedded by the particular basis vectors
based on the communities that it belongs to. Then, by aggregating a node’s own
embedding and its neighbors’ embedding, the updated representation is assigned
to each node on the graph. (c) shows how R-pool selects nodes to keep. First, all
the nodes’ representations are projected to a learnable vector. The nodes with
large projected values are retained with their corresponding connections.

vector is then fed into a classifier, such as a multilayer perceptron (MLP), poten-64

tially in an end-to-end fashion. Our proposed network architecture is illustrated65

in Figure 2a. It is formed by three different types of layers: graph convolutional66

layers, node pooling layers and a readout layer. Generally speaking, GNNs induc-67

tively learn a node representation by recursively transforming and aggregating68

the feature vectors of its neighboring nodes.69
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BrainGNN: Interpretable Brain Graph Neural Network for fMRI Analysis 5

A graph convolutional layer is used to probe the graph structure by using70

edge features, which contain important information about graphs. For example,71

the weights of the edges in brain fMRI graphs can represent the relationship72

between different ROIs.73

Following [39], we define h
(l)
i ∈ Rd(l)

as the features for the ith node in the74

lth layer, where d(l) is the dimension of the lth layer features. The propagation75

model for the forward-pass update of node representation is calculated as:76

h
(l)
i = σ

W (l−1)
0 h

(l−1)
i +

∑
j∈N (i)

φ
(
W

(l−1)
1 h

(l−1)
j , eij

) , (1)

where N (i) denotes the set of indices of neighboring nodes of node vi and eij77

denotes the features associated with the edge from vi to vj , W0,W1 denote the78

model’s parameters to be learned, and φ is any linear/nonlinear function that79

can be applied on the neighboring nodes’ feature embedding. σ is the activation80

function.81

A node pooling layer is used to reduce the size of the graph, either by82

grouping the nodes together or pruning the original graph G to a subgraph Gs83

by keeping some important nodes only. We will focus on the pruning method,84

as it is more interpretable and can help detect biomarkers.85

A readout layer is used to summarize the node feature vectors {h(l)
i } into a86

single vector z which is finally fed into a classifier for graph classification.87

2.2 Proposed Approach88

In this section, we provide insights and highlight the innovative design aspects89

of our proposed BrainGNN architecture.90

ROI-aware Graph Convolutional Layer91

Overview We propose an ROI-aware graph convolutional neural network (Ra-92

GNN) with two insights. First, when computing the node embedding, we allow93

Ra-GNN to learn different convolutional kernels conditioned on the ROI (geo-94

metric information of the brain), instead of using the same kernel W on all the95

nodes as it is shown in Eq. (1). Second, we include edge weights for message96

filtering, as the magnitude of edge weights presents the connection strength be-97

tween two ROIs. We assume more closely connected ROIs have higher impact.98

Design We begin by assuming the graphs have additional regional information99

and the nodes of the same region from different graphs have similar properties.100

We propose to encode the regional information to the embedding kernel function101

for the nodes. Given node i’s regional information ri, such as the node’s coor-102

dinates in a mesh graph, we propose to learn the vectorized embedding kernel103

vec(Wi) based on ri on the lth Ra-GNN:104

vec(W
(l)
i ) = fMLP (l)(ri) = Θ

(l)
2 relu(Θ

(l)
1 ri) + b(l), (2)
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where the MLP network with parameters {Θ(l)
1 , Θ

(l)
2 } maps ri to a d(l) · d(l−1)105

dimensional vector then reshapes the output to a d(l) × d(l−1) matrix W
(l)
i .106

Given a brain parcellated intoN ROIs, we order the ROIs in the same manner107

for all the brain graphs. Therefore, the nodes in the graphs of different subjects108

are aligned. However, the convolutional embedding should be independent of the109

ordering methods. Given an ROI ordering for all the graphs, we use one-hot en-110

coding to represent the ROI’s location information, instead of using coordinates,111

because the nodes in the brain are aligned well. Specifically, for node vi, its ROI112

representation ri is a N−dimensional vector with 1 in the ith entry and 0 for the113

other entries. Assume that Θ
(l)
1 = [α

(l)
1 , . . . ,α

(l)

N(l) ], where N (l) is the number of114

ROIs left on the lth layer, α
(l)
i = [α

(l)
i1 , . . . , α

(l)

iK(l) ]
T ∈ RK(l)

, ∀i ∈ {1, . . . , N (l)},115

where K(l) can be seen as the number of clustered communities for the N (l)
116

ROIs. Assume Θ
(l)
2 = [β

(l)
1 , . . . ,β

(l)

K(l) ] with β
(l)
j ∈ Rd(l)·d(l−1)

, ∀j ∈ {1, . . . ,K(l)}.117

Then Eq. (2) can be rewritten as118

vec(W
(l)
i ) =

K(l)∑
j=1

(α
(l)
ij )+β

(l)
j + b(l). (3)

We can view {β(l)
j : j = 1, . . . ,K(l)} as a basis and (α

(l)
ij )+ as the coordinates.119

From another perspective, (α
(l)
ij )+ can been seen as the non-negative assign-120

ment score of ROI i to community j. If we train different embedding kernels121

for different ROIs on lth Ra-GNN, the total parameters to be learned will be122

N (l)d(l)d(l−1). Usually we have K(l) � N (l). By Eq. (3), we can reduce the123

number of learnable parameters to K(l)d(l)d(l−1) + N (l)K(l) parameters, while124

still assigning a separate embedding kernel for each ROI. The ROIs in the same125

community will be embedded by the similar kernel so that nodes in different126

communities are embedded in different ways.127

As the graph convolution operations in [17], the node features will be multi-128

plied by the edge weights, so that neighbors connected with stronger edges have129

a larger influence. The GNN layer using ROI-aware kernels and edge weights for130

filtering can be written as:131

h
(l)
i = W

(l−1)
i h

(l−1)
i +

∑
j∈N (i)

ẽijW
(l−1)
j h

(l−1)
j , (4)

To avoid increasing the scale of output features, the edge features need to be132

normalized, as in GAT [43] and GNN [27]. Due to the aggregation mechanism,133

we normalize the weights by ẽij = eij/
∑

j∈N (i) eij .134

ROI-topK Pooling Layer135

Overview To perform graph-level classification, a layer for dimensionality re-136

duction is needed since the number of nodes and the feature dimension per node137

are both large. Recent findings have shown that some ROIs are more indicative138

of predicting neurological disorders than the others [22,2], suggesting that they139
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BrainGNN: Interpretable Brain Graph Neural Network for fMRI Analysis 7

should be kept in the dimensionality reduction step. Therefore the node (ROI)140

pooling layer (R-pool) is designed to keep the most indicative ROIs, thereby141

reducing dimensionality and removing noisy nodes.142

Design To make sure that down-sampling layers behave idiomatically with re-143

spect to different graph sizes and structures, we adopt the approach in [6,15] for144

reducing graph nodes. The choice of which nodes to drop is determined based145

on projecting the node attributes onto a learnable vector w(l−1) ∈ Rd(l−1)

. The146

nodes receiving lower scores will experience less feature retention. We denote147

H(l−1) = [h
(l−1)
1 , . . . ,h

(l−1)
N(l−1) ]

T , where N (l−1) is the number of nodes at the148

(l− 1)th layer. Fully written out, the operation of this pooling layer (computing149

a pooled graph, (V(l), E(l)), from an input graph, (V(l−1), E(l−1))), is expressed150

as follows:151

s(l−1) = H(l−1)w(l−1)/‖w(l−1)‖
s̃(l−1) = (s(l−1) − µ(s(l−1)))/σ(s(l−1))

i = topk(s̃(l−1), k)

H(l) = (H(l−1) � sigmoid(s̃(l−1)))i,:

E(l) = E
(l−1)
i,i .

(5)

Here ‖ · ‖ is the L2 norm, µ and σ take the input vector and output the mean152

and standard deviation of its elements. The notation topk finds the indices153

corresponding to the largest k elements in score vector s, � is (broadcasted)154

element-wise multiplication, and (·)i,j is an indexing operation which takes el-155

ements at row indices specified by i and column indices specified by j (colon156

denotes all indices). The pooling operation retains sparsity by requiring only a157

projection, a point-wise multiplication and a slicing into the original features158

and adjacency matrix. Different from [6], we induce the constraint ‖w(l)‖2 = 1159

implemented by adding an additional regularization loss
∑L

l=1(‖w(l)‖2 − 1)2 to160

avoid identifiability issues. In addition, we added element-wise score normaliza-161

tion s̃(l) = (s(l) − µ(s(l)))/σ(s(l)), which is important for calculating the GLC162

loss and TPK loss (introduced in Section 2.3).163

Readout Layer164

Lastly, we seek a “flattening” operation to preserve information about the input165

graph in a fixed-size representation. Concretely, to summarize the output graph166

of the lth conv-pool block, (V(l), E(l)), we use167

z(l) = meanH(l) ‖ maxH(l), (6)

where H(l) = {h(l)
i : i = 1, ..., N (l)}, mean and max operate elementwisely,168

and ‖ denotes concatenation. To retain information of a graph in a vector, we169

concatenate both mean and max summarization for a more informative graph-170

level representation. The final summary vector is obtained as the concatenation171

of all those summaries (i.e. z = z(1) ‖ z(2) ‖ · · · ‖ z(L)) and it is submitted to a172

MLP for obtaining final predictions.173
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2.3 Putting Layers Together and Loss Functions174

All in all, the architecture (as shown in Fig. 2a) consists of two kinds of layers.175

The input is the weighted graph with its node attributes constructed from fMRI.176

We form a two-layer GNN block starting with ROI-aware node embedding by177

the proposed Ra-GNN layer in Section 2.2, followed by the proposed R-pool178

layer in Section 2.2. The whole network sequentially concatenates these GNN179

blocks, and readout layers are added after each GNN block. The final summary180

vector concatenates all those summaries, and an MLP is applied after that to181

give final predictions. Now we describe the loss function for the neural network.182

The classification loss is the cross entropy loss:183

Lce = − 1

M

M∑
m=1

C∑
c=1

ym,c log(ŷm,c), (7)

where M is the number of instances, C is the number of classes, ymc is the184

ground truth label and ŷmc is the model output.185

We add several loss terms to regulate the learning process and control the186

interpretability. First, as we mentioned in Section 2.2, to avoid the problem of187

identifiability, we propose unit loss:188

L
(l)
unit = (‖w(l)‖2 − 1)2. (8)

Note that s̃(l) in Eq. (5) is computed from the input H(l). Therefore, for different189

inputs H(l), the selected entries of s̃(l) can be very different. For our application,190

we want to find the common patterns/biomarkers for a certain neuro-prediction191

task. Thus, we add regularization to force the s̃(l) vectors to be similar for differ-192

ent input instances after the first pooling layer and call it group-level consistency193

(GLC). We do not constrain GLC for the second pooling layer because the nodes194

after the first pooling layer in different graphs might be different.195

In each training batch, suppose there are M instances, which can be parti-196

tioned into C subsets based on the class labels, Ic = {m : m = 1, . . . ,M, ym,c =197

1}, for c = 1, . . . , C. And ym,c = 1 indicates the mth instance belonging to198

class c. We form the scoring matrix for the instances belonging to class c as199

S
(1)
c = [s̃

(1)
i : i ∈ Ic]T ∈ RMc×N , where Mc = |Ic|. The GLC loss can be200

expressed as:201

LGLC =
C∑

c=1

∑
i,j∈Ic

‖ s̃
(1)
i − s̃

(1)
j ‖2

=

C∑
c=1

{
2Tr((S(1)

c )TDcS
(1)
c )− 2Tr((S(1)

c )TWcS
(1)
c )
}

= 2
C∑

c=1

Tr((S(1)
c )TLcS

(1)
c ),

(9)
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BrainGNN: Interpretable Brain Graph Neural Network for fMRI Analysis 9

where Wc is a Mc×Mc matrix with all 1s, Dc is a Mc×Mc diagonal matrix with202

Mc as diagonal elements, and Lc = Dc−Wc is a symmetric positive semidefinite203

matrix [45].204

In addition, we hope the top k selected indicative ROIs should have signifi-205

cantly different scores than those of the unselected nodes. Ideally, the scores for206

the selected nodes should be close to 1 and the scores for the unselected nodes207

should be close to 0. To achieve this, we rank sigmoid(s̃
(l)
m ) for the mth instance208

in a descending order, denote it as ŝ
(l)
m = [ŝ

(l)
m,1, . . . , ŝ

(l)

m,N(l) ], and apply a con-209

straint to all the M training instances to make the values of ŝ
(l)
m more dispersed.210

We define TPK loss using binary cross-entropy as:211

L
(l)
TPK = − 1

M

M∑
m=1

1

N (l)

( k∑
i=1

log(ŝ
(l)
m,i)) +

N(l)−k∑
i=1

log(1− ŝ(l)m,i+k)
)
, (10)

We show the kernel density estimate plots of normalized node pooling scores212

(indication of the importance of the nodes) changing over the training epoch213

in Fig. 3 when k = 1
2N

(l). It is clear to see that the pooling scores are more214

dispersed over time, Hence the top 50% selected nodes have significantly higher215

importance scores than the unselected ones.

(a) The change of the distribution of node
pooling scores ŝ of the 1st R-pool layer
over 100 training epochs.

(b) The change of the distribution of node
pooling scores ŝ of the 2nd R-pool layer
over 100 training epochs.

Fig. 3: Effect of TopK pooling (TPK) loss. With the TPK loss regularization,
the node pooling scores of the selected nodes and those of the unselected nodes
become significantly separate.

216

217
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10 Li, X. et al

Finally, the final loss function is formed as:218

Ltotal = Lce +
L∑

l=1

λ
(l)
1 L

(l)
unit +

L∑
l=1

λ
(l)
2 L

(l)
TPK + λ3LGLC , (11)

where λ’s are tunable hyper-parameters, l indicates the lth GNN block and L219

is the total number of GNN blocks. GLC loss is only calculated based on the220

pooling scores of the first pooling layer.221

2.4 Interpretation from BrainGNN222

Community Detection from Convolutional Layers The important contri-223

bution of our proposed ROI-aware convolutional layer is the implied community224

clustering patterns in the graph. Discovering brain community patterns is crit-225

ical to understanding co-activation and interaction in the brain. Revisiting Eq.226

(3), α+
ij provides the membership of ROI i to community j. The community227

assignment is soft and overlaid. It is similar to tensor decomposition-based com-228

munity detection methods, such as PARAFAC [7], that decompose the tensor229

to discover overlapping functional brain networks. Parameter α+
i can be seen230

as the loading vector in PARAFAC that presents the membership of each node231

to a certain community. Hence, we consider region i belongs to community j232

if αij > µ(α+
i ) + σ(α+

i ) [29]. This gives us a collection of community indices233

indicating region membership {ij ⊂ {1, ..., N} : j = 1, ...,K}.234

Biomarker Detection from Pooling Layers Without the added TPK loss235

(Eq. (10)), the significance of the nodes left after pooling cannot be guaranteed.236

With TPK loss, pooling scores are more dispersed over time, hence the selected237

nodes have significantly higher importance scores than the unselected ones. The238

strength of the GLC loss controls the tradeoff between individual-level interpre-239

tation and group-level interpretation. On the one hand, for precision medicine,240

individual-level biomarkers are desired for planning targeted treatment. On the241

other hand, group-level biomarkers are essential for understanding the common242

characteristic patterns associated with the disease. We can tune the coefficient243

λ3 to control different levels of interpretation. Large λ3 encourages selecting244

similar nodes, while small λ3 allows various node selection results for different245

instances.246

2.5 Datasets247

Two independent datasets, the Biopoint Autism Study Dataset (Biopoint) [44]248

and the Human Connectome Project (HCP) 900 Subject Release [42], are used249

in this work. For the Biopoint dataset, the aim is to classify Autism Spectrum250

Disorder (ASD) and Healthy Control (HC). For the HCP dataset, the aim is251

to classify 7 task states - gambling, language, motor, relational, social, working252

memory (WM), emotion.253

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 17, 2020. ; https://doi.org/10.1101/2020.05.16.100057doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.16.100057


BrainGNN: Interpretable Brain Graph Neural Network for fMRI Analysis 11

Biopoint Dataset The Biopoint Autism Study Dataset [44] contains 72 ASD254

children and 43 age-matched (p > 0.124) and IQ-matched (p > 0.122) neurotyp-255

ical healthy controls (HCs). For the fMRI scans, subjects perform the ”biopoint”256

task, viewing point-light animations of coherent and scrambled biological motion257

in a block design [22] (24s per block).258

The fMRI data are preprocessed using FSL as follows: 1) motion correction259

using MCFLIRT, 2) interleaved slice timing correction, 3) BET brain extraction,260

4) spatial smoothing (FWHM=5mm), and 5) high-pass temporal filtering. The261

functional and anatomical data are registered to the MNI152 standard brain262

atlas [44] using FreeSurfer. The first few frames are discarded, resulting in 146263

frames for each fMRI sequence.264

The Desikan-Killiany [11] atlas is used to parcellate brain images into 84265

ROIs. The mean time series for each node is extracted from a random 1/3 of266

voxels in the ROI (given an atlas) by bootstrapping. We augment the data 30267

times, resulting in 2160 ASD graphs and 1290 HC graphs separately. Edges are268

defined by thresholding (top 10% positive) partial correlations to achieve sparse269

connections. For node attributes, we concatenate seven handcrafted features: the270

degree of node, the mean and standard deviation of the task-fMRI time series,271

General Linear Model (GLM) coefficients, and Pearson correlation coefficient to272

node 1 − 84. Pearson correlation and partial correlation are different measures273

of fMRI connectivity. We aggregate them by using one to build edge connec-274

tions and the other to build node features. For the GLM coefficients, they are275

the coefficients of the biological motion matrix, the coefficient of the scramble276

motion matrix, and the coefficients of the previous two matrices’ derivatives in277

the ”biopoint task”. Hence, node feature h
(0)
i ∈ R(7+84).278

HCP Dataset For this dataset, we restrict our analyses to those individuals279

who participated in all nine fMRI conditions (seven tasks, two rests) with full280

length of scan, whose mean frame-to-frame displacement is less than 0.1 mm281

and whose maximum frame-to-frame displacement is less than 0.15 mm (n=506;282

237 males; ages 22–37). This conservative threshold for exclusion due to motion283

is used to mitigate the substantial effects of motion on functional connectivity;284

only left-right (LR) phase encoding run data are considered.285

fMRI data were processed with standard methods (see [14] for more details)286

and parcellated into 268 nodes using a whole-brain, functional atlas defined in a287

separate sample (see [18] for more details). Task functional connectivity was cal-288

culated based on the raw task time series: the mean time series of each node pair289

were used to calculate the Pearson correlation and partial correlation. Matrices290

were generated for LR phase encoding runs in the HCP data, and these matrices291

were averaged for each condition, thus generating one 268×268 Pearson correla-292

tion connectivity matrix and partial correlation connectivity matrix per individ-293

ual per task condition. We define a weighted undirected graph with 268 nodes per294

individual per task condition resulting in 3542 graphs in total. The same graph295

construction method as for the Biopoint data was used: nodes represent parcel-296

lated brain regions, and edges are constructed by thresholding (top 10% positive)297
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partial correlation. For node attributes, we concatenate three handcrafted fea-298

tures: degree of node, mean and standard deviation of task-fMRI time series,299

and Pearson correlation coefficient to node 1− 268, as GLM parameters are not300

useful for task state classification. Hence, node feature h
(0)
i ∈ R(3+268).301

2.6 Implementation Details302

We trained and tested the algorithm on Pytorch in the Python environment303

using a NVIDIA Geforce GTX 1080Ti with 11GB GPU memory. The model304

architecture was implemented with 2 conv layers and 2 pooling layers as shown305

in Fig. 2a, with parameter N = 84,K(1) = K(2) = 8, d(0) = 91, d(1) = 16, d(2) =306

16, C = 2 for the Biopoint dataset and N = 268,K(1) = K(2) = 8, d(0) =307

271, d(1) = 32, d(2) = 32, C = 7 for HCP dataset. The pooling ratio is 0.5.308

λ
(1)
1 and λ

(2)
1 were fixed to 1. The motivation of K = 8 comes from the eight309

functional networks defined by Finn et al. [14].310

We will discuss the variation of λ
(1)
2 , λ

(2)
2 and λ3 in Section 3.1. We randomly311

split the data into five folds based on subjects, which means that the graphs312

from a single subject can only appear in either the training or testing dataset.313

Four folds were used as training data, and the left-out fold was used for testing.314

Adam was used as the optimizer. We trained BrainGNN for 100 iterations with315

an initial learning rate of 0.001 and annealed to half every 20 epochs. Each316

batch contained 400 graphs for Biopoint data and 100 graphs for HCP data.317

The weight decay parameter was 0.005.318

3 Results319

3.1 Ablation Study and Hyperparameter Discussion320

Ablation studies were performed to investigate the ROI-aware graph convolu-321

tional mechanism. We compared our proposed Ra-GNN layer with the strategy322

of directly learning embedding kernels W . We denoted the alternative strat-323

egy as ’GNN.’ We tuned the coefficients (λ
(1)
2 − λ

(2)
2 − λ3) in the loss function324

in Eq. (11). λ
(1)
2 and λ

(2)
2 encouraged more separable node importance scores325

for selected and unselected nodes after pooling. λ3 controlled the similarity of326

the nodes selected by different instances, which could control the level of in-327

terpretability between individual-level and group-level. Small λ3 would result328

in variant individual-specific patterns, while large λ3 would force the model to329

learn common group-level patterns. As task classification on HCP could achieve330

consistently high accuracy over the parameter variations, we only showed the331

results on the Biopoint dataset in Fig. 4 to better examine the effect of model332

variations.333

First, we investigated the effects of λ3 on the accuracy, as a suitable range334

of λ3 should be determined in order to not sacrifice model accuracy. In Fig. 4a,335

λ
(1)
2 and λ

(2)
2 were fixed to 0. We noticed that the results were stable to the336

variation of λ3 in the range 0 - 0.5. When λ3 = 1, the accuracy dropped. The337
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accuracy reached the peak when λ3 = 0.1. As the other deep learning models338

behaved, BrainGNN was overparameterized. Without regularization (λ3 = 0),339

the model was easier to overfit to the training set, while larger regularization340

on consistency might result in underfitting on the training set. Next, we fixed341

λ
(1)
2 = λ

(2)
2 = 0.1 and varied λ3 again. As the results presented in Fig. 4b, the342

accuracy dropped if we increased λ3 after 0.2, which followed the same trend343

in Fig. 4a. However, the accuracy under the setting of λ3 = 0 was better than344

that in Fig. 4a. Probably the λ2 terms worked as regularization and mitigated345

the overfitting issue. Then, we fixed λ3 = 0.1 and varied λ
(1)
2 and λ

(2)
2 from346

0− 0.5. As the results shown in Fig. 4c, when we increased λ
(1)
2 and λ

(2)
2 to 0.2,347

the accuracy slightly dropped, while the accuracy sharply dropped when they348

were increased to 0.5. For the following baseline comparison experiments, we set349

λ
(1)
2 − λ

(2)
2 − λ3 to be 0.1 − 0.1 − 0.1. As the results shown in Fig. 4, Ra-GNN350

overall outperformed the GNN strategy under all the parameter settings. The351

reason could be better node embedding from multiple embedding kernels in Ra-352

GNN, as the traditional GNN strategies treated ROIs (nodes) identically and353

used the same kernel for all the ROIs. Hence, we claim that Ra-GNN can better354

characterize the heterogeneous representations of brain ROIs.355

3.2 Comparison with Baseline Methods356

First, we compared our method with traditional machine learning (ML) methods357

for fMRI analysis, which took vectorized correlation matrices as inputs. The ML358

baseline methods included Random Forest (1000 trees), SVM (RBF kernel), and359

MLP (2 layers with 20 hidden nodes). Second, we compared our method with360

the state-of-the-art deep learning (DL) methods, including BrainNetCNN [24],361

and other GNN methods: 1) replace Ra-GNN layer with the graph convolutional362

layers in Li et al. [28], 2) GraphSAGE [19] and 3) GAT (1 head) [43]. It is worth363

noting that GraphSAGE [19] and GAT [43] did not take edge weights in the ag-364

gregation step of the graph convolutional operation. The inputs of BrainNetCNN365

were correlation matrices. We used the parameter settings indicated in the orig-366

inal paper [24]. The inputs of the alternative GNN methods were the same as367

the inputs of BrainGNN and the hyper-parameter settings for the graphconv,368

pooling and MLP layers were the same as BrainGNN. The comparison results369

are shown in Fig. 5370

Our BrainGNN outperformed alternative models. The improvement may re-371

sult from two causes. First, due to the intrinsic complexity of fMRI, complex372

models with more parameters are desired, which also explains why CNN and373

GNN-based methods were better than SVM and random forest. Second, our374

model utilized the properties of fMRI and community structure in the brain net-375

work and thus potentially modeled the local integration more effectively. Com-376

pared to alternative machine learning models, BrainGNN achieved significantly377

better classification results on two independent task-fMRI datasets. What is378

more, BrainGNN does not have the burden of feature selection, which is needed379

in traditional machine learning methods. Also, BrainGNN needs only 10− 30%380

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 17, 2020. ; https://doi.org/10.1101/2020.05.16.100057doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.16.100057


14 Li, X. et al

(a) Variation on group-level consistency (GLC) loss coeffi-

cient λ3, when setting λ
(1)
2 = λ

(2)
2 = 0

(b) Variation on group-level consistency (GLC) loss coeffi-

cient λ3, when setting λ
(1)
2 = λ

(2)
2 = 0.1

(c) Variation on topK pooling (TPK) loss coefficient λ
(1)
2 and

λ
(2)
2 (λ

(1)
2 = λ

(2)
2 ), when setting λ3 = 0.1

Fig. 4: Ablation study comparison of ROI-aware GNN (Ra-GNN) and GNN with-
out ROI embedding (GNN).
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(a) Biopoint

(b) HCP

Fig. 5: Comparison of the classification accuracy of different baseline models.
Classification accuracies of a 5-fold cross-validation study are depicted. The num-
ber of trainable parameters (]Par) of the deep learning models are denoted on
the top of each model in red.
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of the number of parameters compared to MLP and less than 3% of the number381

of parameters compared to BrainNetCNN. Hence, BrainGNN is more suitable382

as a deep learning tool for fMRI analysis, as sample size is often limited.383

3.3 Different Levels of Interpretation On Salient ROIs384

Our proposed R-pool can prune the uninformative nodes and their connections385

from the brain graph based on the learning tasks. In other words, only the386

salient nodes would be kept/selected. We investigated how to control the level387

of interpretation by tuning the coefficient λ3 that was associated with GLC loss.388

As we discussed in Section 2.4, large λ3 led to group-level interpretation and389

small λ3 led to individual-level interpretation. As we discussed in Section 3.1,390

when λ3 is too large, the regularization might hurt the model accuracy. We391

put forth the hypothesis that reliable interpretation can only be guaranteed in392

terms of a model with high classification accuracy. Hence, the interpretation was393

restricted to models with fixed λ
(1)
2 , λ

(2)
2 and varying λ3 from 0 to 0.5 based on394

our experiments in Section 3.1. Without losing the generalizability, we showed395

the salient ROI detection results of 3 randomly selected ASD instances from396

the Biopoint dataset in Fig. 6. We showed the remaining 21 ROIs after the397

2nd R-pool layer (with pooling ratio = 0.5, 25% nodes left) and corresponding398

pooling scores. As shown in Fig. 6(a), when λ3 = 0, overlapped areas among399

the three instances were rarely to be found. In Fig. 6(b-c), we circled the big400

overlapped areas across the three instances. By visually examining the salient401

ROIs, we found three overlapped areas in Fig. 6(b) and five overlapped areas402

in Fig. 6(c). As proposed in Section 2.4, by tuning λ3, BrainGNN could achieve403

different levels of interpretation.404

3.4 Validating Salient ROIs405

To summarize the salient ROIs over the five cross-validation folds, we averaged406

the node pooling scores after the 1st R-pool layer for all subjects across all407

folds per class. The top 20 salient ROIs were kept. We did not interpret the408

model from the 2nd R-pool layer as we did in Section 3.3, because the nodes409

left after the 1st R-pool layer may not be the same for different graphs. There-410

fore, it was infeasible to average the pooling scores without padding 0 scores to411

the unselected nodes. To validate the neurological significance of the result, we412

used Neurosynth [52], a platform for fMRI data analysis. Neurosynth collects413

thousands of neuroscience publications and provides meta-analysis, finding the414

keywords and their associated statistical images. The decoding function on the415

platform calculates the correlation between the input image and each functional416

keyword’s meta-analysis images.417

In Fig. 7(a-b), we displayed the salient ROIs associated with HC and ASD418

separately. Putamen, thalamus, temporal gyrus and insular, occipital lobe were419

selected for HC; frontal gyrus, temporal lobe, cingulate gyrus, occipital pole, and420

angular gyrus were selected for ASD. Hippocampus and temporal pole were im-421

portant for both groups. The bar-chart in Fig. 7(c) illustrated the meta-analysis422
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Fig. 6: The 21 selected salient ROIs of three different ASD individuals with
different weights λ3 associated with group-level consistency term LGLC . The
color bar ranges from 0.1 to 1. The bright-yellow color indicates a high score,
while dark-red color indicates a low score. The common detected salient ROIs
across different individuals are circled in blue.

on the functional keywords implied by the top 21 salient regions in HC and423

ASD groups using Neurosynth. We selected ‘semantic’, ‘comprehension’, ‘so-424

cial’, ‘memory’, ‘navigating’, ‘default’ and ‘visual’ as the functional keywords,425

which were related to the Biopoint task [44]. We named the selected ROIs as the426

biomarkers for identifying each group. Recall that these topics reflected unbiased427

and aggregated findings across the fMRI literature. The functional dimensions428

in Fig. 7(c) exposed a clear functional distinction between the two groups in task429

fMRI decoding results. A higher value indicated a larger correlation to the func-430

tional keywords. Specifically, the biomarkers for HC corresponded to the areas of431
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(a) Salient ROIs associated with HC. (b) Salient ROIs associated with ASD

(c) Functional keywords decoding.

Fig. 7: Interpreting salient ROIs for classifying HC vs. ASD using BrainGNN
(a-b) and decoding correlation scores of ROIs associated with the functional
keywords using Neurosynth (c).
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(a) Gambling (b) Language (c) Motor

(d) Relational (e) Social (f) WM

(g) Emotion (h) Functional keywords decoding

Fig. 8: Interpreting salient ROIs associated with classifying seven tasks (a-g) and
decoding their correlation scores associated with the functional keywords using
NeuroSynth (h). ‘SELF’ indicates the correlation score to the fMRI’s real task
category, and ’AVG(Others)’ indicates the average of the scores to the other task
categories.

clear deficit in ASD, such as social communication, perception, and execution. In432

contrast, the biomarkers of ASD mapped to implicated activation-exhibited areas433

in ASD: default mode network [5] and memory [4]. This conclusion is consistent434

both with behavioral observations when administering the fMRI paradigm and435

with a prevailing theory that ASD includes areas of cognitive strengths amidst436

the social deficits [37,41,21].437

In Fig. 8(a-g), we listed the salient ROIs associated with the seven tasks for438

the HCP dataset. We selected ‘gambling’, ‘language’, ‘motor’, ‘relational’, ‘so-439

cial’, ‘working memory’ (WM) and ‘emotion’ as the functional keywords, which440
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were exactly the functional design of the 7 tasks. The bar-chart in Fig. 8 (h) il-441

lustrated the meta-analysis on functional keywords implied by the top 21 salient442

regions corresponding to the seven tasks using Neurosynth. In all the seven tasks,443

salient ROIs corresponding to each task had higher Neurosynth score than the444

average of other tasks. The finding suggests that our algorithm identified ROIs445

that are key to distinguish between the 7 tasks. For example, the anterior tempo-446

ral lobe and temporal parietal regions are selected for the social task, which are447

typically associated with social cognition [31,38]. Our findings also have overlaps448

with the task decoding results in recent works [47].449

3.5 Node Clustering Patterns in Ra-GNN layer450

(a) Biopoint

(b) HCP

Fig. 9: ROI clustering learned from θ1 parameter from Ra-GNN layer. Different
colors denote different communities.

We clustered all the ROIs based on the kernel parameter α+
ij (learned in Eq.451

(3)) of the 1st Ra-GNN layer and showed the node clustering results for Biopoint452

and HCP data in Fig. 9a and Fig. 9b respectively. We used t-SNE [30] to visual-453

ize the raw node features of ASD in each community in Fig. 10a and their latent454

space embedded by the first Ra-GNN layer in Fig. 10b. The node representa-455

tions in different communities were distinguishable, and the difference of node456

representations within the same community were magnified, which corroborated457

our assumption in Section 2.2 that different kernels accentuated diversified node458

representations in different communities. Similar patterns were observed in the459

HCP dataset.460
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(a) Node feature embedding for raw
node representation h(0).

(b) Node feature embedding for node
representation h(1) after the 1st Ra-
GNN layer.

Fig. 10: t-SNE embedding for node features of ASD group in different communi-
ties, each color indicates a community. Before Ra-GNN layer, the node features
are not distinguishable, while the nodes in different communities are more dis-
tinguishable after convolution by the Ra-GNN layer. Also, the spurting pattern
in (b) demonstrates that the nodes in the same community have different rep-
resentation that are more distinguishable from the other communities.

4 Discussion461

In this paper, we propose a graph learning model, BrainGNN, for brain network462

analysis, that not only can perform prediction but also can be interpretable.463

We tested the algorithms on two datasets, Biopoint and HCP, to classify brain464

networks. Our main contributions are summarized as follows: 1) We formulate465

an end-to-end framework for fMRI prediction and biomarker interpretation. The466

methods can be generalized to general neuroimaging analysis; 2) We propose an467

ROI-aware GNN for brain graph node (ROI) embedding, which is parameter-468

efficient (Section 2.2) and interpretable for node clustering. Unlike other fMRI469

analysis methods that employ clustering as a preprocessing step to reorder nodes,470

BrainGNN learns the node grouping and extracts graph features jointly; 3) We471

modify topK pooling [15] for informative node selection and introduce a novel472

regularization term, topK pooling (TPK) loss (Section 2.3), to encourage more473

reasonable node selection; 4) By regulating intermediate outputs with a novel474

loss term, group-level consistency (GLC) loss, BrainGNN provides the flexibility475

to choose between individual-level and group-level explanations. To the best of476

our knowledge, we have not seen any previous research that provides flexible477

individual-level to group-level interpretation in GNN (Section 3.3).478

4.1 Deep Learning Methods for fMRI Prediction479

Deep learning is a promising data-driven tool to automatically learn complex480

feature representations in large data. Several deep learning approaches exist to481
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understand the human brain network [13,36,49]. A variety of deep methods have482

been applied to fMRI connectome data, such as the feedforward neural net-483

works (FNN) [34], long short-term memory (LSTM) recurrent neural networks484

[9], and 2D convolutional neural networks (CNN) [24]. However, these exist-485

ing deep learning methods for fMRI analysis usually require around millions of486

parameters to learn due to the high dimensionality of fMRI connectome, thus487

larger datasets are required to train the models. Compared with the above men-488

tioned deep learning methods, GNNs require many fewer parameters and are489

designed for graph-structured data analysis. Hammond et al. [20] proposed a490

spectral graph convolution which defines convolution for graphs in the spectral491

domain. Later, Defferrard et al. [10] simplified spectral graph convolution to a492

local form and Kipf et al. introduced the Graph Convolutional Neural Network493

(GCN) [27] which provided an approximated fast computation. Hamilton et al.494

[19] proposed another variant of graph convolution in the spatial domain that495

improves GCN’s scalability by using sampling-based neighborhood aggregation496

and applies GCN to inductive node embedding. Different from the GNN methods497

mentioned above, our proposed BrainGNN includes novel ROI-aware Ra-GNN498

layers that efficiently assign each ROI an unique kernel, revealing ROI commu-499

nity patterns and novel regulation terms (unit loss, GLC loss and TPK loss)500

for pooling operation that regulate the model to select salient ROIs. BrainGNN501

shows superior prediction accuracy for ASD classification and brain states de-502

coding compared to the alternative machine learning, FCN, CNN and GNN503

methods. As it is shown in Fig 5), BrainGNN improves average accuracy be-504

tween 3% and 20% for ASD classification on Biopoint dataset and achieves an505

average accuracy of 93.4% on a seven-class task states classification on HCP506

dataset.507

4.2 Group-level and Individual-level Biomarker Analysis508

Despite the high accuracy achieved by deep learning models, a natural ques-509

tion that arises is if the decision making process in deep learning models can510

be interpretable. One common property of linear regression and random forest511

is their interpretability of feature importance. For example, the coefficient of512

linear regression model and the Gini impurity gain associated with each feature513

in random forest can be seen as the importance scores of features. Data fea-514

ture importance estimation is an important approach to understand both the515

model and the underlying properties of data. From the brain biomarker detec-516

tion perspective, understanding salient ROIs associated with the prediction is517

an important approach to find the biomarkers, where the indicative ROIs could518

be candidate biomarkers.519

Although deep learning model visualization techniques have been developed520

for convolution neural networks (CNNs), those methods are not directly appli-521

cable to explain weighted graphs with node features for the graph classification522

task. A few works [26,50,51] have discussed interpretable GNN models, where523

the internal model information such as weights or structural information can be524

accessed and inferred as group-level patterns for training instances only. Other525
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works have been used for explaining GNNs using post-hoc interpretation meth-526

ods [35,3,53]. These post-hoc methods usually work by analyzing individual fea-527

ture input and output pairs, which limits their explainability to individual-level528

only. Few GNN studies have explored both individual-level and group-level ex-529

planations, which are critical in neuroimaging research.530

Here, we use model interpretability to address the issue of group-level and531

individual-level biomarker analysis. In contrast, without additional post-processing532

steps, the existing methods of fMRI analysis can only either perform individual-533

level or group-level functional biomarker detection. For example, general linear534

model (GLM), principal component analysis (PCA) and independent component535

analysis (ICA) are group-based analysis methods. Some deterministic models536

like connectome-based predictive modeling (CPM) [40,16] and other machine537

learning based methods provide individual level-analysis. However, the model538

flexibility for different-levels of biomarkers analysis might be required by dif-539

ferent users. For precision medicine, individual-level biomarkers are desired for540

planning targeted treatment, whereas group-level biomarkers are essential for541

understanding the common characteristic patterns associated with the disease.542

To fill the gap between group-level and individual-level biomarker analysis, we543

introduce a tunable regularization term for our graph pooling function. By ex-544

amining the pairs of inputs and intermediate outputs from the pooling layer,545

our method can switch freely between individual-level and group-level explana-546

tion under the control of the regularization term by end-to-end training. A large547

regularization parameter encourages interpreting common biomarkers for all the548

instances, while a small regularization parameter allows different interpretation549

for different instances.550

We believe that BrainGNN is the first work that uses a single framework551

to transition between individual- and group-level analysis, filling the critical552

interpretation gap in fMRI analysis. The biomarker interpretation results can553

further help research in ASD and possibly generalize to rare diseases where there554

are few patients available, as it provides individual- to group-level biomarker555

associations.556

4.3 BrainGNN as A Tool for Neuroimaging Analysis557

Our proposed BrainGNN can be a research tool to identify autism biomarkers558

using whole-brain fMRI. Our proposed method will help support efforts to better559

understand the neural underpinnings of ASD, which is much needed in the field.560

A more precise understanding of the neural underpinnings will guide treatment561

approaches and help with the development of novel treatments, particularly in-562

novative pharmacological interventions. It will also support the classification of563

subjects in research towards more homogeneous samples, which will increase564

power. The proposed method also provides researchers with the opportunity to565

study neural network decisions. The challenge in applying deep models to neu-566

roimaging research is the black box feature of this approach: no one knows what567

the deep network is doing. Our proposed method is not only helpful for under-568

standing the model mechanism, but also crucial for deciphering the human brain569
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network. The highly accurate results can furthermore help with classification and570

diagnosis of neuropsychiatric diseases [33].571

4.4 Limitation and Future Work572

The pre-processing procedure performed in Section 2.5 was one possible way of573

obtaining graphs from fMRI data, as demonstrated in this work. One meaning-574

ful next step is to use more powerful local feature extractors to summarize ROI575

information, such as embedding raw fMRI time series. A joint end-to-end train-576

ing procedure that dynamically extracts graph node features from fMRI data577

is challenging, but an interesting direction. Also, in the current work, we only578

tried a single atlas for each dataset. In brain analysis, the reproducibility and579

consistency of the methods are important [48,1]. For ROI-based analysis, usu-580

ally different atlases lead to different results [8]. It is worth further investigating581

whether the classification and interpretation results are robust to the choice of582

the atlas. Although we discussed a few variations of hyperparameters in Sec-583

tion 3.1, more variations should be studied, such as pooling ratio, the number584

of communities, the number of convolutional layers, and different readout op-585

erations. In future work, we will explore the connections between the Ra-GNN586

layer and the tensor decomposition-based clustering methods and the patterns587

of ROI selection and ROI clustering. For better understanding of the algorithm,588

we aim to work on quantitative evaluations and theoretical studies to explain589

the experimental results.590

5 Conclusions591

In this paper, we propose BrainGNN, an interpretable graph neural network for592

fMRI analysis. BrainGNN takes graphs built from neuroimages as inputs, and593

then outputs prediction results together with interpretation results. We applied594

BrainGNN on Biopoint and HCP fMRI datasets. With the built-in interpretabil-595

ity, BrainGNN not only performs better on prediction than alternative methods,596

but also detects salient brain regions associated with predictions and discovers597

brain community patterns. Overall, our model shows superiority over alternative598

graph learning and machine learning classification models. By investigating the599

selected ROIs after R-pool layers, our study reveals the salient ROIs to identify600

autistic disorders from healthy controls and decodes the salient ROIs associated601

with certain task stimuli. Certainly, our framework is generalizable to analysis of602

other neuroimaging modalities. The advantages are essential for developing pre-603

cision medicine, understanding neurological disorders, and ultimately benefiting604

neuroimaging research.605
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