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ABSTRACT2

The prediction of breeding values and phenotypes is of central importance for both livestock3
and crop breeding. With increasing computational power and more and more data to potentially4
utilize, Machine Learning and especially Deep Learning have risen in popularity over the last few5
years. In this study, we are proposing the use of local convolutional neural networks for genomic6
prediction, as a region specific filter corresponds much better with our prior genetic knowledge7
of traits than traditional convolutional neural networks. Model performances are evaluated on a8
simulated maize data panel (n = 10,000) and real Arabidopsis data (n = 2,039) for a variety of9
traits with the local convolutional neural network outperforming both multi layer perceptrons and10
convolutional neural networks for basically all considered traits. Linear models like the genomic11
best linear unbiased prediction that are often used for genomic prediction are outperformed by12
up to 24%. Highest gains in predictive ability was obtained in cases of medium trait complexity13
with high heritability and large training populations. However, for small dataset with 100 or 25014
individuals for the training of the models, the local convolutional neural network is performing15
slightly worse than the linear models. Nonetheless, this is still 15% better than a traditional16
convolutional neural network, indicating a better performance and robustness of our proposed17
model architecture for small training populations. In addition to the baseline model, various other18
architectures with different windows size and stride in the local convolutional layer, as well as19
different number of nodes in subsequent fully connected layers are compared against each other.20
Finally, the usefulness of Deep Learning and in particular local convolutional neural networks21
in practice is critically discussed, in regard to multi dimensional inputs and outputs, computing22
times and other potential hazards.23

Keywords: genomic prediction, deep learning, machine learning, local convolutional neural network, Keras, phenotype prediction,24
prediction25

1 INTRODUCTION
The prediction of breeding values and phenotypes is of central importance for both livestock and crop26
breeding. Obtaining accurate estimates of breeding values at an earlier time point can impact the decision27
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on which individuals and lines to keep in a breeding programs, reducing the generation cycle and therefore28
leading to higher genomic gains per year (Schaeffer, 2006). Optimizing breeding schemes is of key29
importance for overcoming the global challenges of feeding a planet with a rising Human population (Foley30
et al., 2011).31
The most commonly applied method for the prediction of breeding values and phenotypes consider a mixed32
model or bayesian linear models (Meuwissen et al., 2001; Gianola et al., 2009; Erbe et al., 2012). With the33
availability of genomic data, traditional methods that rely on parental relationships and pedigrees have been34
replaced by genomic evaluations in which the pedigree-based relationship matrix has been replaced by a35
variant construced from genomic data (VanRaden, 2008). Currently, variations of this approach have been36
successfully implemented in both animal (Hayes et al., 2009; Hayes and Goddard, 2010; Gianola and Rosa,37
2015) and plant breeding (Jannink et al., 2010; Albrecht et al., 2011; Nakaya and Isobe, 2012; Heslot et al.,38
2015). As breeding values are additive by design, most of these models only account for additive single39
marker effects, but adaptations to account for dominance and epistatic interactions have been proposed (Da40
et al., 2014; Jiang and Reif, 2015; Martini, 2017) and are regularly applied for the prediction of phenotypes.41
In recent years the use of deep learning (DL) and in particular artifical neural networks (ANN) have become42
more and more populuar in a variety of fields in genetics (Eraslan et al., 2019). This is further enhanced by43
a variety of available open-source libraries like Keras (Chollet, 2015) and Tensorflow (Abadi et al., 2016)44
which combine options for a simple and flexible set up of ANNs with a highly efficient computational back45
end.46
The transition from traditional mixed models and bayesian linear models to the use of DL for genomic47
prediction seems like a natural next step, as reflected by a variety of recent studies (Bellot et al., 2018;48
Waldmann, 2018; Ma et al., 2018; Montesinos-López et al., 2019; Pérez-Enciso and Zingaretti, 2019;49
Azodi et al., 2019; Khaki and Wang, 2019) reporting peformance of multi-layer perceptrons (MLP) and50
convolutional neural networks (CNN) for a variety of traits in both humans and a wide set of livestock and51
crop species. The common result in those studies is that traditionally applied statistical methods such as52
genomic best linear unbiased prediction (GBLUP) or methods from the bayesian alphabet (Meuwissen53
et al., 2001; Gianola et al., 2009; Erbe et al., 2012) lead to similar or slightly higher predictive ability.54
In cases for which improvements were achieved, either very specific trait architectures are considered55
(Waldmann, 2018), improvements are not consistent across traits (Bellot et al., 2018; Montesinos-López56
et al., 2019) or additional data like environmental information is used (Khaki and Wang, 2019). For most57
traits considered in those studies, the best performing ANNs are usually MLPs with one or sometimes two58
fully-connected layers (FCL) between input and output layer (Bellot et al., 2018; Montesinos-López et al.,59
2019). Predictive ability obtained with CNNs is usually similar or even slightly worse (Bellot et al., 2018)60
with best performing models using very small filters. On first glance, this might be surprising since in other61
fields one of the biggest reasons for the rise of ANNs is attributed to the use of CNNs and convolutional62
layers (CL) (Krizhevsky et al., 2012; Goodfellow et al., 2016; Ubbens and Stavness, 2017). One must63
consider here that SNP arrays only contain markers and no full genome sequence. Therefore, a specific64
sequence of alleles on a SNP-chip in one region can not be linked to the same sequence of alleles in65
another region. As traditional CLs are directly assuming this, naive use of a CL does not make much sense66
from a modelling perspective. Therefore, we here propose the use of local convolutional layers (LCL)67
to allow for the use of region specific filters while still maintaining the positive features of a CL like the68
massively reduced number of parameters in the model. Region specific filter means that in contrast to a CL,69
parameters of the layers can vary based on the region, e.g. for a toy example given in Figure 1 a, d, g can be70
different whereas a CNN architecture would result in a = d = g. In the following, the performance of local71
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convolutional neural networks (LCNN) is compared to both traditional methods for genomic prediction72
and other more commonly applied ANN architectures.73

2 MATERIAL AND METHODS
2.1 Material74

As a first dataset, a simulated data panel containing 10,000 maize lines that were genotyped at 34,59575
SNPs with 17 traits of different trait complexities ranging from traits with 10 additive single locus QTL to76
traits caused by epistatic interaction between potentially physically linked QTL was considered. Individual77
effect sizes were drawn from a gaussian, gamma and binomial distribution. The dataset was generated78
based on simulations in the R-package MoBPS (Pook et al., 2020) and original genotypes stem from 50179
doubled haploid lines of the European maize landrace Kemater Landmais Gelb that were genotyped via80
the Affymetrix Axiom Maize Genotyping Array (Unterseer et al., 2014) and reduced via LD pruning in81
PLINK (Purcell et al., 2007). The interested reader is referred to Hölker et al. (2019) for details on the data82
generation procedure. The R-code used to generate the 10,000 individuals and the 17 traits in MoBPS is83
available in Supplementary File S1. For each trait, residuals variances were varied to obtain traits with a84
heritability h2 of 0.1, 0.5, 0.8 and 1.85
As a second dataset, a real data panel from the 1001 genomes project of Arabidopsis thaliana (Alonso-86
Blanco et al., 2016) was considered. After quality control, filtering for minor allele frequency and LD87
pruning, we reduced the available 10.7 M SNPs to 180k SNPs for 2,029 lines. Tests were conducted for 5088
different traits that were available and contained measurements for between 83 and 468 lines (Atwell et al.,89
2010; Li et al., 2010; Meijón et al., 2014; Strauch et al., 2015; Seren et al., 2016). The interested reader is90
referred to Freudenthal (2020) for details on the data preparation steps.91
Scripts used to perform the model fitting in Keras (Chollet, 2015) are available in Supplementary File S292
and S3. The R-packages rrBLUP (Endelman, 2011) and BGLR (Pérez and de los Campos, 2014) were93
used for fitting of the linear models.94
2.2 Design of the neural network95

For all tested ANNs, the SNP dataset with genotypes coded as 0,1,2 was used as the input layer and96
(centered) phenotypes were used as the output layer. In genomic prediction and in particular when using an97
ANN, the number of parameters is substantially higher than the number of individuals that can be used for98
the model fitting. Thus, leading to n << p problems (Fan et al., 2014). In this study, we will compare four99
main classes of models:100

1. Linear models (LM)101

2. Multi-layer perceptrons (MLP)102

3. Convolutional neural networks (CNN)103

4. Local convolutional neural networks (LCNN)104

For the class of LMs a variety of models have been proposed. The most frequently applied linear model105
in todays’ applications is the genomic best linear unbiased predictor (GBLUP, (Meuwissen et al., 2001))106
that is using a mixed model in which the variance of the random effect is given by a relationship matrix107
like the one propsed by VanRaden (2008). An alternative to this are methods typically referred to as the108
bayesian alphabet (Gianola et al., 2009; de los Campos et al., 2013) that perform bayesian linear regression109
with prior assumptions on the individual marker variance, e.g. BayesA is using a scaled-t-distribution as110
the prior. In particular for phenotype prediction, there are a variety of other genomic relationship matrices111
for the mixed model have been proposed to account for non-additive effects. The extended genomic best112
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linear unbiased predictor (EGBLUP, (Martini, 2017)) is designed to assign linear effects to specific marker113
combination and therefore is able to include epistatic interactions into the mixed model.114
All three other classes describe different types of ANNs. Here, we define the class of MLP as ANNs that115
only contain FCLs. In CNN / LCNN we are using an additional single CL / LCL in front of the FCLs116
without any use of pooling. For all three ANN classes we tested different layer designs ranging from just117
one up to three FCLs with varying number of nodes. For the CNN and LCNN we also tested different118
filters for the convolutional layer ranging from windows size and strides between 3 and 40 with potential119
overlap between windows. For all models the relu function was used as the activation function with an120
adam optimizer (Kingma and Ba, 2014) to minimize the mean squared errors with a dropout rate of 0.3121
after each layer (Chollet, 2015; Goodfellow et al., 2016). Changes to activation function, optimizer, dropout122
rate and target function were also tested but only had neglectable effects and are therefore are neglected in123
the following.124
Models are compared based on their predictive ability on the test set (80% of the samples used for model125
fitting, 20% as a test set), and we define the predictive ability as the correlation of the predicted genomic126
values and their phenotypes.127
2.3 Size and structure of the training data128

A well-known problem of ANNs is that overfitting can occur after a high number of training epochs129
(Goodfellow et al., 2016). Therefore, we split the 8,000 samples used for model fitting for the simulated130
maize data into 7,000 samples used for the actual training of the model (training set) and 1,000 samples131
that are just used to determine at what state training should be stopped (validation set). After each epoch132
the predictive ability of the model was derived based on the validation set and the best performing model133
from up to 50 epochs was used as the final model. In the same way the validation set can also be used to134
derive the ideal architecture of the ANN.135
To further investigate the impact of the size of the training population, we considered different sizes of the136
training data (100, 250, 500, 1,000, 2,000, 3,000, 4,000, 6,000, 8,000). The size of the validation set was137
adapted based on the size of the training data (20, 50, 100, 200, 300, 400, 500, 750, 1,000), as with smaller138
data panels an higher impact of the validation set was observed. For the Arabidopsis data, the data used for139
model fitting was split into 80% used for model fitting and 20% used for validation. As the training data for140
most of the Arabidopsis traits was already extremely small, a second study was conducted in which a fixed141
number of 25 epochs was performed with no validation set and therefore larger training set.142
All tests for the simulated data / Arabidopsis data were repeated 25 / 100 times respectively, with randomly143
sampled training and test sets.144

3 RESULTS
3.1 Comparison between model types145

In the following, we will report results for a representative model from each of the three ANN class:146

1. MPL: 2 FCL with 64 nodes147

2. CNN: CL with kernel size and stride 10 + 2 FCL with 64 nodes148

3. LCNN: LCL with kernel size and stride 10 + 2 FCL with 64 nodes149

Minor improvements were obtained by tweaking parameter settings for selected traits but overall tendencies150
of predictive ability across filter size and number of nodes as well as layers were stable. More details on151
differences will be provided for the LCNN at the end of the results section. For the LMs there was no152
clear best model for all traits. We will consider GBLUP as the baseline, but also report results for BayesA153
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(Meuwissen et al., 2001) and the EGBLUP model (Martini, 2017). As results for effect sizes drawn from154
gaussian, gamma and binomial distribution were very similar, we will only report results for the effect sizes155
drawn from a gaussian distribution.156

3.2 Simulated data157

In the following, we will first report results for the traits with a simulated heritability of 0.5. In the purely158
additive setting with just 10 underlying QTL the highest predictive ability was obtained with the LCNN159
(0.666), outperforming the other three baseline models by around 0.03-0.04 (Table 1, Figure 2 (A)). When160
increasing the number of QTL to 1,000, differences between LCNN (0.606) and the other three baseline161
models increased to around 0.06-0.09 (Table 1, Figure 2 (B)). The BayesA model led to similar preditive162
ability (0.660) as the LCNN for 10 QTL but was outperformed (0.538) in case of 1,000 underlying QTL.163
Even though the simulated traits had a purely additive genetic background, the EGBLUP model led to very164
similar or even slightly higher predictive ability as the GBLUP model. A potential reason for this could be165
”phantome epistatis” (de los Campos et al., 2019) as the use of pair-wise marker interactions could lead to166
a better overall representation of haplotype similarities.167
When considering a purely epistatic trait architecture with 10 underlying QTL, differences between the168
LCNN and the other three baseline models are also around 0.06-0.08 (Figure 3 (A)), whereas results169
in the case of 1,000 underlying QTL were very similar for all four baseline models (Table 1, Figure 3170
(B)) with the GBLUP model (0.416) leading to slightly higher predictive ability (0.01-0.02). In case the171
underlying QTL of the epistatic trait were played on physically linked markers to imitate a trait caused by172
local interactions in a gene, both the LCNN and CNN obtained higher predictive ability when only 10 QTL173
were involved in the trait, whereas the MLP and GBLUP performed worse (Figure 4 (A)). The relative174
differences between LCNN (0.625) and GBLUP (0.488) were here highest among all considered cases. In175
the case of 1000 locally linked underlying QTL, results of the four baseline models were again very similar176
with GBLUP performing about 0.01 better than the ANNs (Figure 4 (B)). In all cases of epistatic QTL, the177
use of the EGBLUP model led to higher predictive abilities than GBLUP. For both cases of 10 underlying178
epistatic QTL the LCNN model was still superior, whereas the EGBLUP model was best for traits with179
1,000 underlying epistatic QTL.180
When considering traits with varying heritability, higher overall predictive ability for traits with higher181
heritability was observed. This was even the case after standardizing the predictive ability by dividing182
with the squared root of the heritablity as this is the highest achievable correlation between phenotypes183
and estimated breeding values (Figure 5). Overall obtained standardized predictive ability for the additive184
traits are higher and close to the maximum in the case of 10 additive underlying QTL (Figure 5 (A)). In185
particular for cases of high heritablity, the LCNN is outperforming all other models for both the additive186
trait with 1,000 QTL and the epistatic traits with 10 QTL (Figure 5 (B,C,E)). For the epistatic traits with187
1,000 QTL all models are on a similar level for all considered heritablities (Figure 5 (D,F)).188
When comparing the predictive ability depending on the number of individuals used for training, we189
observed worse performance of all three classes of ANN models relative to GBLUP for small training190
sets. In particular training sets of size 100 and 250 led to massive drops in predictive ability. Of the191
three ANN classes considered, the LCNN performed best and with the exception of the epistatic traits192
with 1,000 underlying QTL was at least close to the performance of GBLUP. In particular for traits with193
1,000 purely additive QTL and 10 epistatic QTL the increase in predictive ability was substantially higher194
than in all three considered linear models (Figure 6). As ANNs are known to be extremely data hungry195
(Goodfellow et al., 2016) this should not be that surprising. Overall, the ANN architectures with less layers196
and parameters were less affected by the reduced size of the training set.197

198
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3.3 Comparison between LCNN models199

When comparing different layer designs for the LCNN, we observed small, but still significant differences200
between the different model architectures. In particular for purely additive traits, larger window sizes201
(WS) in the LCL led to higher accuracies (WS 5: 0.603; WS 10: 0.606; WS 20: 0.616), whereas the stride202
had neglectable impact (Figure 7). In regard to the design of the following FCLs, we observed increased203
predictive abilities when using a high number nodes (128 / 256) per layer (Figure 8). Differences between204
the highest obtain predictive ability for the different number of layers were neglectable, as long as at least205
one FCL was used.206
3.4 Arabidopsis data207

When comparing the different ANN models for the Arabidopsis dataset, the highest average predictive208
ability was observed for the LCNN model (0.340) compared to 0.316 for the MLP and 0.312 for the209
CNN (Table 2). All three ANNs were however outperformed by the three linear models (GBLUP, BayesA,210
EGBLUP). The differences between the ANNs and the linear models is decreasing for traits with higher211
number of individuals used in the training set. Whereas differences for traits with less than 100 individuals212
on average were 0.078 between GBLUP and the LCNN, this differences is reduced to 0.037 / 0.021 for213
traits with more than 100 / 250 lines in the training set (Table 2). The variance in obtained predictive214
ability was highest for MLP (0.031) and CNN (0.031) compared to the LCNN (0.029) and lowest for the215
linear models (0.024). Note that no traits with more than 468 phenotyped lines were considered here and216
gains in the simulated data were typically only obtained for training set with at least 1,000 lines (Figure217
6). When not using a validation set the overall accuracies are going up for all three considered ANN218
architectures and performances are more similar to GBLUP (Table 3, Figure 9). One exception to this is219
the trait FT field which resulted in extremely unstable models for all three ANNs with 20% of all trained220
models leading to basically zero predictive ability and on average 55% lower predictive ability. Details on221
the predictive ability of the individual traits and the number of phenotypes considered for each trait are222
given in Supplementary S4. Additional minor improvement were obtained by modifying the layer design223
for the FCLs after the LCNN. The interested reader is referred to Freudenthal (2020) for details on those224
extended benchmarking tests. Note that after trait-specific model architecture tunings in Freudenthal (2020)225
higher predictive ability with the LCNN compared to GBLUP were obtained for 33 of the 52 traits with226
h2 > 0.5 were obtained, whereas only 27 of the 93 traits with h2 < 0.5 benefited from the use of an LCNN227
compared to GBLUP.228

4 DISCUSSION
A common misconception of ANNs is that they are handled and used as black-boxes, leading to back229
propagation of causal variants and fundamental model design questions to be second order problems.230
Note that the baseline MLP models used in our tests results in a model with 2.2 million parameters and231
8,000 individuals and thereby leading to potential massive problems of overparametrization (Fan et al.,232
2014). The use of a CL is reducing this problems substantially with our baseline CNN ”only” needing233
225,610 parameters. However, CLs assign effects to specific sequences of input variants. As the same234
sequence of markers on an array in different segments of the genome is usually not linked in any way, this235
modelling approach does not really make sense from a genetics perspective and thus makes it potentially236
more difficult to obtain a good model fit. The LCNN fixes these issues by introducing region-specific filters.237
This increases the number of required parameters in the model slightly (260,195), but still is a massive238
improvement in terms of number of parameters compared to the MLP. When working with whole genome239
sequence the use of CNNs has shown to be quite useful (Washburn et al., 2019). However, whole-genome240
sequence data does not reflect the currently available standard for genomic prediction, as no significant241
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gains in most applications are reported when using more than just low to medium density SNP arrays (Ober242
et al., 2012; Erbe et al., 2013), generating such sequence data is still costly (Schwarze et al., 2018) and243
problems of even higher overparametrization can arise here.244
As shown by the results above, the use of a LCNN can massively improve the accuracy of genomic245
prediction compared to frequently applied ANNs architectures like MLPs and CNNs for both simulated246
and real datasets and in particular for traits with small training sets. In the case of the simulated data,247
improvements compared to linear models like GBLUP were obtained for both simulated purely additive248
and purely epistatic traits. However, for the real Arabidopsis data panel with at most a couple of hundred249
lines per phenotype, average predictive ability was slightly reduced as in particular for traits with small250
training sets, predicitive abilities was substantially lower for the ANNs when a validation set was used.251
However when using a set number of training epoch and no validation set were almost on the level of252
GBLUP. Note however that the use of no validation set, requires prior knowledge on a reasonable number253
of training epochs and model architecture, therefore leading to potential model instability. The use of a254
LCNN was an improvement compared to more commonly applied ANN architectures (MLPs/CNNs) in255
both cases. The variance in predictive ability for the ANN models was slightly higher than for the linear256
models, but the differences were not large enough to cause major concerns in regard to model stability of257
the ANNs.258
Whereas significantly higher numbers of genotyped lines in the setting of plant breeding are not realistic,259
even larger populations with potentially millions of animals are available in livestock breeding. As in260
particular for traits of medium complexity (1,000 additive QTL & 10 epistitatic QTL) substantially gains261
for the LCNN compared to all other models were obtained, these results indicate high potentially for262
genomic prediction in such traits as traditional linear models tend to reach a plateau in predictive ability263
(Erbe et al., 2013). However, a potential problem for the use in animal breeding is that for all considered264
individuals the same inputs have to be provided and therefore requiring the genotyping of all individuals.265
Particularly to be mentioned here is that there is no direct equivalent to single step GBLUP (Legarra et al.,266
2009; Christensen and Lund, 2010) to combine pedigree and genotype data in a joint relationship matrix up267
till now. Furthermore, one needs to consider that breeding values are additive by design and even if higher268
predictive ability is obtained with non-additive models, this will not necessarily result in higher genetic269
gains under a random mating environment (Martini et al., 2017). This leads us to conclude that ANNs (and270
in fact epistatic models like EGBLUP in general) are much better suited for the prediction of phenotypes271
than breeding values (Martini et al., 2017).272
A further potential application for the use of ANNs that is in particular relevant for plant breeding is the273
inclusion of other omics, environmental data or even information about weather condictions, as ANNs274
are very flexible in their design and it is relatively easy to add additional input and/or output layers to an275
existing model. Computing times and model complexity in the framework of ANNs are far less affected by276
such additional inputs than GBLUP-based models (Gillberg et al., 2019). As such ANNs typically contain277
separate layers for each input dimension and those are concarnated in later steps, the use of an LCL for the278
SNP-based inputs should be highly beneficial for such applications.279
When deciding between the use of ANNs and traditional linear models there are however more things to280
consider than just the plain predictive abilities. This particularly includes potential economic issues, as281
the use of ANNs would at this moment require genotyping of all individuals, and required conceptional282
changes to modern breeding programs as terms like reliability do not have a direct equivalent in ANNs283
and therefore among others require changes in the design of selection indicies (Hazel and Lush, 1942;284
Miesenberger, 1997). Additional work in checking if higher predictive ability also translate into higher285
genomic gains is a further topic that needs to be investigated, as even the use of epistatic models have286
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shown to not always lead to higher gain, despite higher predictive ability (Martini et al., 2017).287
Nonetheless, we can conclude that there is considerable potential in the use of ANNs and in particular288
LCNN in genomic prediction when working with large individual numbers and high heritability. and/or289
additional input dimensions like other omics. We would expect the highest potential of ANNs to be290
especially relevant with more complex input and output layers, as present when considering different omics291
(Li et al., 2019), weather data (Gillberg et al., 2019) or prediction across environments (Freudenthal, 2020)292
as inputs, or multiple correlated traits as outputs (Lyra et al., 2017). Accounting for such input/outputs293
in the traditional models, even in a linear way, was shown to be extremely costly from a computational294
side and oftentimes does not significantly improve results (Calus and Veerkamp, 2011). With generation of295
such datasets becoming cheaper and widely available, we would expect the use of DL techniques to be of296
increasing importances for quantitative genetics and in particular genomic prediction in the near future.297
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Table 1. Predictive ability for the different models on different traits with h2 = 0.5.
Trait architecture GBLUP BayesA EGBLUP MPL CNN LCNN
10 additive QTL 0.639 0.660 0.635 0.637 0.627 0.666
1,000 additive QTL 0.516 0.538 0.543 0.524 0.538 0.606
10 epistatic QTL 0.511 0.527 0.519 0.503 0.491 0.572
1,000 epistatic QTL 0.416 0.414 0.448 0.395 0.403 0.401
10 locally linked epistatic QTL 0.488 0.501 0.529 0.504 0.544 0.625
1,000 locally linked epistatic QTL 0.524 0.523 0.541 0.519 0.517 0.510

Table 2. Average predictive ability for the different models for the Arabidopsis traits in relation to the size
of the training set.
Trait architecture GBLUP BayesA EGBLUP MPL CNN LCNN
Average predictive ability (all) 0.390 0.382 0.382 0.316 0.312 0.340
Average predictive ability (training
set < 100)

0.404 0.390 0.399 0.300 0.299 0.326

Average predictive ability (100 <
training set < 250)

0.364 0.358 0.354 0.318 0.311 0.327

Average predictive ability (training
set > 250)

0.477 0.477 0.472 0.358 0.370 0.456

Table 3. Average predictive ability for the different models for the Arabidopsis traits in relation to the size
of the training set and no validation set.
Trait architecture MPL CNN LCNN
Average predictive ability (all) 0.346 0.348 0.354
Average predictive ability (training set < 100) 0.342 0.341 0.353
Average predictive ability (100 < training set < 250) 0.344 0.344 0.334
Average predictive ability (training set > 250) 0.370 0.392 0.468

FIGURE CAPTIONS

This is a provisional file, not the final typeset article 12

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.090118doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.12.090118


Pook et al. Local convolutional neural networks for GP

Figure 1. Node architecture of an LCNN containing a LCL with window size and stride of 3 and a FCL
with 5 nodes.

Figure 2. Predictive ability of different methods for genomic prediction for a simulated trait with 10 (A)
and 1,000 (B) purely additive QTL.
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Figure 3. Predictive ability of different methods for genomic prediction for a simulated trait with 10 (A)
and 1,000 (B) purely non-linked epistatic QTL.

Figure 4. Predictive ability of different methods for genomic prediction for a simulated trait with 10 (A)
and 1,000 (B) purely non-linked epistatic QTL.
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Figure 5. Predictive ability of the LCNN compared to the GBLUP model in relation to the trait heritability
for the purely additive (A/B), epistatic (C/D) and physically linked epistatic (E/F) trait with 10/1,000
underlying QTL.
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Figure 6. Predictive ability of the representative LCNN model and BayesA depending on the size of
the training set for purely additive (A/B), epistatic (C/D) and physically linked epistatic (E/F) trait with
10/1,000 underlying QTL.
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Figure 7. Predictive ability of different layer designs of the LCNN with modifications to the LCL for the
purely additive trait with 1,000 QTL (A) and the epistatic trait with 10 QTL (B).

Figure 8. Predictive ability of different layer designs of the LCNN with modifications to the FCLs for the
purely additive trait with 1,000 QTL (A) and the epistatic trait with 10 QTL (B).
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Figure 9. Predictive ability for GBLUP and the LCNN model for the different arabidopsis traits in relation
to the size of the training set and no validation set.
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