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Abstract 21 

Anti-cancer drug combination is an effective solution to improve treatment efficacy and 22 

overcome resistance. Here we propose a network-based method (DComboNet) to prioritize the 23 

candidate drug combinations. The level one model is to predict generalized anti-cancer drug 24 

combination effectiveness and level two model is to predict personalized drug combinations. By 25 

integrating drugs, genes, pathways and their associations, DComboNet achieves better performance 26 

than previous methods, with high AUC value of around 0.8. The level two model performs better 27 

than level one model by introducing cancer sample specific transcriptome data into network 28 

construction. DComboNet is further applied on finding combinable drugs for sorafenib in 29 
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hepatocellular cancer, and the results are verified with literatures and cell line experiments. More 30 

importantly, three potential mechanism modes of combinations were inferred based on network 31 

analysis. In summary, DComboNet is valuable for prioritizing drug combination and the network 32 

model may facilitate the understanding of the combination mechanisms. 33 

Keyword 34 

Cancer, Drug Combination, Multi-level Heterogeneous Network, Drug Induced 35 

Transcriptomic Changes 36 

 37 

 38 

Background 39 

Cancer is the leading life-threatening disease across the world with more than eighteen 40 

million new diagnosed cancer cases and 9.6 million death in 2018 [1]. Due to the genetic and 41 

phenotypic heterogeneity of cancer, conventional anti-cancer monotherapies could not reach 42 

the expectation of clinical outcome. Unavoidable resistance and side effects induced by some 43 

monotherapies require effort on exploring more effective treatment strategies. Therefore, 44 

combining anti-cancer medicines has become a feasible alternative because of their advantages 45 

on sensitizing cancer response, modulating multiple biological progresses or pathways and 46 

reducing side effects[2]. Till 2015, only 49 anti-cancer combinatorial chemotherapies have been 47 

approved by FDA [3]. To discover more drug combinations, several high-throughput drug 48 

combination screening on cancer cell lines have been established which allow hundreds of drug 49 
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pairs being tested in short time [4]. However, experimental screening all anti-cancer drug pairs 50 

exhaustively is impractical. Thus, in-silico discovery of potential drug combinations is 51 

considered as a reasonable way.  52 

Two major strategies are considered for constructing more precise prediction models, that is 53 

to predict whether drugs can combine to achieve synergism and if the combinations can 54 

combine in a certain disease context. To address the former questions, methods like Zhao’s 55 

integrated drug-drug similarities including drug indication, drug ATC code, drug target proteins 56 

and drug side effects to predict effective drug combinations[5]. With the accumulation of cancer 57 

sample/cell lines transcriptome data and the understanding of molecular mechanism between 58 

drug and cancer, drug combination prediction in the context of cancer sample has gradually 59 

become the main direction. Databases like CCLE and LINCS released drug treated cancer cell 60 

line transcriptome data offer a solid base to support the construction of a cancer-specific 61 

dynamic network which reflect the real drug function [6-8]. Dialogue for Reverse Engineering 62 

Assessments and Methods consortium (DREAM) launched a worldwide open challenge in 63 

2014 for drug synergy/combination prediction aimed at developing prediction models based on 64 

the integration of multilevel data [9]. Among the 31 submitted models, DIGRE, the top one 65 

algorithm, predict drug synergy based on modelling drug combination induced transcriptome 66 

changes from monotherapy perturbations[10]. SynGen predict combinable drug pairs which 67 

work complementary towards master regulators who induce cell death or inhibiting cell status 68 

activation [9]. Following the challenge, Cao et al, proposed a well performed model compared 69 

with other methods based on semi-supervised learning called RACS[11]. It integrated seven 70 

features from drug targeting networks and two filtering parameters from transcriptomic profiles 71 
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and predicted potential drug combination based on the similarities to positive dataset. Though 72 

the features in RACS and other models were more focusing on local similarity between drug 73 

targets or the function of targets, the integration of multi-level drug related information and the 74 

combination of targeting network and drug treatment transcriptome profile provide a new 75 

notion of building a dynamic disease network interpreted by drug treatment. With the 76 

accumulation of high-throughput drug screening data, several supervised models have been 77 

built based on large high-throughput drug synergy screen dataset, like 39 drugs for 38 cancer 78 

cell lines provided by O’Neil [12] and 710 drug combinations across 85 cancer cell lines in 79 

drug synergy prediction DREAM challenge [13]. Algorithms like DMIS, NAD and Y Guan, 80 

performed in top three position in DREAM challenge, predict drug synergism on cell lines via 81 

multi-dimensional feature extraction and machine learning methods[13]. These algorithms 82 

showed good performance on the data set provided by DREAM[13]. Later on, deep learning 83 

model Deepsynergy used similar strategy achieve good performance[14]. However, these 84 

supervised learning algorithms tend to have high dependence on a large number of cell line 85 

experimental data to achieve good predictions on the corresponding cell lines. Furthermore, the 86 

algorithms are usually difficult to apply on other cell lines than the modelling set. When tested 87 

on the O'Neil data set, the performance of Y Guan, DMIS, NAD are all dropped[13]. Although 88 

performed well on cross-validation on modelling dataset, Deepsynergy did not verify in 89 

external dataset[14]. 90 

The complexity of drug mechanism on real cancer context is still a main obstacle in 91 

combination prediction. Constructing a heterogeneous network is an applicable solution for 92 

integrating multilevel information and modeling different biological systems[15, 16]. Han’s 93 
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method mapped drug on gene expression profile weighted PPI network via drug-target 94 

associations to predict drug-drug interactions [17]. WNS method evaluated drug synergy in 95 

pathway-pathway interaction network [18]. DrugComboRanker discovered potential drug 96 

combination by identifying drug-drug associations in target networks[19]. Barabasi’s synergy 97 

prediction is based on measuring the distance between drug modules and disease modules 98 

discovered from the gene network between drug targets and disease related genes[20]. In 99 

addition to use in predicting synergistic drug combinations, network-based approaches may 100 

help infer potential mechanism between combinable drug pairs via the construction of 101 

biological network[15]. However, these network-based methods based mainly on drug and their 102 

known direct target genes, even with the integration of pre-treatment transcriptome data, they 103 

did not show enough power to predict sample-specific drug combinations. 104 

Assuming pharmacologically similar and functionally related drugs tend to combine together, 105 

we proposed a computational method called DComboNet to predict the anti-cancer drug 106 

combination. The DComboNet level one model constructs a generalized heterogeneous 107 

network integrating drug-drug, drug-gene, drug-pathway, gene-gene and pathway-pathway 108 

associations. Drugs that can be combined with the drug seed are predicted according to their 109 

global similarity in the network. The level two model constructs a cancer sample specific 110 

network to predict personalized drug combination. DComboNet was evaluated using cross 111 

validation, independent test and experimental validation. DComboNet outperformed the 112 

previous methods. Additionally, DComboNet provides clues for the potential mechanisms of 113 

drug combinations. 114 

 115 
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Results  116 

Characteristics of know anti-cancer drug combinations 117 

We collected 218 known anti-cancer drug combinations that involved in 157 drugs. There were 118 

three types of drugs: 67 standard chemotherapy (C), 57 targeted cancer therapy (T) and 33 other 119 

kind of drugs (O) (Fig. 1a). The effects and anti-tumor mechanisms of these three types drugs are 120 

distinctive. Standard chemotherapy acts on both normal and cancerous cells via their cytotoxic 121 

function; targeted cancer therapies are deliberately chosen or designed to interact with their 122 

specific target or targets with a cytostatic mechanism; other drugs may help control cancer related 123 

complications or alleviate on side effects caused by anti-cancer medicine. The combinations 124 

within and between three types can all be seen in known anti-cancer drug combination (Fig. 1b). 125 
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 126 

Figure 1.  Features of known anti-cancer drug combinations. a The distribution of drug types. C, T and O are 127 

standard chemotherapy, targeted cancer therapy and other cancer-related drugs, respectively. b The distribution of 128 

drug combinations by drug types. c-e Comparison of ATC code similarity, chemical structural similarity and side-129 

effect similarity between known drug combinations (P) and unlabeled drug pairs (N); f-h Comparison of the 130 

integrated pharmacological similarity, target distance and pathway similarity between known anti-cancer drug 131 

combinations (P) and unlabeled drug pairs (N).   132 

 133 

The mechanisms of drug combinations can be partially explained by pharmacological similarity, 134 

topological associations of drug targeted genes and functional pathways[5, 11, 18]. To understand 135 

the contribution of these features to anti-cancer drug combinations, we generated 9017 unlabeled 136 
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drug pairs by randomly pairing the drugs in the positive dataset and then compared unlabeled pairs 137 

with known combinations. The ATC code, chemical structure fingerprints and side effects were used 138 

to calculated the similarity between drug pairs respectively (Supplementary methods), and then 139 

combined into an integrated pharmacological similarity. All the single and integrated 140 

pharmacological similarity were higher in known combinations than in unlabeled pairs (Fig.1c-f). 141 

Target distance was the average distance between two target gene sets on the background gene-gene 142 

interaction network. Drugs in known combinations had shorter target distance than in unlabeled 143 

pairs (Fig. 1g). Pathway similarity between drugs was implemented via computing the average 144 

shortest distance between pathways, and if drugs co-regulate same pathway, using the shortest 145 

distance between their targeted genes to represent their pathway similarity. (Supplementary 146 

methods). The pathway similarity of drugs in known combinations is also higher than randomized 147 

pairs, though not significant (Fig1h). Therefore, we thought integrating both drug pharmacological 148 

and functional associations may help predict combinable drug pairs and reveal the potential 149 

mechanisms. 150 

Workflow of cancer drug combination network (DComboNet) 151 

The concept of DComboNet is to abstract pharmacological and functional relationships 152 

between drugs into a heterogeneous cancer drug combination network (Fig 2a). DComboNet 153 

consists of five subnetworks: drug-drug association network (𝑁𝐷𝐷 ), drug-gene association 154 

network (𝑁𝐷𝐺), gene-gene association network (𝑁𝐺𝐺), drug-pathway association network (𝑁𝐷𝑃) 155 

and pathway-pathway association network (𝑁𝑃𝑃).  156 
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157 
Figure 2. Workflow of drug combination prediction model (DComboNet). a Construction of heterogeneous cancer 158 

drug combination network (DComboNet). The network contains five sub-networks, NDD indicates drug-drug 159 

association network, NDG indicates drug-gene association network, NGG indicates gene-gene association 160 

network, NDP indicates drug-pathway association network and NPP indicates pathway-pathway association 161 

network. b Source and methods for generating network edges. Level one indicates the generalized model and level 162 

two indicates cancer sample specific model. c Method of ranking drug pairs.  163 

 164 

DComboNet contains two levels of models (Fig. 2b). Level one is a general model that 165 

predict the potential drug combinations. It was established without considering individual 166 

heterogeneity. Edges were generated from multiple databases and the weights of edges were 167 

assigned based on the edge types (seeing Methods). Level one model may be not precise enough 168 

for specific cancer type or individual sample. Introducing transcriptome data into drug 169 

combination prediction can enhance the precision of the prediction for certain cancer type [10]. 170 

Therefore, level two model utilized transcriptome data to reconstruct networks and predict drug 171 

combinations for a specific cancer sample. Sample specific expressed genes were obtained by 172 

comparing the expression profile of this sample with other cancer samples. Drug induced 173 

differentially expressed genes and pathways were obtained by comparing the expression 174 

profiles before and after drug treatment.  175 

After network construction, Random Walk with Restart method was applied to capture the 176 

global proximity between the given drug seed and candidate drugs in the network. For a drug 177 

pair, drug1 and drug2, take each of them as seed to calculate the global proximity between drug1 178 
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and drug2, respectively. Then a two-threshold strategy was used to integrate two ranks and 179 

classify the drug pair into combinable, uncombinable and intermediate (Supplementary 180 

methods). 181 

 182 

Performance of level one model 183 

Leave-one-combination-out cross validation (LOCOCV) was used to evaluate the performance 184 

of level one model. Firstly, we compared the prediction performance of using drug-drug network 185 

alone and using the integration of multiple different networks. DComboNet integrated five 186 

subnetworks and obtained the best performance (Fig.s1c). The AUC of DComboNet is 0.797 and 187 

the true positive rate (TPR) is 63.24%. Secondly, we compared the prediction results of different 188 

drug types (Fig. 3 a-b). Standard Chemotherapy combinations (C-C) performed well with AUC 189 

equals to 0.816. All 68 real drug combinations within this category were ranked in top 50%, of 190 

which 51 known combinations were predicted to as combinable. Targeted therapy drug 191 

combinations (T-T) also achieved high accuracy with 17 out of 23 known combinations were 192 

predicted correctly (TPR = 76%). Due to the lack of pharmacological and functional associations 193 

between standard chemotherapy and targeted therapy, the accuracy of C-T combinations is slightly 194 

less powerful (TPR = 53.52%). Lastly, we compared DComboNet with a previous published 195 

algorithm, RACS preliminary model, which also predict without using transcriptome data [11]. 196 

DComboNet outperformance RACS which has AUC equal of 0.548 and true positive rate 46.0% 197 

(Fig. 3c).  198 
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 199 

Figure 3. Performance of the level one model. a ROC plots and AUC values based on different types of drug 200 

combinations. b The percentage of predicted as combinable, uncombinable and intermediate in known drug 201 

combinations with respect to different drug combination types. c Comparison of performance between DComboNet 202 

and RACS preliminary. d The result of Level one model DComboNet. Heatmap was sorted in two directions 203 

according to drug subclasses (Table s1). Each row represents a drug seed. Color in the plot shows the rank of 204 

similarity between drug seed and other drugs. The bar plot on the right shows the successfully predicted drug pairs 205 
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in known combinations (TPR for each drug seed). 206 

 207 

Furthermore, we used DComboNet to predict the combination potentially of all drug pairs. (Fig. 208 

3d). In order to better analyze the prediction result, we further categorize drugs into 12 subtypes 209 

based on their mechanism of action. We found drugs within the same subtype are more likely to be 210 

recommended as combinable drugs because of their relevant functions, such as inhibitors of tyrosine 211 

kinases and their receptors, drugs that interfere mitotic or target on microtubule (red box in Fig. 3d).  212 

Performance of level two model 213 

Performance of the DComboNet level two model was first evaluated using hepatocellular 214 

carcinoma cell line HepG2 and breast adenocarcinoma cell line MCF7. Take HepG2 as an example, 215 

gene expression profiles between HEPG2 and other cancer cell lines were compared to obtain 216 

specifically expressed genes in HepG2; gene expression profiles of HepG2 before and after 217 

monotherapy were compared to generate the differentially expressed genes (DEGs). HepG2 specific 218 

network was constructed by added 632 HepG2 specifically expressed genes, 78913 drug-DEG, 1652 219 

drug-DEpathway associations and the corresponding gene-gene, gene-drug and gene-pathway 220 

associations. Potential drug combinations were predicted by level two model based on HepG2 221 

specific network. The AUC of DComboNet level two model was 0.844 for HepG2, rising 222 

significantly compared with AUC of level one model (AUC = 0.787, Fig. 4a). The prediction on 223 

breast cancer cell lines MCF7 was also improved with the AUC rose from 0.764 to 0.795 (Fig. 4b).  224 
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 225 
Figure 4. Performance of cancer sample specific drug combination prediction model. a) and b) ROC curves of 226 

model on hepatocellular carcinoma cell line, HEPG2, and breast cancer cell line, MCF7. In each plot, red and blue 227 

curves indicate the ROC curves of level two model and level one model, and the number in legend indicate the AUC 228 

values. c-d) Method comparison between DComboNet level two model and other prediction algorithms (SynGen, 229 

DIGRE, DrugComboRanker, RACS) using the OCI-LY3 dataset. 230 

 231 

Some drug combinations, especially standard chemotherapy that directly act on DNA/RNA, 232 

cannot be correctly predicted in the level one model. By adding drug perturbated transcriptome 233 

change, the effects of these drugs on cancer cells can be reflected through changes in a series of 234 

genes or pathways instead of only their target genes, therefore correct prediction may be obtained. 235 

For example, the combination of capecitabine and docetaxel are both standard chemotherapies with 236 

a broad anti-cancer effect[21]. Although they show relatively high pharmacological drug similarity 237 

( 𝑠𝑖𝑚𝐷𝐷(capecitabine , docetaxel ) =  0.695 ), the target genes and the biological functions 238 

between capecitabine and docetaxel are distinctive (target distance is 2, pathway similarity is 0.45) 239 
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[22, 23]. This combination failed at predicting as combinable pair in level one model, but was 240 

successfully predicted in level two model after reconstructing cancer sample specific network.  241 

We further compared DComboNet level two model and other four drug combination prediction 242 

algorithms (SynGen[9], DIGRE[10], DrugComboRanker [19], and RACS[11]) which also used the 243 

change of transcriptome profiles before and after monotherapy treatments. All of these algorithms 244 

were evaluated using the drug synergy screening dataset (OCI-LY3). The overall performance of 245 

DComboNet outperformed other algorithms, especially more powerful when predicting the 246 

combinable pairs (Fig 4c-d). DComboNet achieves 0.807 AUC and 81.8% true positive rate. Among 247 

11 real synergy pairs, 9 pairs were successfully predicted by DComboNet while 7, 6, 6 and 5 pairs 248 

were successfully predicted by RACS, SynGen, DIGRE and DrugComboRanker, respectively (Fig 249 

4d).  250 

Case study: HepG2 - sorafenib 251 

Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer death with only few 252 

approved agents as first line treatment, such as sorafenib[24-26]. However, most patients will 253 

develop sorafenib resistance eventually which include multiple biological pathways. Therefore, it 254 

is critical to find potential drug combination to improve the efficacy of single sorafenib treatment. 255 

We predicted combinable drugs for sorafenib treatment through DComboNet level two model and 256 

validated the predictions through literature investigation and in-vitro experiments. Using ‘Sorafenib’ 257 

as the drug seed, 5 out of 6 known combinations were predicted correctly. In the rest 26 newly 258 

predicted combinable drug pairs, 16 of them have been reported to be synergistic either in HCC 259 

models (8 pairs) or in other cancers (8 pairs) in previous literatures (Fig.5a). 260 
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In addition to predicting the propensity of drug combinations, DComboNet can also rank genes 261 

and pathways in the network according to the proximity relative to drug seed. Thus, analyzing the 262 

overall results may be helpful in inferring the possible mechanism of drug combinations. Among 263 

the drugs predicted as combinable candidates for sorafenib, we found three potential mechanism 264 

modes for effective combination (Fig 5b-d). 265 

The first mechanism is that two drugs shared same target genes (Fig.5b). Among the prediction 266 

results, several multiple tyrosine kinase inhibitors (TKIs) show strong tendency to be combined 267 

with sorafenib. Imatinib, cediranib, dasatinib, sunitinib and pazopanib shared 6 targets (FLT1, FLT3, 268 

FLT4, KDR, KIT, PDGFRB) with sorafenib (Fig.5b). The combination between TKIs and sorafenib 269 

may work on cancer-related genes or functions through compensatory way to avoid single TKI 270 

resistance and further improve efficacy on cancer patients[27, 28]. For example, sorafenib can block 271 

the function of genes related to imatinib resistance in HCC treatment [29]. 272 
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 273 

Figure 5. Predictions and validation for Sorafenib on Hepatocellular carcinoma cell line, HEPG2 and the 274 

hypothetical mechanisms inferred. a) Overall prediction results for Sorafenib on HEPG2 cell line. The first line 275 

denotes if the predicted combinable drugs belong to known drug combination for Hepatocellular carcinoma (HCC); 276 

the second and third lines denote if predictions have literature supports for HCC or other cancer types; the fourth 277 

and fifth lines show the classification information of predicted drugs. b-d) indicate schematic diagrams of three 278 

potential combination mechanism modes for sorafenib case study. The upper part of b) shows the schematic diagram 279 

for drugs targeting on the same genes to achieve synergy, and the bottom shows the example "sorafenib-other 280 

tyrosine kinase inhibitors (TKIs)" matching this mode. The upper part of c) shows the mode that the interaction 281 

between drugs’ target genes lead to synergy, and the bottom part shows two examples (sorafenib and EGFR inhibitor 282 

and sorafenib and BCL2 inhibitor). The upper part of d shows the synergy may through the regulation of cancer-283 

related genes other than target genes, and the matching examples (Sorafenib and HDAC inhibitors). In figure b-d), 284 

the capsule shape nodes represent drugs, dark red corresponds to sorafenib, and light red corresponds to the predicted 285 

combinable drugs; blue stars represents target genes of drug; green round dots represents other genes in gene network; 286 
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and blue rectangles represent pathways. e-f) Experimental validation results for sorafenib combined with sunitinib 287 

and afatinib, respectively. Each of the heatmaps shows the synergy score calculated by the Bliss method for each 288 

dose points. The color bar of heatmap shows the score range from synergy (blue) to antagonism (red). g) The 289 

summary table of experimental synergy screening for sorafenib and sunitinib in six hepatocellular carcinoma cell 290 

lines (HEPG2, SNU475, SNU472, Huh-7, CLC5 and MHCC-97H) with multiple dose combinations. 291 

 292 

The second mechanism is that two drugs may achieve synergy through the regulatory 293 

relationships between their target genes (Fig.5c). Three epidermal growth factor receptor (EGFR) 294 

inhibitors, erlotinib, afatinib and lapatinib[22, 30] were predicted as candidates with combination 295 

potential with sorafenib. DComboNet showed that EGFR inhibitors connect to sorafenib through 296 

the ‘EGFR-RAF1’ link (Fig.5c). EGFR is an upstream signal receptor Ras pathway while RAF1 297 

acts as a signal transduction mediate with RAS/RAF/MEK/ERK signaling pathway [31, 32]. 298 

Inhibiting EGFR can help sensitize the efficacy of RAF inhibitor (e.g. sorafenib) in hepatocellular 299 

cancer cell lines [33] and the synergism between RAF inhibitor sorafenib and EGFR inhibitors have 300 

also been observed in multiple cancer types [34-36]. Another example is the predicted combination 301 

of BCL2 inhibitor (docetaxel and obatoclax) and sorafenib. BCL2 inhibitor is connected with 302 

sorafenib via the association of their target genes “BCL2-RAF1” in the network (Fig.5c). Over-303 

expression of BCL2 and RAF1 may lead to sorafenib resistance, which can be altered by inhibiting 304 

BCL2 in HCC cell lines [37, 38]. This indicates that coadministration of BCL inhibitor and sorafenib 305 

may improve treatment efficacy.  306 

The third mechanism of drugs combination is that they co-regulate cancer-related genes, even 307 

there are no direct target gene associations involved (Fig.5d). Take histone deacetylase (HDACs) 308 

inhibitors vorinostat as an example (Fig.5d). Vorinostat itself plays an important anti-cancer role 309 

which inhibit cancer cell growth via blocking cell cycle [39]. In the potential mechanism network, 310 

we found sorafenib and vorinostat are linked together via down-regulating MYC (Fig.5d). HDACi 311 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.092239doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.12.092239
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

 

has been reported to help acetylate c-MYC and promote apoptosis in AML [40]. The sorafenib-312 

vorinostat combination may coregulate multiple pathways related to cancer cell cycle and apoptosis 313 

to achieve synergism [41]. 314 

Based on these drug combination mechanisms, we selected two drugs (sunitinib and afatinib) to 315 

further verify the predicted combination with sorafenib in HCC. Sunitinib shared 7 target genes with 316 

sorafenib (Fig.5b), and their combination showed synergistic efficacy in renal cell carcinoma [42]. 317 

However, there are no similar studies in HCC. Therefore, we performed the combination 318 

experiments of sorafenib and sunitinib using HCC cell line HepG2. 14 of the 20 dose combinations 319 

showed synergy, and the most synergistic dose combination was when sunitinib was 5 μM and 320 

sorafenib was 20 μM (Fig.5e). Furthermore, we verified a completely new prediction result, the 321 

combination of sorafenib and afatinib. Afatinib is an EGFR inhibitor, which may achieve synergy 322 

with sorafenib through the regulatory relationships between their target genes (Fig.5c). Experiments 323 

in HepG2 showed 9 synergistic points at different dose, indicating that sorafenib and afatinib is 324 

combinable (Fig.5f).  325 

Additionally, the combination of sorafenib and sunitinib was further tested using another five 326 

HCC cell lines (Fig.5g). SNU475 and SNU432 also showed synergy in experimental screening 327 

especially strong synergy at multiple doses, while synergistic effect on Huh7, CLC5 and MHCC-328 

97H cell lines only occurred in few dose points. This reflects the heterogeneous response of cancer 329 

cell lines to the same treatment. It is necessary to make individualized drug combination prediction. 330 

If the expression profile of individual cancer sample is available, the DComboNet level two model 331 

could obtain personalized prediction results by utilizing sample specific network. 332 

  333 
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Discussion  334 

Discover efficient drug combination under the highly complex and heterogeneous cancer system 335 

is difficult and time-consuming on wet-lab synergistic drug screening whereas in-silico drug 336 

combination prediction has become a critical approach in preclinical research. Based on the 337 

comprehension of anti-cancer drug mechanism and the accumulation of cancer related data, we 338 

developed a two-level prediction model DComboNet. Level one model can be used to predict anti-339 

cancer drug combination in a more general manner, whereas level two model is capable to achieve 340 

cancer sample specific drug combination prediction by integrating sample specific expressed genes, 341 

differentially expressed genes and biological pathways after drug treatment into the ‘drug-342 

gene/pathway’ network. 343 

DComboNet has several advantages: 1) DComboNet utilizes the complex multi-layer 344 

heterogeneous networks, which efficiently integrate multi-level data and provide more information 345 

to rank the combinable tendency from a holistic point of view. Therefore, DComboNet is possible 346 

to predict drug pairs that have a more intricate combination mechanisms other than the direct target 347 

gene association. 2) DComboNet contains two levels of models, which users can choose according 348 

to their aim and available data. Level two model has better prediction accuracy than level one, but 349 

requires the expression profiles of cancer sample before and after monotherapy treatment. 3) 350 

Compared to other algorithms using similar input data, DComboNet achieves higher true positive 351 

rate. 4) DComboNet provides drug-gene/pathway network between the predicted combinable drug 352 

pairs, which is helpful for understanding the potential mechanism of drug synergy. 353 

We noted that certain drug combinations are usually poorly predicted, especially those with lower 354 
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pharmacological similarities and less functionally relationship in gene or pathway network. 355 

Additionally, DComboNet ranks candidate drugs based on their global similarity with the seed drug, 356 

therefore it may have less power on predicting drug combinations with distinct mechanisms. With 357 

the accumulation of high-throughput drug screening data, we plan to combine DComboNet with 358 

supervised machine learning algorithms to improve the prediction performance. We also realized 359 

that the different response between cancer cell lines and patients under the same drug treatment still 360 

remains as a common obstacle for drug discovery transformation. Drug absorption, distribution, 361 

metabolism and excretion process cannot be well modelled under the context of cancer cell lines. 362 

Patient-derived mouse xenograft may serve as a better model than cell line for these, but drug 363 

screening on animal model like mouse need more effort and funding. Although there are many 364 

difficulties in the translation from basic research to application, computational prediction of drug 365 

combinations is fast and convenient as well as achieves much better accuracy than random. We 366 

anticipate that DComboNet could provide candidates for drug combination experiments and 367 

accelerate the discovery of new synergistic drugs. 368 

Methods 369 

Data collection 370 

Known drug combinations were collected from DCDB 2.0 [43]. Only FDA approved drugs or 371 

drugs entering phase III or IV of clinical trial were kept in the subsequent analysis. Therapeutic 372 

information used to construct drug-drug association network included: drug ATC (Anatomical 373 

Therapeutic Chemical Classification System) codes[44] extracted from WHO Collaborating Centre 374 

for Drug Statistics Methodology (WHOCC) website, chemical structures downloaded from 375 
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DrugBank[22, 45] and PubChem[46], drug side effect information collected from SIDER4[47]. 376 

Drug target proteins or genes were retrieved from Drugbank and Therapeutic Target Database 377 

(TTD)[48]; Drug related genes were obtained from IPA (Ingenuity® Pathway Analysis). 378 

The human protein-protein interaction network were extracted from the scored InBio Map [49]. 379 

The interaction pairs with low score (score < 0.15) were removed. Cancer related genes were 380 

extracted from KEGG Cancer related pathways [50].  381 

Gene expression profiles of drug perturbated cancer cell lines were downloaded from LINCS 382 

database[8] and DREAM challenge 2014[9]. LINCS database provided gene expression microarray 383 

data for 1127 cell lines treated by 41847 molecules. Drug treated hepatocellular carcinoma cell line 384 

HepG2 and breast cancer cell line MCF7 were extracted from LINCS. The pretreated gene 385 

expression data of HepG2 and MCF7 were downloaded from CCLE database[6]. 386 

Level one model: Cancer Drug Combination Network (DComboNet) 387 

Cancer Drug Combination Network (DComboNet) is based on a multi-level heterogenous 388 

network which contains five subnetworks, drug-drug association network (NDD ), drug-gene 389 

association network (NDG ) and gene-gene association network (NGG ), drug-pathway association 390 

network (NDP ) and pathway-pathway association network (NPP ). The details of subnetwork 391 

construction are described in Supplement methods. Briefly speaking, NDD obtained drugs from 392 

known drug combinations and their associations was weighted by pharmacological similarity 393 

integrated three kinds of drug similarity. For level one model, NDG was constructed based on drug 394 

and target (D-T) associations, drug and drug-related gene (D-G) associations. NGG integrated both 395 

cancers related genes extracted from KEGG cancer related pathway including ‘pathway in cancer’ 396 
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and genes connected with drugs in NDG, and the associations between genes were extracted from 397 

inBio Map (V 2016_09_12) [49]. NDP was constructed based on the association between drugs 398 

and their possible regulated pathways. NPP was built on the hierarchy of KEGG provided in WNS 399 

method [18].  400 

The network can be represented as an adjacency matrix 𝐴 =  [

𝐴𝐷𝐷 𝐴𝐷𝐺 𝐴𝐷𝑃
𝐴𝐺𝐷 𝐴𝐺𝐺 𝐴𝑃𝐺
𝐴𝑃𝐷 𝐴𝐺𝑃 𝐴𝑃𝑃

], where 𝐴𝐺𝐷 401 

and 𝐴𝑃𝐷 are transpose of 𝐴𝐷𝐺  and 𝐴𝐷𝑃. Given a certain drug, DComboNet recommends drugs 402 

with closest topological relationship as the combinable candidates. This global proximity between 403 

drugs can be captured via random walking with restart (RWR) algorithm. This algorithm originally 404 

designed to simulate a random walker walking on the network with certain initial probability 405 

corresponding network. For our task, we assigned the walk starts only from NDD. More specific, 406 

the random walker is assigned as a drug seed with an initial probability 𝑃0 = {

[1 0…0]𝑀
𝑇

[0…0]𝑁
𝑇

[0…0]𝐿
𝑇

}, where 407 

M , N  and L  indicate the node number in NDD , NGG  and NPP , respectively. Walker will start 408 

from this drug seed node to traverse every node in network. At every step, the jumping happens 409 

from the current node to it direct neighbor(s) with a probability 1 − σ or returns to the drug node 410 

with a restart probability σ. The probability in t + 1 step can be represented as follow: 411 

 𝑃𝑡+1 = (1 −  𝜎)𝐻𝑃𝑡 +  𝜎𝑃0 (1) 

After several iterations, the probability will reach a steady state when the difference between Pt+1 412 

and Pt falls below 10−10. At this point, all nodes in the complex network have obtained global 413 

proximity relative to the drug seed which can be considered as the combination potential. After 414 

removing the known drug combinations, the rest candidate drugs can be ranked according to their 415 

potential.  416 
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In function (1), H =  [

𝐻𝐷𝐷 𝐻𝐷𝐺 𝐻𝐷𝑃
𝐻𝐺𝐷 𝐻𝐺𝐺 𝑂𝑃𝐺
𝐻𝑃𝐷 𝑂𝐺𝑃 𝐻𝑃𝑃

] denotes the transition matrix which reflects different 417 

strategies for the walker to traverse the complex network.  418 

The transition probability between drug 1 (𝑑1) and drug 2 (𝑑2) can then be described as: 419 

 420 

𝐻𝐷𝐷(𝑑1,  𝑑2) =  

{
 
 

 
 

 

𝐴𝐷𝐷(𝑑1, 𝑑2)

∑ 𝐴𝐷𝐷(𝑑1,  𝑑)
𝑀
𝑑=1

, 𝑖𝑓 ∑ 𝐸𝐷𝐺(𝑑1 𝑜𝑟 𝑑2,  𝑔) = 0
𝑁

𝑔=1
 𝑎𝑛𝑑 ∑ 𝐸𝐷𝑃(𝑑1 𝑜𝑟 𝑑2,  𝑝) = 0

𝐿

𝑝=1

𝜆𝐷𝐴𝐷𝐷(𝑑1, 𝑑2)

∑ 𝐴𝐷𝐷(𝑑1,  𝑑)
𝑀
𝑑=1

,  𝑜𝑡ℎ𝑒𝑟𝑠                                   

 (2) 

The jumping within drug network contains two different possibilities: if drug does not have any 421 

link with NGG or NPP, the jump happens in NDD with probability λ
D
= 1; if 𝑑1 or 𝑑2 can be 422 

linked to any gene node (𝑔) and/or pathway node (𝑝) , the potential jumping happens within NDD 423 

with the probability λ
D

. 424 

If drug can be linked to NGG, jumping from 𝑑1 to gene 1 (𝑔1) may happen with the probability 425 

λ
DG

 and the transition probability can be described as: 426 

𝐻𝐷𝐺(𝑑1,  𝑔1) =  { 

𝜆𝐷𝐺𝐴𝐷𝐺(𝑑1, 𝑔1)

∑ 𝐸𝐷𝐺(𝑑1, 𝑔)
𝑁
g=1

, 𝑖𝑓 ∑ 𝐸𝐷𝐺(𝑑1,  g) ≠ 0
𝑁

𝑔=1

0 ,  𝑜𝑡ℎ𝑒𝑟𝑠                                   

 (3) 

After the jumping fall in NGG, the transition probability from gene 𝑔1 to gene 𝑔2 in NGG can 427 

be influenced by the existence of edges in NGD . Therefore, the transition probability within 428 

NGG can be computed as: 429 

𝐻𝐺𝐺(𝑔1,  𝑔2) =  

{
 
 

 
 

𝐴𝐺𝐺(𝑔1, 𝑔2)

∑ 𝐴𝐺𝐺(𝑔1,  𝑔)
𝑁
𝑔=1

, 𝑖𝑓 ∑ 𝐸𝐷𝐺(𝑔1 𝑜𝑟 𝑔2,  d) = 0
𝑀

𝑑=1
 𝑎𝑛𝑑 ∑ 𝐸𝐺𝑃(𝑔1 𝑜𝑟 𝑔2,  𝑝) = 0

𝐿

𝑝=1

𝜆𝐺𝐴𝐺𝐺(𝑔1, 𝑔2)

∑ 𝐴𝐺𝐺(𝑔1,  𝑔)
𝑁
𝑔=1

, 𝑜𝑡ℎ𝑒𝑟𝑠

 (4) 

Similarly, if jump happens from NGG back to NDD, transition probability between 𝑔2 and 𝑑2 430 

can be described as: 431 
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𝐻𝐺𝐷(𝑔2,  𝑑2) =  { 

𝜆𝐷𝐺𝐴𝐷𝐺(𝑔2, 𝑑2)

∑ 𝐸𝐷𝐺(𝑔2,  𝑑)
𝑀
𝑑=1

, 𝑖𝑓 ∑ 𝐸𝐷𝐺(𝑔2, 𝑑) ≠ 0
𝑀

𝑑=1

0 ,  𝑜𝑡ℎ𝑒𝑟𝑠                                 

 (5) 

Similar to the jumping strategy through gene node, transition probability between 𝑑1  and 432 

pathway node 𝑝1 can be calculated as: 433 

𝐻𝐷𝑃(𝑑1,  𝑝1) =  { 

𝜆𝐷𝑃𝐴𝐷𝑃(𝑑1, p1)

∑ 𝐸𝐷𝑃(𝑑1, 𝑝)
𝐿
𝑝=1

, 𝑖𝑓 ∑ 𝐸𝐷𝑃(𝑑1,  𝑝) ≠ 0
𝐿

𝑝=1

0 ,  𝑜𝑡ℎ𝑒𝑟𝑠

 (6) 

When the jump falls in NPP, we expected the next step can directly happen from NPP back to 434 

NDD. More specific, if the edge(s) between drug and pathway exist, jump can only happen either 435 

within NPP or between NDP. The calculation of transition probability within NPP can be seen as 436 

follow:  437 

𝐻𝑃𝑃(𝑝1, 𝑝2) =  

{
 
 

 
 

 

𝐴𝑃𝑃(𝑝1, 𝑝2)

∑ 𝐴𝑃𝑃(𝑝1,  𝑝)
𝐿
𝑝=1

, 𝑖𝑓 ∑  𝐸𝐷𝑃(𝑝1 𝑜𝑟 𝑝2,  𝑑) = 0
𝑀

𝑑=1

𝜆𝑃𝐴𝑃𝑃(𝑝1, 𝑝2)

∑ 𝐴𝑃𝑃(𝑝1,  𝑝)
𝑙
p=1

,  𝑜𝑡ℎ𝑒𝑟𝑠

 (7) 

The jump from p2 back to d2 can then be described as: 438 

𝐻𝑃𝐷(𝑝2,  𝑑2) =  { 

𝜆𝐷𝑃𝐴𝐷𝑃(𝑝2, 𝑑2)

∑ 𝐸𝐷𝑃(𝑝2,  𝑑)
𝑀
𝑑=1

, 𝑖𝑓 ∑ 𝐸𝐷𝑃(𝑝2, 𝑑) ≠ 0
𝑀

𝑑=1

0 ,  𝑜𝑡ℎ𝑒𝑟𝑠

 (8) 

From the description of jumping strategy between d1  and d2 , we can see that jumping 439 

probability λ are not independent. Within the homological subnetworks, λs are equal (𝜆𝐷 = 𝜆𝐺 =440 

𝜆𝑃). The jumping probability in heterogenous subnetwork (such as NDG and NDP) are influenced 441 

by those within homological subnetworks (𝜆𝐷𝐺 = 1 − 𝜆𝐷 and 𝜆𝐷𝑃 = 1 − 𝜆𝐷). 442 

To improve the accuracy of the model, global restart probability σ  and jumping probabilities 443 

( λ
D
  ) were set to values from 0 to 1 and the optimal parameters were selected through cross-444 

validation (supplement figure 1). Based on the tuning results, the default setting of λ
D

 is set as 0.5 445 

to keep the balanced contribution of sub-networks, and σ is set as 0.7 which is also consistence 446 

with previous publications [51].    447 
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Level two model: cancer-specific DComboNet 448 

To predict sample specific drug combination, transcriptome data before and after drug 449 

perturbation were further integrated in the NDG and NGG as well as NDP and NPP to construct 450 

sample specific complex network.  451 

The specifically expressed genes (𝐺𝑐𝑎𝑛𝑐𝑒𝑟) were selected with the criteria |𝐸𝑥𝑝𝑟𝑗 −
∑ 𝐸𝑥𝑝𝑟𝑗
𝑗=𝑘
𝑗=1

k
| >452 

1.5 (that the fold change of gene expression between the specific cancer cell line and the average 453 

of expression value of all the other cell lines above 1.5). 𝐺𝑐𝑎𝑛𝑐𝑒𝑟  were used to replace the nodes in 454 

𝑁𝐺𝐺  for reconstruct cancer-specific gene-gene association network. 455 

Cancer specific drug-gene and drug-pathway associations were added into the original drug-456 

gene/pathway association network 𝑁𝐷𝐺   and 𝑁𝐷𝑃  . These two associations were obtained by 457 

comparing drug treated gene expression data and DMSO. Differentially expressed genes were 458 

selected by functions lmFIt and eBayes in the Limma package (FDR < 0.1) [52] . Differential 459 

regulated pathways (DEpathway) were obtained by the GSVA algorithm (FDR <0.1) [53]. The edge 460 

weight of both drug-DEG were assigned as the fold changes of genes perturbated by drugs and drug-461 

DEpathway were assigned as 1. Furthermore, these differentially expressed genes and their protein-462 

protein interactions extracted from InBio Map were also added into 𝑁𝐺𝐺 .  463 

Similar to Level two model, a given drug was set to be the seed with initial probability 𝑃0 and 464 

iterated till the steady status of the probability of nodes. Then the candidate drugs will be ranked 465 

based on the final probability after removing the drug pairs in positive set.  466 

Cross validation and independent test 467 

We conducted Leave-One-Drug-pair-Out Cross Validation (LODOCV) to assess the model 468 
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performance. For each known drug combination, the edge weight was replaced by its integrated 469 

pharmacological similarity score and every drug in the combination will be used as drug seed to 470 

rank the rest of drugs in the network. Receiver operating characteristic (ROC) curves and the area 471 

under these curves (AUC) were also used to quantify the performance. To access the successfully 472 

predicted drug pairs and avoid the asymmetrical ranks, that is, the difference between the rank of B 473 

when A is used as drug seed and the rank of A when B is taken as seed, a two-threshold strategy was 474 

used to classify the drug pair into combinable, uncombinable and intermediate (Supplementary 475 

method).  476 

To further verify the predictability and generalization of our level two model in independent 477 

dataset, we tested the model performance using the OCI-LY3 dataset [9]. Excess over Bliss (E.o.B.) 478 

and signal to noise ratio (s.n.r.) were calculated by the Bliss independent model [9]. Drug pairs were 479 

classified into combinable pairs (synergistic, E.o.B.>0 and s.n.r.>2) and uncombinable pairs 480 

(antagonistic and additive). 481 

Experimental validation 482 

Potential combinations between sorafenib and sunitinib, sorafenib and afatinib were evaluated 483 

using liver cancer cell lines (Supplementary method). Cell viability matrices of each drug pair on 484 

the corresponding cell lines were used as the input data to calculate experimental synergy score with 485 

Bliss model provided by Combenefit software [54]. To reflect the degree of synergy, the maximum 486 

synergy score (Max Syn) and the synergy rate among all dose combinations was calculated. 487 

 488 
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Code availability 489 

DComboNet is implemented in R language and available at 490 

https://github.com/VeronicaFung/DComboNet . 491 
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