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Abstract 

Peripheral neuroblastic tumors (PNTs) are the most common extracranial solid tumors in early childhood. 

They represent a spectrum of neural crest derived tumors including neuroblastoma, 

ganglioneuroblastoma and ganglioneuroma. PNTs exhibit heterogeneity due to interconverting malignant 

cell states described as adrenergic/nor-adrenergic or mesenchymal/neural crest cell in origin. The factors 

determining individual patient levels of tumor heterogeneity, their impact on the malignant phenotype, 

and the presence of other cell states are unknown. Here, single-cell RNA-sequencing analysis of 4267 

cells from 7 PNTs demonstrated extensive transcriptomic heterogeneity. Trajectory modelling showed 

that malignant neuroblasts move between adrenergic and mesenchymal cell states via a novel state that 

we termed a “transitional” phenotype. Transitional cells are characterized by gene expression programs 

linked to a sympathoadrenal development, and aggressive tumor phenotypes such as rapid proliferation 

and tumor dissemination. Among primary bulk tumor patient cohorts, high expression of the transitional 

gene signature was highly predictive of poor prognosis when compared to adrenergic and mesenchymal 

expression patterns. High transitional gene expression in neuroblastoma cell lines identified a similar 

transitional H3K27-acetylation super-enhancer landscape, supporting the concept that PNTs have 

phenotypic plasticity and transdifferentiation capacity. Additionally, examination of PNT 

microenvironments, found that neuroblastomas contained low immune cell infiltration, high levels of 

non-inflammatory macrophages, and low cytotoxic T lymphocyte levels compared with more benign 

PNT subtypes. Modeling of cell-cell signaling in the tumor microenvironment predicted specific 

paracrine effects toward the various subtypes of malignant cells, suggesting further cell-extrinsic 

influences on malignant cell phenotype. Collectively, our study reveals the presence of a previously 

unrecognized transitional cell state with high malignant potential and an immune cell architecture which 

serve both as potential biomarkers and therapeutic targets. 

 

Introduction 

Peripheral neuroblastic tumors (PNTs) represent a spectrum of tumors derived from the neural crest and 

account up to 8-10% of all pediatric malignancies. A salient feature of PNTs is a heterogeneous clinical 

course ranging from spontaneous regression to persistent disease progression1. Histologically, PNTs 

comprise four variants, including neuroblastoma (NB), ganglioneuroblastoma nodular (GNBn), 

ganglioneuroblastoma intermixed (GNBi), and ganglioneuroma (GN)1. GN and GNBi are low-grade in 

nature and usually curable by surgical resection alone2. In contrast, the most common subtype; NB is 

often lethal. Despite intensive treatments, the long-term survival of high-risk NB is less than 50%3. 

Around half of high-risk patients relapse after initial treatment response, and salvage therapies for 

relapsed patients are rarely effective1. Moreover, genomics studies comparing longitudinal samples from 

the same patient show that clonal evolution is prominent feature of disease progression4-6. Therefore, a 

better understanding of tumor heterogeneity will be required to improve therapy for patients. 

Emerging evidence proposes that tumor plasticity in neuroblastic cells contributes to chemoresistance7,8. 

These studies conjointly suggest that neuroblastoma is composed of transdifferentiating malignant cells 

with distinct epigenetic and transcriptomic landscapes. In these studies, tumors and neuroblastoma cell 

lines were subtyped according to a two-group classification conforming to an adrenergic/noradrenergic 

state or a mesenchymal/neural crest cell state. Importantly, cell state was seen to be relevant for 

therapeutic efficacy, with mesenchymal neuroblastic cells more resistant to conventional anti-cancer 

therapies8. Nevertheless, while these studies demonstrate the importance of cell plasticity in 
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neuroblastoma, bulk-tissue profiling is still compromised by averaging the individual impact of cell types 

within the tumor microenvironment, potentially hindering the identification of other cell types. 

To assess intratumoral compositions across PNT subtypes, we conducted single-cell RNA sequencing 

(scRNA-seq) on more than 4000 cells of fresh, surgically resected tissues from 7 PNT patients, which 

spanned all histological variants, including 3 NB, 2 GNBn, 1 GNBi and 1 GN lesion. Our results suggest 

that malignant neuroblasts can exist as an intermediate between adrenergic and mesenchymal 

transcriptional states via a previously unidentified transitional population. Transitional neuroblasts have 

an aggressive neurodevelopmental phenotype mostly similar to highly proliferative, disseminated tumor 

cells. Transitional gene expression signatures predict poorer patient prognosis in large cohorts of 

neuroblastoma. Moreover, cell type abundance of PNT microenvironments differ between neuroblastoma 

and other PNT subtypes. Finally, we use ligand-receptor modelling to infer cell-cell signaling 

relationships that indicate malignant cell subtypes have potential for distinct paracrine responses from 

their surrounding microenvironment. 

Results 

Single-cell transcriptomics analysis of peripheral neuroblastic tumors  

We conducted single cell RNA sequencing using a modified 3’ unique molecular identifier (UMI) based 

version of the Smart-seq2 protocol9 on 7 peripheral neuroblastic tumors (Supplementary Fig. 1A). We 

used viable single cells (DRAQ5+/Calcein Blue+) derived from 3 neuroblastomas, 3 

ganglioneuroblastomas and 1 ganglioneuroma (Supplementary Fig. 1B). Samples were acquired from 

surgical resection and had a range of clinical and histological features (Fig. 1A, Supplementary Table 1). 

Following sequencing, the median read depth was 22648 UMIs per cell with 1254 unique genes detected 

per cell (Supplementary Fig. 1C-E). We used quality control measures, such as the number of detected 

genes/cell (600-5000 genes per cell, where a given gene had to be expressed in at least 3 cells) and 

proportion of ribosomal counts (<0.3), to filter out poor quality cells (Supplementary Fig. 1C-F). 

Ultimately, we yielded 4267 high quality single-cell transcriptomes for downstream analysis across the 

7 PNTs (range: 239-976 single cells per tumor). Using 4000 highly variable genes, we implemented 

principal component analysis (PCA) and selected the top 10 principal components for graph-based cell 

clustering (Supplementary Fig. 1G-H). This analysis identified 12 distinct clusters (Clusters 0 – 11) 

which was projected by uniform manifold approximation and projection (UMAP) (Fig. 1B-C). 

To assign each cluster to a cell phenotype, we undertook a preliminary sub-classification that considers 

differential expression and the expression of marker genes for major cell lineages (Fig. 1D-E, 

Supplementary Fig. 1I-J). Based on these cell-type assignments, the proportion of cell types within 

individual tumors differed markedly (Fig. 1D). Notably, most clusters conformed to broad lineage 

classifications that would be expected to occur in PNTs7,8,10-15, such as sympathoadrenal, immune, 

mesenchymal, endothelial and adrenal cell types (Fig. 1D-E). 

Identification of malignant neuroblasts by copy number variation inference 

With the knowledge that malignant cells in neuroblastic tumors can exist in multiple differentiated 

forms7,8, classification of malignant cells using gene expression alone may be inaccurate. We therefore 

aimed to distinguish malignant cells from non-malignant cells using CONICS copy number estimation 

as an additional method of classification16. This technique uses the expression of a sliding window of 

100 genes across each chromosome to infer copy number values (CNVs), so that malignant cells with 

greater copy number instability can be identified (Fig. 1F, Supplementary Fig. 1L). Two-component 

Gaussian mixture models were calculated to identify single cell copy number estimations for various 
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regions of the genome, using the cells of each tumor (for example Fig. 1G, Supplementary Table 2). 

From these models, a CNV score was calculated to approximate whether a cell had CNV’s detected for 

these individual regions (see methods, Supplementary Fig. 1K). Projection of inferred CNV’s on the 

transcriptomic UMAP plot showed that the CNV distribution was non-random and localized to specific 

clusters of cells (Fig. 1H, Supplementary Fig. 1K). Indeed, the proportion of cells inferred to contain a 

CNV showed that sympathoadrenal and mesenchymal clusters consisted mainly of the cells with CNVs, 

while other clusters had relatively few CNVs (Fig. 1H). Heatmap visualization of 100 gene rolling 

averages for each cell similarly showed greater copy number instability in these specific cell types (Fig. 

1F, Supplementary Fig. 1L). Using these inferred CNV’s, we therefore concluded that clusters 

subclassified as sympathoadrenal or mesenchymal were malignant cells while all other clusters were 

non-malignant cells (Fig. 1I). After splitting the cells into malignant (n=2024) and non-malignant 

(n=2243) groups, UMAP projection of malignant cells separated mostly into distinct subpopulations 

associated with individual patient tumors, suggesting pronounced intertumoral heterogeneity among 

neuroblasts (Fig. 1J, left panel). In contrast, non-malignant cells tended to cluster independent of tumor 

origin (Fig. 1J, right panel), consistent with previous reports showing non-malignant cells cluster by cell 

type rather than the tumor that they derive from17,18.  

Modelling of adrenergic/mesenchymal transdifferentiation identifies a novel transitional cell 

phenotype 

To evaluate cell phenotype among malignant cells, we conducted differential expression analysis and 

identified divergent cell transcriptomes highlighted by expression of adrenergic (CHGA, CHGB, DBH) 

and mesenchymal marker genes (COL1A1, COL8A1, NOTCH3) (Supplementary Fig. 2A-B). We 

therefore investigated the possibility that malignant cells exist in either an adrenergic/noradrenergic or 

mesenchymal/neural crest cell state, as proposed by recent reports by van Groningen and Boeva et al7,8. 

We first examined expression patterns of signatures for these cell states. UMAP projection of these two 

gene signatures showed expression that was enriched in distinct clusters whether using the van Groningen 

(Adrenergic/Mesenchymal) or Boeva signatures (noradrenergic/neural crest cell) (Fig. 2A-B, 

Supplementary Fig. 2C-D). When comparing directly, the expression patterns of adrenergic and 

mesenchymal signatures showed a strong inverse association, with cells existing in a continuum between 

high-expressing adrenergic and mesenchymal cells (Fig. 2C). This suggests that cells may have an 

identity that reflects various points of transdifferentiation between adrenergic and mesenchymal cell 

states, similar to the model proposed by van Groningen and Boeva et al7,8. To explore this hypothesis 

further, we conducted pseudotemporal ordering of cells19 to model cell transitions that would occur 

during adrenergic-mesenchymal transdifferentiation (Fig. 2D). Interestingly, the predicted trajectory was 

more complex than a simple linear path running between adrenergic and mesenchymal cell states. 

Examination of the adrenergic and mesenchymal signatures showed a unique state as a separate arm 

between the high adrenergic and high mesenchymal expression states, which we refer to as “transitional” 

cells (Fig. 2E-G). Gene expression analysis of this novel transitional cell state demonstrated an 

intermediate expression level between adrenergic and mesenchymal signatures that mostly corresponded 

to cluster 4 cells but also some cluster 2 cells (Fig. 2H). We also considered whether cells derived from 

each tumor contained cells from more than one neuroblastic state, as would be expected if cells had the 

capacity to transdifferentiate. Indeed, most tumors had evidence of cells in more than one neuroblastic 

state, except the lower risk GNB3 and GN1 tumors (Fig. 2I, Supplementary Fig. 2E-F). These data 

suggest that extensive cell phenotype heterogeneity exists in PNTs, with cell state corresponding to 

various points along a adrenergic-mesenchymal transdifferentiation trajectory. 
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Transitional neuroblasts are defined by an aggressive neurodevelopmental phenotype 

In order to clarify transcriptomic change during cell state transition, we identified marker genes in each 

of the 3 cell states, adrenergic, transitional and mesenchymal (Supplementary Fig. 3A-B, Supplementary 

Table 3). Evaluation of changes in gene expression using pseudotime to visualize cell trajectories, 

showed that the expression of these genes progressively changed when comparing different states (Fig. 

3A, Supplementary Fig. 3C). Key noradrenergic and catecholaminergic enzymes expressed in the 

adrenergic state, dopamine beta-hydroxylase (DBH) and tyrosine hydroxylase (TH), were down-

regulated along trajectories to either the transitional or mesenchymal arm (Fig. 3A, top panel). The 

mesenchymal state showed upregulation of mesenchymal neuroblast markers FN1 and VIM, consistent 

with a role in extracellular matrix production expected in this cell type (Fig. 3A, bottom panel). In 

transitional neuroblasts, we found an overexpression of well-known neuroblastoma genes EZH2 and 

MYCN (Fig. 3A, middle panel). While MYCN is an established driver gene in the context of 

neuroblastoma when gene-amplified20, this was an interesting finding since MYCN is non-amplified in 

all the tumors of this cohort. EZH2 on the other hand is a core component of polycomb repressive 

complex 2 and responsible for the catalysis of H3K27 tri-methylation. EZH2 plays an essential role in 

tumorigenesis in neuroblastoma and aberrant expression of EZH2 is strongly associated with poor 

prognosis21-23. Next, we employed gene ontology (GO) analysis on gene signatures created for each of 

the three cell states. GO-term enrichment identified gene-sets as expected related to neurotransmitter 

production and extracellular matrix as part of the adrenergic and mesenchymal states, respectively (Fig. 

3B, Supplementary Fig. 3D-E). Transitional neuroblasts, however, had gene-sets relating to neurogenesis 

(Fig. 3B, Supplementary Fig. 3D-E), suggesting that differentiation via transitional neuroblasts may be 

a developmentally co-opted process. Indeed examination of single cell RNA-seq data in E12.5 murine 

neural crest compartment24, shows that the transitional signature shows relatively high expression in the 

so-called “bridge” cells that act as differentiation intermediates between the Schwann cell precursors of 

the neural crest (mesenchymal-like) and the terminal chromaffin cells of the adrenal medulla (adrenergic-

like) (Fig. 3C, Supplementary Fig. 3F). 

We next investigated whether the three cell states related to biological processes important in 

tumorigenesis. To gain more insight into the cell cycle status of the malignant cells across the different 

phenotypes, we determined their cell cycling states based on the average expression levels of genes 

within the S and G2/M (dividing) and G1 (non-dividing) gene sets previously published18. This analysis 

revealed a markedly higher proportion of dividing cells amongst the transitional neuroblasts compared 

to the other two cell states (Supplementary Fig. 3G). In contrast, mesenchymal and adrenergic cells had 

a greater proportion of non-dividing cells with expression of the G1 phase-related genes (Supplementary 

Fig. 3G). Next, we evaluated whether either of the three cell states related to a metastatic phenotype. For 

this, we calculated a disseminated tumor cell (DTC) score for gene expression in each cell state by 

determining the difference between the expression of significantly up-regulated and down-regulated 

genes of a previously published DTC gene set25. Interestingly, the transitional malignant cells shared the 

highest similarity with DTCs from the bone marrow which is the most common distant metastatic site of 

neuroblastoma (Supplementary Fig. 3H). Consistent with this, tumors with a high abundance of 

transitional neuroblasts, NB3 and GNB1, were graded as Stage 4 with distant metastasis by the 

International Neuroblastoma Staging System (INSS), further suggesting a link between the transitional 

phenotype and metastasis. Collectively, these data suggest the presence of distinct malignant cell 

subpopulations within individual tumors, which demonstrate divergent differentiation status, varying 

transcriptional signatures and potential for malignant clinical behavior. 
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Tumors expressing transitional neuroblast signatures are associated with poor prognosis in 

neuroblastoma patients 

We next studied expression data from large primary neuroblastoma tumor cohorts where gene expression 

was derived from total tumor or bulk gene expression data (Kocak cohort, n=649; GEO GSE45480)26.We 

classified tumors based on adrenergic, transitional and mesenchymal gene signatures (Fig. 4A). The 

signatures separated 5 tumor groups, ranging from adrenergic, transitional and mesenchymal, as well as 

two mixed classes of adrenergic-transitional, and transitional-mesenchymal states (Fig. 4A). This is 

consistent with the notion that in some cases, bulk tumors can have mixed proportions of the three cells 

states identified in our scRNA-seq data. To explore whether the three cell states had prognostic relevance, 

we conducted Kaplan-Meier analysis for the 5-tumor subgroups defined by these signatures. Transitional 

tumor classes were shown to predict poorer outcome than adrenergic and mesenchymal subgroups, 

particularly the transitional-only and transitional-mesenchymal subgroup (Fig. 4B). Additionally, higher 

expression of transitional neuroblast signatures was observed in patient subgroups defined by poor 

prognostic factors: MYCN-amplification and INSS 4 disease (Fig. 4C). This suggests that transitional 

cell state signatures identify tumors with high risk of resistance to conventional therapy and relapse. 

Consistent with these findings, Kaplan-Meier analyses for gene signatures subdividing the cohort at the 

median showed a similar association between transitional neuroblasts and poor prognosis, as did similar 

analyses in a separate cohort (Versteeg cohort, n=88; GEO GSE16476)27 (Supplementary Fig. 4A-E). 

Neuroblastoma cell lines with high transitional gene signature expression have an intermediate 

super-enhancer landscape between adrenergic and mesenchymal states 

Previous studies used H3K27-acetylation (H3K27ac) landscapes to define two distinct super-enhancer 

states, either adrenergic/noradrenergic or mesenchymal/neural crest7,8. Since our trajectory analysis using 

gene expression in single-cells identified a transitional population between these two identities, we 

investigated whether transitional gene expression signatures in neuroblastoma cell lines, similarly 

identify intermediate super-enhancer profiles. As before, we used adrenergic, transitional and 

mesenchymal signatures to classify 33 neuroblastoma cell lines with paired bulk-RNA-seq and H3K27ac 

ChIP-seq data7 into 5 groups: either adrenergic, adrenergic-transitional, transitional, transitional-

mesenchymal or mesenchymal (Supplementary Fig. 5A). We then conducted comparisons to identify 

super-enhancers that were enriched in either the adrenergic class or the mesenchymal class 

(Supplementary Table 4A). Of the 5975 previously annotated super-enhancer loci across these 33 cell 

lines7, we found 1129 were enriched in the adrenergic state (versus mesenchymal cell lines), and 2203 

were enriched in the mesenchymal state (versus adrenergic cell lines) (Fig. 5A, Supplementary Fig. 5B). 

To evaluate if a progressive shift in H3K27ac occurs through cell lines according to our cell state 

classification, we investigated if adrenergic or mesenchymal-associated superenhancers showed any 

trend across different cell classes. H3K27ac levels at adrenergic-associated super-enhancers 

progressively decreased through the spectrum of adrenergic, adrenergic-transitional, transitional, 

transitional-mesenchymal and mesenchymal cell lines (Fig. 5A - left panel, Fig. 5B, Supplementary Fig. 

5B - upper panel, Supplementary Fig. 5C). In contrast, H3K27ac levels at mesenchymal-enriched super-

enhancers progressively increased through the same spectrum (Fig. 5A – right panel, Fig. 5B, 

Supplementary Fig. 5B - lower panel, Supplementary Fig. 5C). Moreover, H3K27ac tracks show a 

similar trend in super-enhancers linked to core-regulatory circuit transcription that were previously found 

to define adrenergic and mesenchymal identities7 (Fig. 5C). Interestingly, transitional-enriched super-

enhancers did exist, albeit only in the minority, with only 94 unique super-enhancers significantly 

enriched in transitional cells compared with adrenergic and mesenchymal cells (Supplementary Fig. 5D, 
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Supplementary Table 4B). There were however some examples of super-enhancer loci significantly 

upregulated exclusively in transitional cell lines (Supplementary Fig. 5E, Supplementary Table 4B). 

These results suggest that indeed, expression of transitional cell state signatures in neuroblastoma cell 

lines was associated with intermediate super-enhancer profiles that lie between adrenergic/nor-adrenergic 

and mesenchymal/neural crest cell differentiation states. Notably however, these results show that while 

transitional cells lie between adrenergic and mesenchymal cell states, they tended to have a H3K27ac 

profile toward the adrenergic end of the transdifferentiation spectrum (Fig. 5A-B). 

Neuroblastomas and ganglioneuroblastomas have distinct tumor microenvironmental cell types 

Next, we examined gene expression characteristics of cells in the PNT tumor microenvironment. The 

proportion of infiltrating immune cells was higher in the GNB and GN tumors when compared to the 

three neuroblastoma samples (Fig. 6A). When we excluded malignant cells and interrogated cell-type 

abundance in each tumor as a proportion of all non-malignant cells we found nine distinct cell clusters 

(Fig. 6B). Based on differential expression analysis and known markers of cell type, we then classified 

cells into subtypes, and found that main clusters conformed to recognized cell types from the immune, 

adrenal, or endothelial lineages (Fig. 6C-D, Supplementary Fig. 6A-C). When comparing the relative 

abundance of different cell types, the three neuroblastomas had less total infiltrating T-cells, including 

cytotoxic T-cells (measured by CD8 and presence of cytolytic effector genes) than the non-

neuroblastoma samples (Fig. 6D, Supplementary Fig. 6B-C – upper panels). Consistent with these 

findings, immunohistochemistry of tissue sections from each of the seven tumors showed that pan-T 

(CD3) positive cells were more abundant in GNB2, GNB3 and GN samples compared with 

neuroblastoma (Supplementary Fig. 6D). Evaluation of other cell types revealed that neuroblastoma 

samples had more macrophages, including non-inflammatory macrophages with increased expression of 

the M2-polarization marker CD163 (Fig. 6D, Supplementary Fig. 6B-C – lower panels). Previous studies 

have revealed that tumor-associated macrophages can be induced by neuroblastoma cells and polarized 

into an M2/pro-tumor phenotype, which then can promote the proliferation and invasion of tumor 

cells28,29. Our analysis of the cellular makeup of the tumor microenvironment showed a trend of increased 

T-cell infiltration in ganglioneuroblastomas and increased macrophage infiltration in neuroblastoma. 

This suggests a potential role of immune evasion and a pro-tumorigenic microenvironment in the more 

aggressive neuroblastomas, comparing with non-neuroblastomas. 

Discovery of unique cell-cell signaling potential within tumor microenvironments  

Upon resolving the complex tumor microenvironments of our PNT cohort, we considered whether we 

could use our data to infer cell-cell signaling mediated by non-malignant cells driving gene expression 

states in malignant cells. Based on the target gene signatures that define the adrenergic, transitional and 

mesenchymal states, we employed probabilistic models to infer cell-cell signaling networks in our 

scRNA-seq data using NicheNet30 (Supplementary Fig. 7A-D). NicheNet integrates known ligand-

receptor and ligand-target interactions to infer signaling relationships based on correlation of gene 

expression. We modelled ligand-receptor-target interactions between non-malignant and malignant cell 

populations for each patient yielding 87 interactions, in which a ligand expressed by a specific non-

malignant cell-type was predicted to bind a receptor and effect target gene expression in malignant cells 

(Fig. 7A, Supplementary Fig. 7E, Supplementary Table 5). When evaluating the amount of interactions 

predicted for each of the three malignant cell states we previously defined (i.e. adrenergic, transitional 

and mesenchymal), we found that the majority of predicted interactions occurred between non-malignant 

cells and mesenchymal neuroblasts (Fig. 7B). Non-malignant endothelial cells facilitated the majority of 

interactions with mesenchymal neuroblasts (Fig. 7B, Supplementary Fig. 7E-F), which is consistent with 
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the migratory phenotype of mesenchymal neuroblasts and their reliance on vascular interactions 

preceding systemic dissemination8,31. Moreover, other specific cell-cell interactions were also found 

among the 3 malignant cell types. Interestingly, we found the expression of tumor associated 

transcriptional regulators such as ZFHX3, MYCN and NUPR1 to be correlated with specific ligand-

receptor interactions in their respective malignant cell types, suggesting a role for cell-cell interactions 

in promoting broader transcriptional activity in subsets of malignant cells (Fig. 7C). Taken together, these 

data implies a role for the PNT tumor microenvironment in influencing different malignant cell states 

through cell-cell signaling, and highlights potential paracrine cell signaling pathways involved in PNT 

microenvironments. 

Discussion 

Patients with peripheral neuroblastic tumors (PNTs) are characterized by extensive inter-and intratumoral 

heterogeneity5,32,33. Recent studies have reported that PNTs were comprised of different types of 

transdifferentiating malignant cells with dissimilative epigenetic landscapes and gene expression 

profiles7,8. Moreover, the tumor microenvironment (TME) plays an important role in tumor biology and 

adds more complexity to intratumoral heterogeneity34,35. Here we provide comprehensive analysis of the 

cellular heterogeneity of PNTs through single-cell transcriptomic analysis of 4267 cells obtained from 

seven surgically resected tumors. Our data revealed 11 unique cell types, corresponding to 3 malignant 

cell types, 6 immune cell types, and 2 other non-malignant microenvironment cell types across the 7 

unique tumors of the cohort (Supplementary Fig. 8A-B). We also modelled cell-cell signaling events that 

occur in PNTs, identifying possible cell extrinsic regulatory mechanisms within the tumor milieu. Our 

samples showed significant cellular heterogeneity and we identified rare subpopulations in a number of 

samples in this cohort, which would have otherwise been masked in bulk gene expression discovery. This 

highlights the utility of scRNA-seq in the classification of cell diversity that exists within heterogenous 

tumors. 

Using single-cell sequencing, we could facilitate virtual microdissection of malignant cells and 

microenvironmental heterogeneity within and between tumors. In particular, among malignant 

populations, we detected the expression of genes related to mesenchymal/neural crest cell and 

adrenergic/noradrenergic neuroblastoma cells, consistent with previous reports7,8,36,37. Notably however, 

we found that some high-risk tumors display an additional transitional state with gene expression 

characteristics associated with aggressive disease, rapid proliferation and metastasis. Consistent with 

these findings, transitional signatures were also associated with more aggressive clinical behavior in bulk 

transcriptome cohorts, such as enrichment in high-stage and MYCN-amplified patients and a strong 

association with poor prognosis. This enrichment with MYCN-amplification was particularly intriguing 

since none of the tumors of this cohort were MYCN-amplified, more evidence that high-risk 

neuroblastoma is often a MYC-driven disease regardless of whether the tumor is MYCN-amplified or 

MYCN non-amplified38-40. Moreover, while only based on the small sample size of this cohort, the 2 

tumors which had relatively high proportions of transitional cells (NB3 & GNB1), were the only tumors 

that failed to show a complete response to upfront therapy (Supplementary Table 1), again highlighting 

the potential importance of transitional cells as biomarkers of prognosis and target for novel therapies in 

PNTs. 

Prior studies have speculated that adrenergic/noradrenergic cells transdifferentiate to 

mesenchymal/neural crest cells and vice versa7,8,36,37,41. This theory was primarily based on spontaneous 

state polarization of isogenic pairs of cells and forced overexpression experiments using strong lineage 
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associated transcription factors to reprogram cell phenotype such as PHOX2B, PRRX1, ASCL1 and 

NOTCH37,8,36,41. Our trajectory modelling using single-cell RNA-seq data, and our reclassification 

approach for H3K27ac landscapes in neuroblastoma cell lines is in support of this theory, albeit by a 

slightly more complex mechanism involving transitional cells as a transdifferentiation intermediate cell 

state. This model is akin to the long-held observation that neuroblastoma cell lines demonstrate 3 

morphological variants: neuroblastic (N), substrate-adherent (S) or intermediate (I) phenotypes42-45. N-

type cells are said to resemble embryonic sympathoblasts (similar to the adrenergic phenotype), S-type 

cells resemble Schwannian, glial or melanocytic progenitors (similar to the mesenchymal phenotype) 

and I-type cells have an intermediate phenotype with the potential to differentiate toward either cell type 

(similar to our proposed transitional phenotype)42-45. Importantly, similar to the 3-state model we present 

here, neuroblastoma cells in culture are capable of interconversion and transdifferentiation between these 

morphological classes42-45. Moreover, examination of scRNA-seq data derived from the embryonic 

murine sympathoadrenal system, shows expression patterns that suggest that differentiation through a 

transitional state may be developmentally co-opted. This phenotype has distinct gene expression markers 

of significant note such as MYCN and EZH2, as well as upregulation of neurodevelopment and 

neurogenesis-related pathways and activation of some distinct super-enhancer loci. We suggest that the 

transitional state is likely transient in the respect that the cells have greater cell plasticity and are more 

likely to adapt to changing environments. We hypothesize that this state could act as a pit-stop during 

transdifferentiation depending on subtle environmental exposures, which may also give them a fitness 

advantage to survive anti-cancer barriers (i.e. anti-cancer therapies, and/or homeostatic anti-cancer 

mechanisms). Nevertheless, future research will benefit from functional genomics studies on key 

“transitional” genes and lineage tracing studies that can follow phenotypical adaptation in response to 

environmental stimuli. This will be required to elucidate the precise interconnections between all cell 

states, and how these states relate to other established models of neuroblastoma cell phenotype such as 

morphological and epigenetic classification methods.  

Another key finding from recent studies, is that tumor cells convert to a mesenchymal/neural crest cell 

phenotype in relapsed neuroblastoma tumors and upon drug exposure in vitro, suggesting that 

mesenchymal differentiation is a drug-resistance mechanism in neuroblastoma7,8,46. However, our 

analysis of bulk gene expression from diagnostic tumors paradoxically shows that the mesenchymal-only 

class is not a predictor of poor outcome, and indeed is generally predictive of favorable outcome. Since 

our data showed that transitional signatures are more predictive of poor outcome, we suggest that a 

mesenchymal phenotype is not a high-risk phenotype per se, but rather that transitional cells may have 

the capacity to escape cytotoxic therapy by transdifferentiation to mesenchymal phenotype under drug 

selection pressure. But importantly, since cells maintain greater plasticity, this would potentially also 

allow adaptation back a cell state that supports other characteristics of aggressive tumors when drug-

selection pressure is released (e.g. rapid proliferation and metastasis). This concept is supported by the 

analysis of transitional subgroups in bulk neuroblastoma cohorts, which demonstrates transitional-only 

and transitional-mesenchymal subgroups have significantly poorer outcome than other classes, including 

transitional-adrenergic class. This suggests that a mesenchymal differentiation tendency is actually 

unfavorable rather than an intrinsic mesenchymal phenotype.  

Among non-malignant cells, we found that non-neuroblastoma samples have a higher proportion of 

infiltrating immune cells compared with neuroblastoma samples, especially cytotoxic T-cells. Cytotoxic 

T-cells are a key player in tumor surveillance and inhibition of tumor growth by secreting cytokines as 

well as perforin or Fas-mediated cytotoxic response47. Therefore, it is an important target of 
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immunotherapy and considered as an important prognostic indicator in many cancers, including 

neuroblastoma29,48. Multiple studies have shown that T lymphocyte infiltration largely correlates with 

tumor differentiation status and MYCN-non-amplified gene status29. MYCN has been reported to 

downregulate the expression of peptide-MHC I (pMHC I) in neuroblastoma to evade host immune 

surveillance leading to a T-cell-poor microenvironment in MYCN-amplified neuroblastoma49. While our 

cohort lacked MYCN-amplified samples, it was interesting to note that MYCN upregulation in 

transitional neuroblasts may induce similar changes in the high-risk samples identified to contain these 

cell types.  

Using modelling of cell-cell signaling in our cohort, an immune-regulatory relationship between 

cytotoxic T-cells and malignant cells was also inferred, with the cytotoxic T-cell specific ligand ITGB7 

predicted to effect the adrenergic gene target ZFHX3 by binding to integrin or hedgehog signaling 

molecules on neuroblasts (ITGAE, ITGA9, PTCH1, PTCH2). ZFHX3 is a transcription factor involved 

in normal neurogenesis/neuronal differentiation and is highly expressed in favorable NB cases. 

Furthermore, the upstream integrin/hedgehog signaling molecules had also been implicated in NB 

differentiation suggesting that this interaction with cytotoxic T-cells may have eventuated in a neuronal 

differentiation phenotype in neuroblasts50-53. This finding supports the aforementioned connection 

between the differentiation status of neuroblasts and the extent of T cell infiltration in NB tumors. 

Interestingly, we also found a relatively high level of macrophages in neuroblastoma tumor 

microenvironments compared with ganglioneuroblastoma and ganglioneuroma samples. From our cell-

cell interaction modelling we had also predicted that IGF1 ligands released specifically by non-

inflammatory macrophages could modulate the transitional gene target MYCN by binding to IGF1R 

receptors on neuroblasts. MYCN is a core pro-tumorigenic transcription factor in malignant neuroblasts 

and is strongly associated with poor patient prognosis, the upstream IGF1R receptor is highly expressed 

in neuroblastoma and is synonymous with a metastatic phenotype, suggesting an increased metastatic 

potential in neuroblasts after IGF1R mediated interactions with non-inflammatory macrophages54-58. This 

metastasis promoting interaction is further supported as tumor-associated macrophages are known to be 

more prevalent in neuroblastoma patients with metastatic disease compared with localized lesions13. In 

line with these findings we had also predicted that AREG ligands released by inflammatory macrophages 

would influence the mesenchymal gene target NUPR1 by interacting with EGFR family receptors (EGFR, 

ERBB2, and ERBB3) on malignant neuroblasts. NUPR1 is a transcriptional regulator that has not 

previously been implicated in neuroblastoma but has been established in other cancers as a metastasis 

and drug-resistance promoting gene, the upstream EGFR receptors have, similarly, been associated with 

a metastatic phenotype in neuroblastoma, supporting the notion that EGFR mediated interactions with 

inflammatory macrophages elicit a metastatic phenotype59-62. The identification of non-malignant cell 

types and potential cell-cell interactions have provided a glimpse into the complex paracrine signaling 

events that may underlie malignant neuroblast transdifferentiation in individual PNTs, though there still 

remains ample room for experimentally validating these interactions using cell line models or spatial 

transcriptomic methodologies in PNT tumors. 

Although scRNA-seq provides new tools for high resolution profiling of cell populations, it is still with 

some limitations. One limitation of our study is that the high-risk primary tumors were obtained from 

patients who had received prior chemotherapy, while the remaining tumors in the study were 

chemotherapy naïve. Therefore, it is unknown to what extent these treatments may have influenced 

intratumoral heterogeneity. This may be particularly important when considering immune proportions, 

because of the potential immuno-depletive effects of chemotherapy. Future longitudinal studies that pair 
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pre-treatment biopsy specimens with post-chemotherapy surgical resections and relapsed tumors will be 

valuable to unveil tumor phenotype adaptation in the context of drug induced tumor evolution. Another 

limitation within our study is the small number of samples profiled. This is caused by the relative paucity 

of ganglioneuroblastoma intermixed (GNBi) and ganglioneuroma, as well as the difficulty of obtaining 

adequate viability to create viable cDNA libraries after single-cell dissociation and cell sorting. The 

addition of more samples with a diverse molecular background will be invaluable to the single-cell field 

such as MYCN-amplified, ALKmut, ATRXmut, PHOX2Bmut, TERT rearrangements, RASmut, p53mut 

and other segmental chromosomal alterations recurrent to neuroblastoma63,64. This will facilitate the 

generation of molecular-associated single-cell gene expression profiles that will be important to 

distinguish genetic and non-genetic facets of cell phenotype. Finally, while we have aimed to assess 

tumor cellular compositions in a quantitative manner, it will be important to validate these findings with 

potential that there was a bias in cell collection that arises when enriching viable cells. A notable cell 

type that was not identified was the Schwann cells when there was histological evidence of Schwannian 

stroma, highlighting the potential for missing or inaccurately quantifying cell types in the tumor 

microenvironment. 

In conclusion, our analysis has uncovered extensive intra- and inter-individual, functional and 

transcriptomic heterogeneity in neuroblastic tumor cells and associated microenvironmental cells. We 

identify novel mechanisms of phenotypical heterogeneity, highlighting the importance of considering 

cell plasticity and transdifferentiation potential in new therapeutic strategies for PNTs. 

Methods 

Patient sample collection 

Fresh peripheral neuroblastic tumor (PNT) tissue samples were obtained from 7 patients enrolled at the 

Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine (Shanghai, China). This 

study was approved by the ethics committee of Xinhua Hospital and was conducted in accordance with 

the Declaration of Helsinki. Patients were enrolled for this study based on pathological diagnosis. All 

patients were enrolled under informed consent. Staging and risk assessment were performed according 

to the International Neuroblastoma Staging System Committee (INSS) system and the International 

Neuroblastoma Risk Group (INRG) respectively, based on tumor histology and MYCN-fluorescent in 

situ hybridization (FISH) analysis. Tumors were resected from the primary site either prior to the patient 

undergoing chemotherapy or post-induction chemotherapy. Treatment regimen included “treatment 

protocol CCCG-NB-2014”. Detailed clinical information on individual patients in this study are outlined 

in Supplementary Table 1.   

Immunohistochemical staining  

All PNTs specimens were fixed, paraffin-embedded, sectioned, and stained with hematoxylin and eosin 

(H&E) following routine method of Xinhua Hospital’s Pathology. Immunohistochemical (IHC) studies 

employed 5μm paraffin-embedded slides. Antigen was retrieved by citric acid buffer (PH6.0) in the 

microwave oven. Endogenous peroxidase was inactivated by incubation in 3% H2O2 for 25 minutes. 

After using 3%BSA to block nonspecific sites for 30 minutes, slides were incubated with primary 

antibody anti-CD3 (1:100, GB13014, Servicebio) to assess the presence of infiltrating T lymphocytes. 

Single cell preparation and flow cytometry 

Following surgical resection, fresh tissue samples were immediately transferred to DMEM/F12 medium 

(MULTICELL), supplemented with 2% FBS (Gemini Bio-Products) and were delivered on ice within 60 

minutes to the laboratory to be processed. Tissue processing was completed within 90 minutes of 
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collection. Samples were first rinsed in ice cold PBS (MULTICELL) with 2% penicillin-streptomycin 

(BBI life science) and then minced into 1mm3 pieces using curved scissors under sterile conditions. The 

fragments were further enzymatically dissociated into single cells using LiberaseTM (Roche) with a final 

concentration of 0.26 U/mL and a final volume of 25ml Liberase solution/0.5g tissue on a shaker with a 

speed of 85 rpm for 45 min at 37℃. The Liberase was diluted in Hyclone L-15 Leibovitz media. 

DMEM/F12 media supplemented with 10% FBS was used to stop dissociation. The resulting single-cell 

suspension was filtered through a 70µm nylon cell strainer (BD Falcon) and then centrifuged for 5 min 

at 300g at room temperature. The cell pellet was resuspended in 500µL of PBS supplemented with 0.1% 

BSA (BBI life science) and passed through a 40µm nylon cell strainer (BIOFIL). This cell suspension 

was stained with Calcein-Blue (Invitrogen) and DRAQ5 (CST) prior to fluorescence activated cell 

sorting (FACS) in order to isolate live and nucleated cells (Calcein-Blue+ DRAQ+). Single cells were 

sorted using a BD Becton Dickinson FACSAriaII into 96-well PCR plates. Each well of the 96-well plate 

contained 3µL lysis buffer (10U Recombinant RNase Inhibitor (Takara Bio), 0.2% Triton X-100 (Sigma-

Aldrich), 3mM dNTP mix (Takara Bio)), and reverse transcription reagents (see below). Immediately 

following FACS, plates were briefly centrifuged and stored at -80℃. 

Single cell library preparation and RNA sequencing 

scRNA-seq was conducted using the Smart-seq2 protocol9 with some modifications being made to 

incorporate unique molecular identifiers (UMIs) into the 3’ end of transcripts65. Reverse transcription 

was performed directly in the 96-well plates by incubation at 72℃ for 5 min, after which the plate was 

replaced on ice to allow the oligo-DT primer to hybridize to the poly(A) tail of the mRNA molecules. 

The oligo(dT) primer used in reverse transcription included an additional 8bp cell barcode, 9bp unique 

molecular identifiers (UMIs) and template-switching oligo sequence. PCR amplification was performed 

by adding 15µL PCR mix containing 0.5U KAPA HiFi HotStart (Kapa Biosystems), 1x KAPA Buffer 

(Kapa Biosystems), 12.5mM MgCl2 (Kapa Biosystems), 5µM ISPCR Primer and 7.5mM dNTP mix 

(Takara Bio). PCR amplification was performed in a thermal cycler (BIORAD C1000 Touch Thermal 

Cycler) at 98℃ for 3 min, 24 cycles of 98℃ for 20s, 67℃ for 15s, and 72℃ for 6 min, and a final 

incubation at 72℃ for 5 min. PCR products were purified using 1X AMPure XP bead (Beckman, Cat. 

#A63882) and Qubit dsDNA HS Assay Kit (Invitrogen, Cat. #Q32854). TN5 tagmentation and library 

amplification realized 3’end fragments by Nextera XT DNA Sample Preparation Kit (Illumina, Cat#FC-

131-1024) according to the manufacturer’s instructions while P5_TSO and Nextera_N7xx took the place 

of the custom primers. Pooled single cell libraries were sequenced at an average depth of 0.5 million 

reads per cell on an Illumina HiSeqX10 instrument using a 2 x 150bp paired end sequencing kit 

(Genewiz). 

Single cell RNA-seq data analysis 

Raw sequencing data was processed using the Dr.Seq2 pipeline66. Reads were aligned to the human 

genome (hg19) using STAR67. In each read, cell barcodes were between 9:16bp and UMIs were between 

17:26bp. Following the Dr.Seq2 pipeline we converted the resultant aligned sam file to a bed file using 

a custom script. We then generated a gene annotation file and annotated the aligned bed file. We then 

reproduced the aligned sam file to contain gene annotations, cell barcode and UMI information for each 

read. UMI counts were calculated by removing duplicate reads which had an identical genomic location, 

cell barcode and UMI sequence, resulting in the final UMI count matrices used for downstream analyses. 

Cells with fewer than 600 genes or more than 5000 genes were removed (genes were only considered if 

they were expressed (UMI > 1) in at least 3 cells). Furthermore, cells with more than 30% ribosomal 

gene content were filtered. Downstream log normalization and scaling were performed using the R 
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package Seurat (version 3)68. Highly variable genes were identified using “vst” model of all expressed 

genes in Seurat. This output was used to perform a principal component analysis (PCA), and the variance 

in each principal component (standard deviation) was visualized on an elbow plot which further used to 

determine the PC-cutoff for downstream clustering and dimensionality reduction analysis. Additionally, 

clustering trees were generated using the R Clustree Package69 to identify a stable clustering resolution 

parameter. After identifying the number of PCs and resolution to use for downstream analysis, Uniform 

Manifold Approximation and Projection (UMAP)-based dimensional reduction was performed using 

Seurat68. All single-cell expression signatures were created using AddModuleScore function in Seurat 

and visualization of data was undertaken using ggplot2, Seurat, Monocle2, and CONICSmat plotting 

functions16,19,68,70. 

Copy number variations were inferred from single cell RNA-seq data using the CONICSmat R-package16 

with some minor modifications. Rather than using chromosomal arms for regions of mixture model 

assessment, a custom script was used to define a regions of interest. This script defined regions based on 

the difference between the 100 gene rolling average of inferred malignant and non-malignant cells (for 

this, “sympathetic” and “mesenchymal” clusters were assumed to be malignant, while the non-malignant 

clusters were assumed to be all other clusters). Statistically significant mixture-models were then 

assessed using these new differentially defined regions. All reported mixture models were chosen based 

on: a 2-component model being more likely than a 1 component model using Bayesian Information 

Criterion (BIC) ratio of >1.01 (see Supplementary Table 2, BIC ratio = 

BIC.1component/BIC.2.component). After candidate regions for CNVs were chosen, a CNV score was 

calculated for each cell as the average adjusted area under the curve (adj.auc) for all candidate regions 

identified in that sample, using the 100 gene rolling average difference between malignant and non-

malignant cells (the auc was adjusted for the length of each region in terms of number of genes). All 

CNV heatmaps were generated using the identified malignant and non-malignant clusters from the above 

analyses and were plotted using an expression threshold to keep only genes with average expression 

greater than the 10% quantile of average gene expression for all genes. For visualization, CNVs were 

color mapped using a lower bound of 1 standard deviation and upper bound of 2.5 standard deviations 

from the mean of the global rolling average. Projection of CNVs to UMAP plots was done using the 

Seurat68. 

Trajectory analyses of single cells was performed using the Monocle2 R package (19 version 2.8.0) with 

the CellDataSet created using UMI count values. Pseudotime and trajectory calculation was undertaken 

using expressed genes from the Adrenergic and Mesenchymal signatures previously published8. Gene 

expression pseudotime plots were plotted using plot_genes_in_pseudotime function and gene expression 

pseudotime heatmaps were plotted using plot_genes_branched_heatmap function in the Monocle 

package. Cell state signatures were created using the top 60 genes ranked by adjusted p-value using 

FindAllMarkers for overexpressed genes (average log fold change>0.25) that are expressed in at least 

25% of cells for that state designation (Supplementary Table 3). 

Gene ontology analysis was performed using the topGO package. Significantly enriched gene ontology 

terms were identified using the “classic” algorithm and the “fisher” test. Representative tests were chosen 

that had a p-value < 0.001.  

Ligand-receptor-target interaction modelling in single cells was performed using the NicheNet R 

package30. The approach included a number of steps to identify higher confident interactions, as 

summarized in Supplementary Fig. 7A. In order to exclude lowly expressed/represented ligands and 
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receptors in our analysis we applied gene expression and cell proportion based cut-offs around the non-

zero mean (Supplementary Fig. 7B). We considered that each patient had a unique tumor 

microenvironment and so ran NicheNet models on a per-patient basis, incorporating malignant and non-

malignant cell types that were only present in that patient (≥5 cells) (Supplementary Fig. 7C). 

Differentially expressed genes in adrenergic, transitional and mesenchymal neuroblasts were modelled 

as downstream gene targets of ligands produced by non-malignant cell types in each patient. Ligand 

activity scores were generated for each malignant cell and further correlated with target gene/signature 

expression using Pearson regression to better infer whether a given ligand effected target gene/signature 

expression. These interactions had to be both positively and significantly correlated (p<0.05 & r>0) to 

be considered for downstream analysis (Supplementary Fig. 7D). We finally looked for overlapping 

interactions among patients (≥2 patients) which signified ligand-receptor-target interactions that were 

likely to be more representative. Overlapping ligand-target interactions were visualized as chord 

diagrams, with chords representing interactions between a specific ligand in one non-malignant cell type 

and one/several downstream gene targets in neuroblasts (Supplementary Fig. 7E). Ligand-target and 

ligand-receptor scores from NicheNet were visualized alongside average expression values of 

ligand/receptors/targets in single cells to further illustrate interaction networks for overlapping 

interactions (Fig.7A). 

Bulk Tumor Analyses 

Bulk tumor analyses were conducted on previously described tumor microarray cohorts: Kocak26 and 

Versteeg27. Average gene expression signatures (i.e. Adrenergic, Transitional and Mesenchymal) were 

created from the average of all z-scores for genes in each signature. Kaplan-Meier analyses were 

conducted based on a median expression cutoff to stratify high and low expression groups. P-values for 

survival analysis were calculated using log-rank tests. To classify tumors into 5 “Tumor Class” subgroups, 

average z-scores for each of the Adrenergic, Transitional and Mesenchymal signatures were again z-

score scaled and subgroups were created based on the following criteria:  

H3k27ac ChIP-seq & RNA-seq data integration and analysis 

Adrenergic 

signature 

expression 

Transitional 

signature 

expression 

Mesenchymal 

signature 

expression 

Assignment 

>0.35 <0.35 <0.35 Adrenergic  

>0.35 >0.35 <0.35 Adrenergic-transitional  

<0.35 >0.35 <0.35 Transitional  

<0.35 >0.35 >0.35 Transitional-Mesenchymal 

<0.35 <0.35 >0.35 Mesenchymal 

<0.35 <0.35 <0.35 Either Adrenergic, Transitional or Mesenchymal 

groups, based on which signature had the highest 

value 

>0.35 <0.35 >0.35 Either Adrenergic or Mesenchymal groups, based on 

which signature had the highest value 

>0.35 >0.35 >0.35 Either Adrenergic-transitional or Transitional-

mesenchymal groups, based on whether the 

Adrenergic or Mesenchymal signature had the 

highest value 
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bigWig files containing H3k27ac ChIP-seq read densities for 33 neuroblastoma samples were retrieved 

directly from the Gene Expression Omnibus (GEO); GSE906837. bigWig files were converted to the 

bedGraph format using the UCSC bigWigToBedGraph tool, and then combined into one bedGraph using 

bedtools (unionbed)71. Each sample was then normalized for total read density and multiplied by a 10^6 

scaling factor. The bedops tool was then used to find overlapping read bins with the 5975 previously 

annotated superenhancer regions7,72. Matched RNA-seq profiles for these 33 samples were directly 

retrieved from GEO; GSE906837. Average gene expression signatures (i.e. Adrenergic, Transitional and 

Mesenchymal) were created from the average of all z-scores for genes in each signature. To classify 

samples into the same 5 subgroups as described above for bulk tumor analyses, average z-scores for each 

of the Adrenergic, Transitional and Mesenchymal signatures were again z-score scaled and subgroups 

were created based on the criteria described previously. Normalized ChIP-seq read densities in the 

bedGraph file were then averaged across matching genomic bins for samples belonging to each of the 

five subgroups determined by RNA-seq. Five bigWigs representing averaged H3k27ac ChIP-seq profiles 

across the five subgroups were generated from the bedGraph file using bedtools (bdg2bw)71. 

Differentially enriched super-enhancers were then identified using 2-sided t-tests for the normalized 

ChIP-seq read densities for previously annotated super-enhancer regions7 between cells belonging to 

each Tumor Class. All p-values were then adjusted using Benjamini & Hochberg correction and enriched 

super-enhancers were identified if p<0.05. Enriched super-enhancers for the adrenergic cell lines were 

identified by comparing to the mesenchymal and vice versa. Transitional enriched super-enhancers were 

identified by comparing cell lines of any combination of Adrenergic-Transitional, Transitional or 

Transitional-mesenchymal cell lines compared with Adrenergic & Mesenchymal cell lines (see 

Supplementary Table 4A-B for comparisons and statistics). Downstream visualization was undertaken 

using the EnrichedHeatmap package on all unique enriched super-enhancers identified by differential 

testing based on 1kb bins through the 0.5Mb region around the center of each annotated super-enhancer 

locus73. All H3K27ac z-score plots were created by taking the mean of all z-scores of all enriched 

superenhancers designated as either Adrenergic, Transitional or Mesenchymal for each binned region for 

each cell line and plotted using ggplot270. H3K27ac z-score plots for Adrenergic and Mesenchymal 

enriched super-enhancers were then quantified for each tumor class by calculating the total area under 

curve using the auc function in R package MESS using default parameters considering each cell line 

belonging to the 5 Tumor Classes (error bars among cell lines from each class are represented as standard 

deviation). H3K27ac traces on core-regulatory transcription factors and markers of transitional state were 

plotted using the Gviz package74 using regions corresponding previously annotated super-enhancers7. 

Figure Legends 

Figure 1: Single cell RNA-seq of peripheral neuroblastic tumors 

A) Representative hematoxylin and eosin (H&E) staining in neuroblastoma (n=3), ganglioneuroblastoma 

(n=3) and ganglioneuroma (n=1) tumor samples. Scale bar: 20μm. Neuroblastomas are mostly composed 

of poorly/un-differentiated neuroblasts, which are small round cells with large nuclei. 

Ganglioneuroblastoma/ganglioneuroma are defined by the presence of mature ganglion cells and 

Schwannian stroma.  

B) Uniform Manifold Approximation and Projection (UMAP) plots of 4267 cells from all 7 tumor 

samples colored by original sample identity. 

C) UMAP plots of 4267 cells from all 7 tumor samples colored by transcriptomic cluster identity. 

D) Left: UMAP plots of 4267 cells classified by broad cell type based on marker gene expression from 

Fig. 1E. Right: Proportion of broad cell types within each of the 7 tumor samples. 
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E) UMAP plots of 4267 cells from all 7 tumor samples. Average expression of marker genes for particular 

cell types (blue: low, dark-red: high). Marker genes and their associated cell types are indicated above 

each plot. Arrows indicate regions of high expression. 

F) Heatmap of CNVs for individual cells (rows), visualized by a rolling gene expression average centered 

on 100 gene windows at each chromosomal position (columns). Dark-red: copy number gains, blue: copy 

number losses. Colored sidebars denote cell type classification from Fig. 1D. Malignant cells (above 

dashed line) display an aberrant copy number profile compared to non-malignant cells (below dashed 

line). This plot uses the malignant cells from the NB2 sample compared with the non-malignant cells 

from all tumors. For a similar comparison for all other samples, see Supplementary Fig. 1L. 

G) Top: Two component Gaussian Mixture Models (GMM) were fit based on expression of genes located 

within the tested chromosome segments for each cell and tumor sample. Gaussian mixture components 

are show in different colors and overlaid on a density plot of 100-gene rolling average expression z-

scores along the chromosome segment. A CNV was called in the component which had the highest 

proportion of inferred malignant cells. Significance of a segmental CNV call was determined for mixture 

models more likely to represent 2 components using Bayesian Information Criterion (BIC) metrics. See 

Supplementary Table 2 for all candidate CNV regions assessed this way and their respective BIC metrics. 

Bottom: Scatter plot visualization for each cells 100-gene rolling average in the tested CNV region. 

Malignant cells (red) and non-malignant cells (blue) are shown. Shown in this plot is a representative 

mixture model for Chromosome 17 in NB2, showing strong concordance between CNV values and 

predicted malignant cells. 

H) Left: UMAP plot of all cells (n=4267) colored by CNV classification. Confident CNV inferences 

were made for cells with a CNV score > 0.12. For CNV scores projected to a UMAP plot see 

Supplementary Fig. 1K. Right: Proportion of cells within each cell type based on CNV classification. If 

a cell cluster had >50% of cells classified to contain CNVs, then all cells in that cluster were classified 

as malignant (* indicates malignant cell types).  

I) UMAP plots showing preliminary cell type classification of: left: malignant cells (n=2024) or right: 

non-malignant cells (n=2243) split by CNV classification.  

J) UMAP plots showing original sample identity of: left: malignant cells (n=2024) or right: non-

malignant cells (n=2243) split by CNV classification.  

Figure 2: Trajectory modelling of malignant neuroblasts identifies a transitional phenotype as an 

intermediate state between adrenergic and mesenchymal states  

A) UMAP of 2024 malignant cells colored based on the average expression of genes in a previously 

published adrenergic gene signature8 (blue: low, dark-red: high). 

B) UMAP of 2024 malignant cells colored based on the average expression of genes in a previously 

published mesenchymal gene signature8 (blue: low, dark-red: high). 

C) Scatter plot of malignant cells (n=2024) based on adrenergic and mesenchymal gene signature 

expression. Cells colored according to transcriptomic cluster defined in Supplementary Fig. 2A.  

D-G) Trajectory-based inference of malignant cells (n=2024) in a two-dimensional space using 

Monocle2 (DDRTree). Cells are represented as individual dots ordered along the trajectory (solid lines) 

by increasing pseudotime19.  Pseudotime was modelled based on expressed genes from previously 

defined signatures8 (see methods).  (D) Cells are colored according to pseudotime using the left most 

arm as the root of the trajectory. (yellow: low, brown: high). (E) Cells are colored according to the average 

expression of genes within the adrenergic gene signature8 (blue: low, dark-red: high). F) Color indicates 

the average expression level of genes within the mesenchymal gene signature8 (blue: low, dark-red: high). 
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(G) Cells colored by inferred cell state (adrenergic (n=1007), transitional (n=209) or mesenchymal 

(n=808)).   

H) Violin plots of adrenergic (left) and mesenchymal (right) gene signatures for all malignant cells 

segregated by inferred cell state in Fig. 2G. Cells are colored according to transcriptomic cluster defined 

in Supplementary Fig. 2A. P-values are provided for comparisons made using t-test (***, p<0.001). 

I) Trajectory plots for each tumor sample, illustrating which cell state (in Fig. 2G) cells belong to. Cells 

are colored by cell state identity. 

Figure 3: Malignant neuroblasts in PNTs have gene expression characteristics representative of 

various differentiated stages in the developing neural crest 

A) Gene expression of individual cells ordered by pseudotime along arms of the trajectory in Fig. 2G. 

Each point represents a cell, with the dashed line representing a natural cubic splines curve fitted to all 

points. Pseudotime was calculated considering the adrenergic to transitional trajectory, the adrenergic to 

mesenchymal trajectory or the transitional to mesenchymal trajectory depending on the respective “states” 

featured in each plot. Marker genes which were significantly altered along both trajectory arms are used 

as examples; adrenergic (DBH, TH), transitional (EZH2, MYCN) and mesenchymal (FN1, VIM). Cells 

are colored according to cell states. 

B) GO signature expression of individual cells ordered by pseudotime along arms of the trajectory in Fig. 

2G. Each point represents a cell, with the dashed line representing a natural cubic splines curve fitted to 

all points. Pseudotime was calculated considering the adrenergic to transitional trajectory, the adrenergic 

to mesenchymal trajectory or the transitional to mesenchymal trajectory depending on the respective 

“states” featured in each plot. Marker pathways which were significantly altered along both trajectory 

arms are used as examples; adrenergic (norepinephrine metabolic process, catecholamine metabolic 

process), transitional (nervous system development, neurogenesis) and mesenchymal (extracellular 

matrix organization, collagen metabolic process). Cells are colored according to cell states. 

C) UMAP plots on murine neural-crest cells from embryonic day 12.5. Left: Shows the major cell types 

as defined in Furlan et al24. Right: Expression of adrenergic, transitional and mesenchymal state 

signatures in neural crest cells. 

Figure 4: Tumors expressing transitional neuroblast signatures are associated with poor prognosis 

in neuroblastoma 

A) Heatmap detailing the classification of neuroblastoma patients from a bulk mRNA (microarray) 

profiling cohort (Kocak, n=649 patients26) based on adrenergic, transitional and mesenchymal gene 

signatures. Gene expression values (rows) for each tumor (columns) were arranged based on their 

respective gene signature. Column averages were used for each signature (shown immediately below the 

heatmap) to classify tumors to Tumor Class subgroups: Adrenergic-only, Adrenergic-Transitional, 

Transitional-only, Transitional-Mesenchymal, and Mesenchymal-only (see methods). Patient metadata 

concerning; MYCN status (amplified) and neuroblastoma staging (INSS 4) are annotated in bars 

underneath the heatmap. Scale bar indicates gene expression z-scores. 

B) Kaplan-Meier plots of overall survival (top) and event free survival (bottom) in the Kocak cohort 

colored based on Tumor Class classifications made in Fig. 4A. P-value was calculated using log-rank 

tests, comparing all transitional subgroups combined to adrenergic and mesenchymal combined. 

C) Boxplots of transitional gene signature expression in patients of the Kocak cohort (n=649), when 

dichotomized by MYCN amplification status (left; non-amplified vs amplified) or INSS staging (right; 

stage 1, 2, 3 & 4S vs stage 4). P-values are reported from 2-sided t-tests, and boxes represent first-
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quartile/median/third-quartile of expression values, with the whiskers representing the 95% confidence 

interval, and large points representing outliers. Small points represent individual tumors. 

Figure 5: Neuroblastoma cell lines expressing transitional neuroblast signatures are at the junction 

between adrenergic and mesenchymal super-enhancer states 

A) Global normalized H3K27-acetylation (H3K27ac) values for cell lines classified to 5 subgroups of 

cells lines as listed (see, Supplementary Fig. 5A for gene expression classification). Super-enhancer loci 

enriched in either the Adrenergic cell lines (left panel, red), or Mesenchymal cell lines (right panel, blue) 

are shown. H3K27ac values are averaged across all cell lines classified in that group and represent 0.5Mb 

centered on the super-enhancer locus in that region. For individual cell line traces, see Supplementary 

Fig. 5B. Above each set of traces is the average H3K27ac z-score value for that binned region of the 

trace for each respective type of enriched super-enhancer (Adrenergic super-enhancer H3K27ac average 

z-score: red, Mesenchymal super-enhancer H3K27ac average z-score: blue). Bin size for each trace is 

1kb. 

B) Global normalized H3K27ac values for adrenergic superenhancers (red) and mesenchymal super 

enhancers (blue) were quantified for each of the classified 5 subgroups of cell lines using a z-score value 

of the total area under the H3K27ac curve. Error bars represent the standard deviation of H3K27ac AUC 

z-score for the individual cell lines allocated to each of the 5 tumor class subgroups. 

C) Representative H3K27ac for each group of classified cell lines for core-regulatory circuit transcription 

factor (CRC TFs) super-enhancer loci. Red are examples of adrenergic CRC TFs and blue are examples 

of mesenchymal CRC TFs. 

Figure 6: Neuroblastomas and ganglioneuroblastomas have distinct tumor microenvironmental 

cell types 

A) UMAP plot showing malignant (n=2024), immune (n=2022) and other (n=221) cell types from 7 

tumors. The proportion of cell types within each tumor and major tumor types are also shown 

(neuroblastoma compared with ganglioneuroblastoma/ganglioneuroma). Colors indicate the various cell 

types. 

B) UMAP plot of 2243 non-malignant cells from 7 tumors with cells colored based transcriptomic cluster. 

C) UMAP plot of 2243 non-malignant cells from 7 tumors with cells colored based on the average 

expression of marker genes for specific cell types (marker genes and associated cell types are indicated 

above to each plot). Scale: gene signature expression (blue: low, dark-red: high). Arrows indicate regions 

of high expression.   

D) Left: UMAP plot showing subtypes of non-malignant cells (n=2243) from 7 tumors. Right: the 

proportion of non-malignant cell types within each tumor and major tumor types are also shown 

(neuroblastoma compared with ganglioneuroblastoma/ganglioneuroma). Colors indicate the various non-

malignant cell subtypes.  

Figure 7: Modelling of cell-cell signaling in peripheral neuroblastic tumors 

A) Heatmap representation of normalized ligand-receptor and ligand-target interaction scores from 

NicheNet models. Rows represent ligands from non-malignant cells (n=24) with predicted receptor 

groups (n=24) or gene targets (n=30) in malignant cells as columns. Cell-type specificity of the indicated 

ligands from predictions are given alongside scaled expression values of the ligand in non-malignant cell 

types. Specificity of gene targets/receptors are based on gene expression and are annotated alongside 

scaled expression values of each receptor group/target in malignant cell subsets. Scales of the interaction 

scores for ligand-receptor and ligand-target as well as scaled gene expression are provided above the 
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heatmap. Rows and columns were hierarchically clustered using Euclidean distance and ward.D2 

functions, clustering dendrograms are shown. 

B) Stacked column graphs showing the number of ligand-receptor-target links (n=87) between adrenergic, 

transitional and mesenchymal neuroblasts and non-malignant cells. Bars are colored by non-malignant 

cell type specificity; annotations are displayed to the right. 

C) UMAP plots of malignant and non-malignant cells (n=4267 cells), colored based on whether the cell 

expresses a given ligand (blue) or its respective receptor & target (red, indicates receptor and downstream 

target are expressed in same cell). Malignant & Non-Malignant cell groups are enclosed on the UMAP. 

Supplementary Figure Legends 

Supplementary Figure 1 

A) Schematic representation of the sample preparation workflow for generating scRNA-seq profiles from 

primary peripheral neuroblastic tumors. Surgically resected tumors were first enzymatically dissociated 

into a single cell suspension. Viable and nucleated cells were then sorted into 96-well plates prior to a 

modified Smart-seq2-based library preparation and next generation sequencing. 

B) Fluorescence-activated cell sorting (FACS) was performed on dissociated tumor samples to isolate 

viable and nucleated single cells. Representative figure showing the gating strategy after staining cells 

with DRAQ5 (nucleated cells) and Calcein Blue (viable cells).  

C) Flowchart depicting the steps involved in data pre-processing of demultiplexed .fastq using the 

DrSeq2 pipeline and filtering/post-processing with the SeuratV3 (R 3.5). 

D-F) Histograms showing the distribution of total (D) UMI counts, (E) unique genes and (F) ribosomal 

reads expressed per cell. Histograms are color coded according to original patient identity. Red dashed 

lines indicate cutoffs used for selecting high quality cells. 

G) Principle component analysis (PCA) elbow plot, representing the standard deviation of each principal 

component, was constructed to visualize the amount of variance in each PC. Here, the plot shows an 

elbow at PC 10, which was chosen for PC cut-off for downstream data analysis, namely clustering and 

dimensional reduction.  

H) Clustering trees based on increased resolution parameters of the Louvain clustering algorithm used in 

Seurat. This plot was generated using the Clustree package (R 3.5)69. A stable clustering resolution 

parameter of 0.3 was chosen for downstream analysis. 

I) Gene expression heatmap of the top differentially expressed genes (rows) across each transcriptomic 

cluster (annotated columns). Individual columns represent cells, and a scale bar is provided indicating 

gene expression z-scores. 

J) Violin plot of average gene expression levels of markers that define broad cell types colored according 

to clusters (Fig. 1D). Points within the violin represent individual cells 

K) UMAP projection of CNV score in all cells (n=4267) from the 7 patient samples. 

L) Heatmap of CNVs for individual cells (rows), visualized by a rolling gene expression average centered 

on 100 gene windows at each chromosomal position (columns). Dark-red: copy number gains, blue: copy 

number losses. Colored sidebars denote cell type. Malignant cells (above dashed line) display an aberrant 

copy number profile compared to non-malignant cells (below dashed line).  

Supplementary Figure 2 

A) UMAP plots of 2024 malignant cells from all 7 tumor samples. Cells are colored by transcriptomic 

cluster identity. 
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B) Gene expression heatmap of the top differentially expressed genes (rows) genes in each malignant 

cell cluster (annotated columns) that were defined in Supplementary Fig. 2A. Individual columns 

represent cells and a scale bar is provided indicating gene expression z-scores.  

C) UMAP of 2024 malignant cells colored based on the average expression of genes in a previously 

published adrenergic gene signature7 (blue: low, dark-red: high). 

D) UMAP of 2024 malignant cells colored based on the average expression of genes in a previously 

published mesenchymal gene signature7 (blue: low, dark-red: high). 

E) Trajectory plot of all malignant cells (n=2024) constructed by Monocle 2 (DDTRee). Points represent 

cells and are colored by original sample identity.  

F) Proportion of malignant cells that are either in an; adrenergic, transitional or mesenchymal cell state, 

within each tumor sample.  

Supplementary Figure 3 

A) UMAP plots of all malignant cells (n=2024) from the 7 tumor samples. Dataset is colored according 

to the cell state generated using Monocle DDRTree.  

B) Gene expression heatmap of the top 60 differentially expressed genes (rows) of cells in either an; 

adrenergic, transitional or mesenchymal cell state (annotated columns). Individual columns represent 

cells and a scale bar is provided indicating gene expression z-scores. These genes represent the top 60 

genes in the Adrenergic, Transitional and Mesenchymal gene signatures used in subsequent analyses. 

C) Heatmap of gene expression signatures ordered by pseudotime along arms of the trajectory in Fig. 2G. 

Pseudotime was calculated considering the adrenergic to transitional trajectory (left column) and the 

transitional to mesenchymal trajectory (right column). Sidebars annotate either the cell type (columns) 

or the gene signature type (rows). Scale indicates gene expression z-scores for the given trajectory.  

D) Gene ontology (GO) enrichment analysis of adrenergic, transitional and mesenchymal gene signatures. 

Representative GO terms that were significantly enriched in each gene set are shown. 

E) Trajectory plot of all malignant cells colored based on the average expression of genes within the GO 

gene-sets identified in Supplementary Fig. 3D. Scales indicate average gene expression of all genes in 

the signature (blue: low, dark-red: high expression). 

F) Violin plots showing the expression of the adrenergic, transitional and mesenchymal state signatures 

in murine neural-crest cells from embryonic day 12.5. Cells are grouped by the cell types as defined in 

Furlan et al24. SCPs; Schwann-cell precursors. 

G) Proportion of actively dividing or non-dividing cells in adrenergic, transitional and mesenchymal 

cells. Cycling states were annotated based on the average expression levels of genes within the S and 

G2M (dividing) and G1 (non-dividing) gene sets previously published17,18.   

H) Violin plot illustrating significant difference in the disseminated tumor cell (DTC) score between 

adrenergic, mesenchymal or transitional cells. A disseminated tumor cell score was determined for each 

cell group by determining the difference between the average expression of significantly up-regulated 

and down-regulated genes of a previously published DTC gene set25. P-values are reported from a t-test. 

Points represent individual cells. 

Supplementary Figure 4 

A) Kaplan-Meier plots of overall survival (top) and event free survival (bottom) in 649 neuroblastoma 

patients from the previously published Kocak cohort26 based on the expression levels of genes in the 

Adrenergic, Transitional or Mesenchymal gene sets. Patients were dichotomized by the median 
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expression of these gene signatures (n=324 & 325 tumors respectively). P-values determined using log-

rank tests comparing both groups. 

B) Kaplan-Meier plots of overall survival (top) and event free survival (bottom) in 88 neuroblastoma 

patients from the previously published Versteeg cohort27 based on the expression levels of genes in the 

Adrenergic, Transitional or Mesenchymal gene sets. Patients were dichotomized by the median 

expression of these gene signatures (n=44 & 44 tumors respectively). P-values determined using log-

rank tests comparing both groups. 

C) Heatmap detailing the classification of neuroblastoma patients from a bulk mRNA (microarray) 

profiling cohort27 based on adrenergic, transitional and mesenchymal gene signatures. Gene expression 

values (rows) for each patient (columns) were arranged based on their respective gene signature. Column 

averages were used for each signature (shown immediately below the heatmap) to classify patient to 

Tumor Class subgroups: Adrenergic-only, Adrenergic-Transitional, Transitional-only, Transitional-

Mesenchymal, and Mesenchymal-only (see methods). Patient metadata concerning; MYCN status 

(amplified) and neuroblastoma staging (INSS 4) are annotated in bars underneath the heatmap. Scale bar 

indicates gene expression z-scores. 

D) Kaplan-Meier plots of overall survival (top) and event free survival (bottom) in the Versteeg cohort 

based on Tumor Class classifications made in Supplementary Fig. 4C.  

E) Boxplots of transitional gene signature expression in patients of the Versteeg cohort (n=88), when 

dichotomized by MYCN amplification status (left; non-amplified vs amplified) or INSS staging (right; 

stage 1, 2, 3 & 4S vs stage 4). P-values are reported from 2-sided t-tests, and boxes represent first-

quartile/median/third-quartile of expression values, with the whiskers representing the 95% confidence 

interval, and large points representing outliers. Small points represent individual tumors. 

Supplementary Figure 5 

A) Heatmap detailing the classification of neuroblastoma cell lines from a bulk mRNA (RNA-seq) 

profiling cohort (n=33 cell lines7) based on adrenergic, transitional and mesenchymal gene signatures. 

Gene expression values (rows) for each cell line (columns) were arranged based on their respective gene 

signature. Column averages were used for each signature (shown immediately below the heatmap) to 

classify cell lines to Tumor Class subgroups: Adrenergic-only, Adrenergic-Transitional, Transitional-

only, Transitional-Mesenchymal, and Mesenchymal-only (see methods). Cell line metadata concerning; 

MYCN status (amplified), ALK mutation status, PHOX2B mutation status and prior super-enhancer 

classification (SE Type) from Boeva et al7 are annotated in bars underneath the heatmap. Scale bar 

indicates gene expression z-scores. 

B) Global normalized H3K27-acetylation (H3K27ac) values for all 33 cell lines. Super-enhancer loci 

enriched in Adrenergic (top) or Mesenchymal (bottom) subgroups are shown. H3K27ac values are 

representative of each cell line and represent 0.5Mb centered on the super-enhancer locus in that region. 

Bin size for each trace is 1kb. 

C) Global normalized H3K27ac values for adrenergic superenhancers (red) and mesenchymal super 

enhancers (blue) were quantified for each of the 33 cell lines using a z-score value of the total area under 

the H3K27ac curve. 

D) Global normalized H3K27-acetylation (H3K27ac) values for all 33 cell lines (top) or when classified 

to 5 subgroups (bottom). Super-enhancer loci enriched in Transitional cell lines are shown (n=94). 

H3K27ac values are representative of each cell (top) or averaged across all cell lines classified in that 

group (bottom) and represent 0.5Mb centered on the super-enhancer locus in that region. Bin size for 

each trace is 1kb. 
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E) Representative H3K27ac tracks for each group of classified cell lines for super-enhancer loci shown 

to be enriched in Transitional-grouped cell lines. Dark-green box is an example of Adrenergic-

Transitional super-enhancer locus, Green boxes are examples of Transitional or pan-transitional super-

enhancer loci, Light-green box is an example of a Transitional-Mesenchymal super-enhancer locus. 

Supplementary Figure 6 

A) Gene expression heatmap of the top differentially expressed genes (rows) across non-malignant cell 

clusters (annotated columns) that were defined in Fig.6B. Individual columns represent cells and a scale 

bar is provided indicating gene expression z-scores.  

B) UMAP plot of 2243 non-malignant cells from 7 tumors with cells colored based on the average 

expression of marker genes for specific cell types (marker genes and associated cell types are indicated 

above to each plot). Scale: average gene expression z-scores (blue: low, dark-red: high). Left: Ellipses 

indicate the initial cell type classification. Right: Arrows indicate regions of high expression for specific 

cell subtype classification. 

C) Frequency of T-cell subtypes (top), macrophage subtypes (bottom) within each tumor sample as well 

as in the major tumor types (neuroblastoma compared with ganglioneuroblastoma/ ganglioneuroma).  

D) Representative immunohistochemical staining of CD3 in the 7 tumor samples indicating the presence 

of T cells. 40X objective (equivalent to 400X magnification). Scale bar: 20μm. 

Supplementary Figure 7 

A) Workflow for NicheNet modelling describing steps taken to determine overlapping ligand-receptor-

target interactions among the 7 PNT patients.  

B) Upper panels display frequency histograms of ligand and receptor expression (normalized expression 

values) in single cells, red lines indicate the non-zero mean of all values which is also provided in each 

plot. Lower panels display frequency histograms of ligand and receptor proportions among single cells 

(>0 normalized expression value in a given cell), red lines indicate the non-zero mean of all values which 

is also provided in each plot.  

C) Heatmap of cell type inclusion criterion for the NicheNet model. On a per-patient basis, only cell 

types that had more than 5 cells (black) were considered for NicheNet modelling (n=61). Absent cell 

types (or those that only consisted of less than 5 cells) (white) were not considered for NicheNet 

modelling. Columns represent non-malignant cell types whilst rows represent malignant cell types in 

each patient. Some models did not produce any significant interactions between associated cell types 

(n=7). The heatmap to the right represents those cell types which passed the threshold (≥5 cells) in each 

patient.  

D) Scatter plot of Pearson regression coefficients (r) of correlated ligand activity scores in malignant 

cells against target gene (x-axis) or target signature (y-axis) expression. Significant (p<0.05) and positive 

correlations (r>0) are colored in red (n=961) and their density are summarized by contour lines. 

E) Representative chord diagram of predicted ligand-target interactions (n=87) between non-malignant 

cell types (bottom) and malignant neuroblasts (top) using NicheNet. Ligands shown (n=24) are expressed 

in non-malignant cells. Individual chords are drawn from the expressed ligand (n=24) to the predicted 

gene target (n=30) in neuroblast subsets. Individual chords are colored by cell type specificity of the 

ligand and are annotated in the figure. All ligand-target links shown were predicted independently in at 

least 2 patients. 
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F) Stacked column graphs showing the proportion of ligand-receptor-target links (n=87) between 

adrenergic, transitional and mesenchymal neuroblasts and non-malignant cells. Bars are colored by non-

malignant cell type specificity; annotations are displayed to the right. 

Supplementary Figure 8: Summary of PNT single-cell RNA-sequencing 

A) Left: UMAP plot showing all cells sub-classified into various subtypes, Right: the proportion of non- 

cell types within each tumor and major tumor types are also shown (neuroblastoma compared with 

ganglioneuroblastoma/ganglioneuroma). Colors indicate the various subtypes.  

B) Summary table of the various samples used in this study. 

Supplementary Table Legends 

Supplementary Table 1 

Summary of relevant patient information, from whom primary site tumors were isolated and profiled by 

scRNA-seq. 

Supplementary Table 2 

Genomic regions with chosen 2-component Gaussian mixture models and accompanying Bayesian 

Information Criterion (BIC) statistics  

Supplementary Table 3 

Gene signatures for each malignant cell state. Top 60 genes identified by Seurat function FindAllMarkers. 

Supplementary Table 4 

Differential statistics for enriched super-enhancer regions related to Figure 5. 

Supplementary Table 5 

NicheNet summary statistics for significant cell-cell signaling interactions related to Figure 7. 
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