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Abstract
Microbial community members exhibit various forms of interactions. Taking advantage
of the increasing availability of microbiome data, many computational approaches have
been developed to infer bacterial interactions from the co-occurrence of microbes across
diverse microbial communities. Additionally, the introduction of genome-scale metabolic
models have also enabled the inference of metabolic interactions, such as competition
and cooperation, between bacterial species. By nature, phylogenetically similar
microbial species are likely to share common functional profiles or biological pathways
due to their genomics similarity. Without properly factoring out the phylogenetic
relationship, any estimation of the competition and cooperation based on
functional/pathway profiles may bias downstream applications.

To address these challenges, we developed a novel approach for estimating the
competition and complementarity indices for a pair of microbial species, adjusted by
their phylogenetic distance. An automated pipeline, PhyloMint, was implemented to
construct competition and complementarity indices from genome scale metabolic models
derived from microbial genomes. Application of our pipeline to 2,815 human-gut
bacteria showed high correlation between phylogenetic distance and metabolic
competition/cooperation indices among bacteria. Using a discretization approach, we
were able to detect pairs of bacterial species with cooperation scores significantly higher
than the average pairs of bacterial species with similar phylogenetic distances. A
network community analysis of high metabolic cooperation but low competition reveals
distinct modules of bacterial interactions. Our results suggest that niche differentiation
plays a dominant role in microbial interactions, while habitat filtering also plays a role
among certain clades of bacterial species.

Author summary
Microbial communities, also known as microbiomes, are formed through the interactions
of various microbial species. Utilizing genomic sequencing, it is possible to infer the
compositional make-up of communities as well as predict their metabolic interactions.
However, because some species are more similarly related to each other, while others are
more distantly related, one cannot directly compare metabolic relationships without
first accounting for their phylogenetic relatedness. Here we developed a computational
pipeline which predicts complimentary and competitive metabolic relationships between
bacterial species, while normalizing for their phylogenetic relatedness. Our results show
that phylogenetic distances are correlated with metabolic interactions, and factoring out
such relationships can help better understand microbial interactions which drive
community formation.
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Introduction 1

Recent advances in microbiome research have accelerated the study of the composition 2

and function of microbial communities associated with different environments and hosts. 3

Studies have shown the association of microbial communities with human health and 4

diseases including type 2 diabetes (1), and efficacy of treatment including 5

immunotherapy to cancers (2). To reveal the mechanisms behind the microbiome-host 6

interactions, it is important to understand how microbial species form communities and 7

how the microbial communities interact with the host to mediate various biological 8

processes (3). 9

Studying the principles underlying the structure and composition of microbial 10

communities is of long-standing interest to microbial ecologists. The dynamics which 11

govern microbial community assembly have been extensively debated, and it is disputed 12

upon as to what extent the role of neutral or deterministic dynamics plays in microbial 13

interactions (4; 5). Some studies support the neutral hypothesis, which assumes that 14

community structure is determined by random processes (6). Other theories suggest 15

that community assembly dynamics are govern by deterministic processes such as 16

habitat filtering and niche differentiation (7; 8). While many studies focus on species 17

abundances for studying community assembly, Bruke et al. (9) showed that the key 18

level at which to address the community assembly may not be species, but rather the 19

functional level of genes. Both niche and neutral processes are likely to affect the 20

assembly of complex microbial communities. 21

Some studies have shown that microbial communities tend to be more 22

phylogenetically clustered than expected by chance, harboring groups of closely related 23

taxa that exhibit microscale differences in genomic diversity (10; 11; 12). One study of 24

marine bacterial communities at various locations reported that local communities are 25

phylogenetically different from each other and they tend to be phylogenetically 26

clustered (12). However, some microbial communities have also shown the opposite 27

patterns, in which taxa are less clustered and are less related than expected by chance 28

(13; 14). Together, these studies have explored the relationship between functional 29

distances/metabolic overlap with phylogenetic relatedness, and they have given rise to 30

competing theories of ‘habitat-filtering’ and ‘niche differentiation’: habitat filtering 31

suggests that dominant species exhibit similar functional traits, whereas niche 32

differentiation says that phylogenetically similar species are unable to co-exist due to 33

similar traits and resource overlap (3). Nevertheless, methods have been developed for 34

inference of bacterial interaction network based on the assumption that phylogenetically 35

related species tend to co-exists. For example, Lo et al. (15) developed phylogenetic 36

graphical lasso approach for bacterial community detection, based on the assumption 37

that phylogenetically correlated microbial species are more likely to interact to each 38

other. 39

The study of microbial interactions and the dynamics which govern such interactions 40

are important in providing insights to community assembly and ultimately processes 41

which influence host health and disease. Insights into community cooperation and 42

competition may also uncover symbiotic and antagonistic relationships and can be used 43

to provide prospective candidates for probiotics. Leveraging the increasing availability 44

of microbiome datasets, novel statistical and computational methods have been 45

developed to infer bacterial interaction networks from co-occurrence information. Some 46

examples include, SparCC (16), a tool to infer correlations by correcting for 47

compositional data. Conner et al. demonstrated the importance of using null model to 48

infer microbial co-occurrence networks (17). Mandakovic and colleagues compared 49

microbial co-occurrence networks representing bacterial soil communities from different 50

environments to determine the impact of a shift in environmental variables on the 51

community’s taxonomic composition and their relationships (18). MDiNE is another 52
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recently developed model for estimating differential co-occurrence networks in 53

microbiome studies (19). Notably, Faust et al. (20) applied generalized boosted linear 54

models to infer thousands of significant co-occurrence and co-exclusion relationships 55

between 197 clades occurring throughout the human microbiomes; their study revealed 56

reverse correlation between functional similarity and phylogenetic distance among 57

bacterial species, which is unsurprising. Despite of the numerous advances, it has been 58

considered difficult to infer microbial community structure based on co-occurrence 59

network approaches (21). 60

Functional profiles or biological pathways inferred from genomic sequences of the 61

microbial species can provide mechanistic information about the functional traits of the 62

microbes and potential cross-feeding. Genome-scale metabolic models (GEMS) 63

potentially could provide mechanistic explanations to the association of bacterial species 64

that are discovered by analyzing their co-occurrence in diverse microbial communities 65

(22). Many automated tools (23; 24; 25; 26) have been made available for genome scale 66

metabolic reconstructions (GENREs), however to get quality models these automated 67

methods often require additional manual refinement including checks for stoichiometric 68

consistency, defined media, and gap filling (27). The challenges of manual curation 69

often make it difficult to construct GEMs for a large consortium of microbes. Notably, 70

Machado et al. (28) developed an automated tool called CarveMe, which uses a 71

top-down approach to build species and community level metabolic models which the 72

authors claim is able to produce comparable results to other tools while also reducing 73

manual intervention (28; 29). The ability to predict metabolic network of microbial 74

members through GENREs has led some studies to focus on inferring levels and types of 75

interaction among microbial species via metabolic models. Levy and Borenstein (30) 76

introduced pairwise indices of metabolic interaction: the metabolic competition index 77

and complementarity index, which are computed based on the overlapping and 78

complementarity of the compounds that are contained in the metabolic models, 79

respectively. By analyzing the metabolic interactions among 154 human-associated 80

bacterial species and comparing the computed indices with observed species 81

co-occurrence in microbiomes, the authors concluded that species tend to co-occur 82

across individuals more frequently with species with which they strongly compete, 83

suggesting that microbial assembly is dominated by habitat filtering (30). Similar 84

metrics have been introduced to quantify the metabolic cooperation and competition 85

between bacterial species, such as MIP (metabolic interaction potential) and MRO 86

(metabolic resource overlap) (22). 87

By nature, two phylogenetically-close microbial species share similar functional 88

profiles or biological pathways due to their genomic similarity. Additionally, 89

co-evolutionary studies have also shown that comparative analyses between species 90

cannot be assumed to be statistically independent, as comparative data of similarly 91

related species correlate with each other due to shared ancestry (31; 32; 33). Thus, 92

without factoring out the phylogenetic relationship (the confounding factor), any 93

estimation of the competition and cooperation tendency based on function/pathway 94

profiles may be biased and cause problems in downstream applications. In this study, 95

we focused on the large collection of human gut-related genomes (including reference 96

genomes and genomes assembled from metagenomic sequences, MAGs). We 97

implemented an automated pipeline (called PhyloMInt) for genome scale pathway 98

reconstruction and for computing competition and cooperation scores based on the 99

reconstructed pathways. Our results showed correlation between phylogenetic distance 100

and metabolic competition/cooperation indices, indicating the importance of 101

normalizing these indices by the phylogenetic distance between underlying microbial 102

species. Using a discretization approach, we were able to detect pairs of bacterial 103

species with cooperation scores significantly higher than the average pairs of bacterial 104
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species with similar phylogenetic distances. We further built a network of human-gut 105

microbes based on cooperation and competition indices, and we discuss some of the 106

results we derived by analyzing the network. 107

Results 108

Evaluation of the performance of GENREs on incomplete genomes 109

Fig 1. Number of source and sink nodes in metabolic networks inferred from genome
scale metabolic reconstructions with randomly removed genes. (A) GENRE of
Mycobacterium tuberculosis H37Rv (Accession: PRJNA57777). (B) GENRE of
Escherichia coli str. K-12 (Accession: SAMN02604091).

We first evaluated the effect of using MAGs for genome-scale metabolic 110

reconstructions when genomes are incomplete. We tested the robustness of GENRE 111

using simulated incomplete genomes by removing genes from complete genomes and 112

evaluating the resulting GENREs. We simulated incomplete genomes with 50, 100, · · · , 113

500 genes randomly removed from each genome, respectively, and for each setting we 114

repeated 100 simulations. Using the reconstructed GENREs, we were able to analyze 115

the distribution of source and sink nodes (the calculation of the complementarity and 116

competition indices is dependent on the identification of source and sink nodes in the 117

metabolic model) within the metabolic networks reconstructed from incomplete 118

genomes. Our empirical analysis shows the mean source and sink metabolites in 119

GENREs remained relatively stable in respect to the removal of genes (details can be 120

found in supplementary data). This provided us confidence that the incompleteness of 121

the near-complete MAGs should have minimal impact on the calculation of the 122

metabolic complementarity/competition indices. 123

Impact of phylogenetic relationship on microbial complementar- 124

ity and competition indices 125

We applied our pipeline to analyze 2,815 human gut related MAGs and computed their 126

pairwise competition and complementarity scores (about 8M directed pairs). As shown 127

in Figure 2A, we see a positive relationship between the metabolic complementarity of 128

bacterial species and their phylogenetic distances. In contrast, we see in Figure 2B there 129

is a negative relationship between metabolic competition of bacterial species and 130

phylogenetic distance. Our results are consistent with other previous studies of 131

functional and metabolic relationships with phylogenetic distances (20; 22; 34). And 132

they support the theory of niche differentiation, which states that phylogenetically close 133

species are more likely to compete with each other due to their shared traits and 134

resource overlap, leading to less probability of their co-existence. 135

Due to the non-zero correlation between metabolic interactions and phylogenetic 136

distances, comparing complementarity and competition between species pairs without 137

accounting for their phylogenetic relationships confounds such comparisons. Here we 138
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Fig 2. Hexagonal binned plots of (A) metabolic complementarity index and (B)
metabolic cooperation index, versus phylogenetic distance with density contours. The
plots were fitted with a generalized additive model (red line).

demonstrate a discretization approach for the identification of statistically significant 139

complementary species pairs as a method for accounting/correcting for phylogenetic 140

distances. To discretize comparisons across continuous phylogenetic distances, pairwise 141

indices were binned by their phylogenetic distances. Outliers are then identified within 142

each bin, which are likely pairs of bacteria with statistically significant complementary 143

or competitive interactions. 144

Identification of potentially collaborative or competing pairs of 145

gut bacteria from metabolic outliers 146

To explore the relationship between complementary and competitive pairs, we compared 147

their respective Z-scores (Figure 3). Significant outliers were selected using a Z-score 148

threshold of ±2.698 as proposed by Tukey (35). A total of 60,116 directed pairs were 149

identified as positive complementary outliers. Additionally, 7,769 and 44,409 150

competitive positive and negative directed pairs of outliers were identified, respectively. 151

Unsurprisingly, most pairs were centered around a Z-score of zero and no pairs were 152

simultaneously significant for both complementarity and competition, simultaneously. 153

154

Fig 3. Hexagonal binned plot of metabolic complementarity and competition Z-scores
with density contours.

We analyzed bacteria pairs belonging to the same genus or family that have 155

significantly high complementarity scores to better understand how taxonomic similarity 156

correlates with metabolic cooperation. At the genus level, 140,152 directed pairs were 157
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identified; and at the family level, 233,555 directed pairs were identified. Of the pairs 158

belonging to the same genus or family, 1,230 and 5,190 were identified as significant 159

complementary outliers, respectively. These taxonomically similar bacteria pairs have 160

the potential to cooperate in gut microbiomes (see detailed lists of species pairs in the 161

supplementary data). The rarity of significant outliers with the same taxonomic 162

classifications suggests that for most taxonomically similar pairs at the genus and family 163

level, niche differentiation plays an integral role in community assembly. 164

Exploration of microbial complementarity/competition network: 165

community structure and composition 166

To explore community assembly dynamics, we constructed a directed graph of bacterial 167

species where bacteria are the nodes and a directed edge is added between two bacteria 168

if they have a high metabolic complementarity (Z-score > 2.698) and low metabolic 169

competition (Z-score < −1.000); here we relaxed the Z-score of competition indicies to 170

-1.000 in-order to focus our analysis towards species pairs with greater complementarity 171

while still constraining the analysis to a degree of low competition observed between 172

species pairs. Using Infomap (36) to analyze the network, we were able to identify two 173

main community modules (Figure 4). The larger community module (shown on the 174

right in Figure 4) was populated with many multi-layer sub-modules, which featured 175

majority of the significantly cooperating bacteria. Interestingly the smaller community 176

module (shown on the left in Figure 4) exclusively contained Bifidobacterium spp. (e.g. 177

B. longum, B. bifidum, B. infantis), suggesting that various Bifidobacterium species are 178

metabolically complementary to each other, more-so than other phylogenetically similar 179

taxa. Furthermore, a small fraction of community sub-modules within the right larger 180

community module were also dominated by taxonomically similar genomes (i.e. 181

Helicobacter, Collinsella, Lachnospiraceae, and Ruminococcus). We note that if 182

complementarity scores were analyzed without correcting for phylogenetic distances, 183

these significant complementarity scores of taxonomically similar bacteria would not be 184

considered significant, thus emphasizing the importance of correcting for phylogenetic 185

distances. The pattern of taxonomically related genomes forming community module is 186

suggestive of habitat filtering characteristics within certain distinctive bacterial taxa 187

(the details of the membership of the modules can be found in the supplementary data). 188

To further explore this, we analyzed the proportion of significantly cooperative 189

bacteria with the same genus annotations. Our results show that more than half (42/76) 190

of the taxa with 50 or more members within the same genus contained a significant 191

number of metabolically complementary pairs; within genus proportion of taxa with 192

significant pairs ranged from 0.02% to 15.9% (details of the specie pairs are available in 193

the supplementary data). Together, these results show that while niche differentiation 194

dominates a majority of metabolic interactions, we observe habitat filtering 195

characteristics within certain bacterial taxa. 196

Discussion 197

Here we demonstrate a novel approach to identifying significant metabolic cooperators 198

and competitors between bacterial species pairs. This approach builds upon previously 199

developed metrics of metabolic complementation and cooperation (30; 37; 38) by 200

identifying outlier pairs relative to their phylogenetic distances. As pairwise metabolic 201

interactions are correlated with phylogenetic distance, it remains imperative to take into 202

consideration their phylogenetic distances when making comparisons across different 203

phylogenetic distances as such comparisons may confound comparisons. 204

Our analysis shows that metabolic cooperation exhibits a positive relationship with 205

phylogenetic distance, whereas metabolic competition exhibits a negative relationship. 206

These findings support the results from previous work that studied the relationship 207

between phylogenetic relatedness and gene content, functional distance, and metabolic 208
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Fig 4. Community modules of significant complementarity outliers that exhibit low
metabolic competition identified from human-gut related MAGs. Circular nodes
represent predicted community modules and sub-modules of cooperative bacterial
communities.

interactions (20; 22; 34). Together these observed relationships seem to support the 209

theory of niche differentiation, where functional overlap discourages phylogenetically 210

related species from co-existing. However, by taking into consideration the phylogenetic 211

distance between pairs to identify metabolic outliers, we were able to identify significant 212

intra-genus cooperation in several distinct taxa. The intra-genus modules may suggest 213

that while most bacteria interactions display niche differentiation characteristics, some 214

taxa exhibit habitat filtering. Notably, Bifidobacterium species were shown to form 215

distinct community modules which suggest significant intra-genus cooperation compared 216

to other taxa. These results support recent findings that suggest strains of 217

Bifidobacterium spp. in infants have different nutrient profiles to support colonization of 218

other specific Bifidobacterium species (39). The observation of both habitat filtering 219

and niche differentiation characteristics suggests that in some cases both contribute to 220

the dynamics of community assembly. 221

We note a few limitations of our approach. First, metabolic complementarity and 222

competition indices are dependent on a given metabolic model. Completeness of 223

GENREs are dependent on a variety of variables (e.g. the reconstruction tool and the 224

genome completeness) that can have a significant impact on predicted metabolic 225

interactions. Second, seed sets used to calculate the metabolic interaction indices do not 226

represent required metabolites for growth, but rather represent a baseline of metabolites 227

that in theory enable a given bacterium to produce any metabolite in their predicted 228

metabolic network. As such, seed sets may influence the overestimation or 229

underestimation of metabolic interactions between bacterial species. However, by 230

integrating phylogenetic distances to normalize metabolic interaction indices we believe 231

that our approach provides a more accurate prediction of metabolic interactions in 232

comparison to other similar methods. Additionally, low abundant microbial species 233

within microbiomes are not always well represented within metagenomic samples but 234

may play key roles within a metabolic network. While we acknowledge that validation 235

of this method remains difficult, the non-independent nature of comparative metricies 236

between organisms due to shared ancestry provides a logical explanation as to the 237

necessity to account for such confounding effects. 238

By decoupling phylogenetic distances between complementarity and competition 239

indicies, we provide a method to explore statistically significant cooperating/competing 240

species pairs within microbbiomes to better understand community assembly dynamics. 241

Additionally, competition networks can be used to identify highly competitive species 242

pairs, which may be useful for suggesting beneficial probiotic candidates. A future 243

research direction is to integrate phylogenetically-corrected cooperation and competition 244

scores with co-occurrence information to better address the challenges of identifying 245

bacterial interactions through mechanistic insight. 246
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Materials and Methods 247

Genome sequences of human-gut bacteria 248

To assemble the human-gut associated reference genomes, we collected genomes from 249

two recent studies (40; 41). Bacterial genomes reported in (41) were compiled from two 250

sources: a total of 617 genomes obtained from the human microbiome project (HMP) 251

(42), and 737 whole genome-sequenced bacterial isolates, representing the Human 252

Gastrointestinal Bacteria Culture Collection (HBC). These 737 bacterial genomes were 253

assembled by culturing and purifying bacterial isolates of 20 fecal samples originating 254

from different individuals (41). The bacterial genomes reported in (40) were generated 255

and classified from a total of 92,143 metagenome assembled genomes (MAGs), among 256

which a total of 1,952 binned genomes were characterized as non-overlapping with 257

bacterial genomes reported. We were able to retrieve 612 out of 617 RefSeq sequences 258

using the reported RefSeq IDs. We only included genomes with > 80% completeness 259

and < 5% contamination (via CheckM (43)). Our final dataset for this study contains a 260

total of 2,815 genomes/MAGs. Taxonomic annotation of these genomes/MAGs was 261

done using GTDB-toolkit’s least common ancestors approach (44). 262

Genome scale metabolic network reconstructions and analysis 263

Genome-scale metabolic network reconstructions (GENREs) for all genomes were 264

constructed using CarveMe(28) with default parameters. Coding sequences (CDSs) of 265

all input genomes were generated using FragGeneScan(45) to be used as input for 266

CarveMe. Briefly, CarveMe is a genome-scale metabolic model reconstruction tool 267

which utilizes a universal model for a top-down approach to build GENREs. In contrast 268

to conventional bottom-up methods which require well defined growth media, manual 269

curation and gap-filling, the top down approach of CarveMe removes reactions and 270

metabolites inferred to be not present in the manually curated universal template. 271

Phylogenetic distance 272

To compute pairwise evolutionary distances between gut bacteria, we first inferred a 273

phylogeny covering all participating genomes using FastTree(46). A total of 120 274

bacterial marker genes were used to infer these phylogeny. The 120 marker genes used 275

are ubiquitous among bacterial species and are shown to occur as single copies and less 276

susceptible to horizontal gene transfer(47). Amino acid sequence of protein coding genes 277

were searched using HMMER3(48) against a 120 HMM model database of marker genes 278

received from Pfam(49) and TIGRfam databases(50). Sequences extracted from each 279

HMM model were individually aligned using hmmalign, which were later concatenated 280

to form the final alignment. Poorly aligned regions were removed from the concatenated 281

alignment and a final phylogeny was inferred using FastTree under WAG + GAMMA 282

models. 283

Species interaction indexes 284

To estimate potential metabolic cooperation and competition between bacterial species, 285

we need to know their nutritional profiles, which however are unavailable for most of the 286

gut bacteria. Similar to the approach reported in (30; 51), we use the compound seed 287

set of each species as a proxy for its nutritional profile: the seed set of a metabolic 288

network is defined as the minimal subset of the compounds that cannot be synthesized 289

from other compounds in the network (due to lack of the corresponding enzymes, and 290

hence are exogenously acquired) but their existence permits the production of all other 291

compounds in the network. 292

We implemented a pipeline for computing metabolic interaction indices from genome 293

sequences. Our pipeline uses 1) CarveMe for building genome-scale metabolic models 294

from genome sequences, b) NetworkX (52) to identity seed compounds, and c) our own 295

implementation (in Python) of the approaches for computing metabolic competition and 296
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complimentary indices given two genome-scale metabolic models. We call our pipeline 297

PhyloMInt (Phylogenetically-adjusted Metabolic Interaction indices). 298

Seed set identification 299

Utilizing NetworkX v2.2 (52), strongly connected components (SCC) within the 300

GENREs are identified. Confidence levels are assigned for all compounds relative to 301

their SCC size, where the confidence level (C) is denoted as: 302

C =
1

(Component Size)
(1)

The confidence level is representative of the confidence that a given compound belongs 303

to the seed set. A threshold of C ≥ 0.2 was used to select compounds to be regarded as 304

compounds part of a given ‘seed set’ of a given organism as specified by (51). 305

Metabolic competition and complementarity indices 306

Given two genome-scale metabolic models (GEMs) A and B, their Metabolic 307

Competition Index (MICompetition) is calculated as the fraction of A’s seed set that is 308

also in B’s seed set, normalized by the weighted sum of the confidence score (30; 38). 309

MICompetition estimates the baseline metabolic overlap between two given metabolic 310

networks. 311

MICompetition =

∑
C(SeedSetA ∩ SeedSetB)∑

C(SeedSetA)
(2)

312

Complementarity Index (MIComplementarity) is calculated as the fraction of A’s seed set 313

that is found within B’s metabolic network but not part of B’s seed set, normalized by 314

the number of A’s seed set in B’s entire metabolic network (30; 37). MIComplementarity 315

represents the potential for A’s to utilize the potential metabolic output of B. 316

MIComplementarity =
|SeedSetA ∩ ¬SeedSetB |

|SeedSetA ∩ (SeedSetB ∪ ¬SeedSetB)|
(3)

We note that the competition and complementarity indices are asymmetric. 317

318

Phylogenetic normalization and outlier detection 319

Pairwise metabolic complementarity and competition indices between species pairs are 320

plotted against their predicted phylogenetic distance. While methods of outlier 321

detection for continuous data exists, local peaks and troughs of indices relative to 322

phylogenetic distance make it difficult to identify local outliers. Thus, we utilize a 323

binning approach to limit outlier detection to localized values. Both metabolic 324

complementarity and competition indexes use a two-step binning process to bin pairwise 325

observations, first by using a fixed phylogenetic distance interval of 0.01, followed by 326

merging bins which are smaller than a prespecified size. Here we used the first bin size 327

as the reference. Bins were merged with the closest preceding bin satisfying our 328

minimum bin size threshold. To identify metabolic complementarity and cooperation 329

outliers within each phylogenetic distance bin, we calculate the Z-score within each bin 330

respectively. Tukey’s method for outlier detection (equivalent to a Z-score threshold 331

±2.698) (35) was utilized to identify significant outliers. 332

Network construction and community detection 333

To build a metabolic complementarity/competition network, species pairs are 334

represented as nodes within the network. Identified significant outliers were used to 335

construct a network of gut bacteria, in which for any pair of species A and B, a directed 336

edge is added between A and B (from A to B), if A and B have significantly high 337

complementarity score but low competition score. Using the adjacency list of the 338

directed graph, a local installation of Infomap(36) (with the parameters: –directed 339

–zero-based-numbering –num-trials 10) was utilized to identify community interaction 340
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modules within our dataset. Infomap is a random walk based approach for community 341

detection, and it provides a user friendly interface for visualization and exploration of 342

the network and community structure (https://www.mapequation.org/navigator). 343

Data and software availability 344

Implementation and data are available at https://github.com/mgtools/PhyloMint. 345
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