A new microcirculation culture method with a self-1 organized capillary network 2 3 Kei Sugihara¹, Yoshimi Yamaguchi¹, Shiori Usui¹, Yuji Nashimoto²⁻⁴, Sanshiro 4 Hanada⁵, Etsuko Kiyokawa⁶, Akiyoshi Uemura⁷, Ryuji Yokokawa⁴, Koichi 5 6 Nishiyama⁵ and Takashi Miura^{1*} 7 8 9 ¹Department of Anatomy and Cell Biology, Kyushu University Graduate School 10 of Medical Sciences, Fukuoka 812-8582, Japan 11 ²Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku 12 University, Miyagi 980-8578, Japan 13 ³Graduate School of Engineering, Tohoku University, Miyagi 980-8579, Japan ⁴Department of Micro Engineering, Kyoto University, Kyoto 615-8540, Japan 14 15 ⁵International Research Center for Medical Sciences (IRCMS), Kumamoto 16 University, Kumamoto 860-8556, Japan 17 ⁶Department of Oncologic Pathology, Kanazawa Medical University, Ishikawa 18 920-0293, Japan 19 ⁷Department of Retinal Vascular Biology, Nagoya City University Graduate 20 School of Medical Sciences, Aichi 464-0083, Japan 21 22 23 Short title: A new microcirculation culture method 24Corresponding author: Takashi Miura (miura t@anat1.med.kyushu-u.ac.jp)

25 Abstract

26 A lack of microcirculation has been one of the most significant obstacles for three-27dimensional culture systems of organoids and embryonic tissues. Here, we developed a simple and reliable method to implement a perfusable capillary 28 29 network in vitro. The method employed the self-organization of endothelial cells 30 to generate a capillary network and a static pressure difference for culture medium 31 circulation, which can be easily introduced to standard biological laboratories and 32 enables long-term cultivation of vascular structures. Using this culture system, we 33 perfused the lumen of the self-organized capillary network and observed a flow-34 induced vascular remodeling process, cell shape changes, and collective cell 35 migration. We also observed an increase in cell proliferation around the synthetic 36 vasculature induced by flow, indicating functional perfusion of the culture medium. We also reconstructed extravasation of tumor and inflammatory cells, 37 38 and circulation inside spheroids including endothelial cells and human lung 39 fibroblasts. In conclusion, this system is a promising tool to elucidate the mechanisms of various biological processes related to vascular flow. 40

41 Introduction

42	Multicellular pattern formation has been one of the central issues in
43	developmental biology [1-3]. An extensively used tool to understand the
44	mechanism of pattern formation is an organ culture system in which embryonic
45	tissue is cultured at the air-liquid interface [4]. Recent advancements in stem cell
46	biology have enabled the generation of small tissue structures from a single cell,
47	which is called an organoid, and various organoids have been established [5].
48	
49	A technical obstacle for standard culture systems of three-dimensional tissue
50	structures is the lack of microcirculation. There are various methods to improve
51	oxygen supply, such as culture inserts and rotator culture [6]. However, these
52	methods cannot overcome the size limitation, i.e., if the cultured tissue size
53	exceeds a 100-µm order, the tissue undergoes necrosis due to hypoxia [7].
54	Reproduction of a functional capillary network has not been successful. For
55	example, the tube formation assay has been classically used to assess the pattern
56	formation capability of endothelial cells [8], but the generated network structure

57 lacks a functional lumen and is not perfusable.

58

59	Interactions between vascular endothelial cells and other types of cells are one of
60	the main themes of study in vascular biology. A major example is pericytes that
61	exist between basement membranes of endothelial cells, which stabilize the
62	biological activities of the endothelial cells [9]. In addition, endothelial cells
63	interact with circulating cells in blood [10]. For example, neutrophils transmigrate
64	through endothelial cells at an inflammation site [11]. In cancer biology,
65	hematogenous metastasis involves adhesion of tumor cells to endothelial cells and
66	invasion [12]. However, an effective in vitro system to observe these phenomena
67	is lacking.

68

In tissue engineering, various methods have been developed to implement a capillary network in a microfluidic device for perfusion in culture systems [13]. These methods are classified into two categories: predesigned and selforganization methods. Predesigned methods align endothelial cells by

73	engineering techniques. Self-organization methods employ the spontaneous
74	pattern formation capacity of cells to generate capillary network structures
75	(reviewed in [6]). Recent advances in the integrative studies of tissue engineering
76	and vascular biology have enabled construction of a perfusable vascular network
77	in vitro. For example, in 2013, a microfluidic device was developed with a self-
78	organized perfusable vascular network [14]. We have previously integrated a
79	spheroid culture system with the self-organized capillary network to improve the
80	culture conditions of spheroids [15,16].

81

Currently, these new culture methods are highly technical and difficult to implement in a common biological laboratory. Various microfluidic chips are commercially available [17], but collaboration with engineering researchers is needed to obtain microfluidic devices with optimized designs. For perfusion itself, syringe pumps are not very common in a biological laboratory, and it is still technically difficult to connect tubes without collapsing the capillary network in a gel.

90	In the present study, we developed an easy method to enable microcirculation in
91	ordinary glass-bottom culture dishes. First, we screened commercially available
92	endothelial cells for their capacity to form a lumen. Next, we developed a culture
93	system to perfuse culture medium in the lumen. The flow persisted for 12-24
94	hours per one medium change, which enabled long-term perfusion. We observed
95	the main features of the endothelial pattern formation, which correlated with flow,
96	endothelial cell shape changes, collective migration towards the upstream of the
97	flow, remodeling of the vascular network, extravasation of tumor cells, the effect
98	of pericytes on pattern formation, and the perfusion of vascularized spheroids.
99	These results show the usefulness of this culture method for elucidating various
100	biological phenomena.

101 Materials and Methods

102 Cell culture

103	We used commercially available primary cultured cells to generate a perfusable
104	vascular network based on a previous report [14]. The cells were human umbilical
105	vein endothelial cells (HUVECs), human aorta endothelial cells (HAECs), human
106	umbilical artery endothelial cells (HUAECs), human pulmonary artery endothelial
107	cells (HPAECs), human microvasculature endothelial cells (HMVECs), and
108	human lung fibroblasts (LFs) (Lonza Inc.). We used optimized growth media
109	supplied by Lonza Inc. to maintain these cells. After screening for their pattern
110	formation capability (Fig. S1), HUVECs were mainly used for experiments. We
111	used LFs for the coculture system [18], which were maintained using FGM-2
112	culture medium and protocols provided by the manufacturer (Lonza Inc.). For
113	visualization purposes, we used red fluorescent protein (RFP)-labeled HUVECs
114	and GFP-labeled pericytes from Angio-proteomie Inc. HL60 and NMuMG-Fucci
115	cells were provided by the Riken Bioresource Research Center (RCB2813 and
116	RCB0041, respectively). Colon Tumor 26 (C26) is a colon cancer cell line isolated

117	from a BALB/c mouse treated with carcinogen <i>N</i> -nitroso- <i>N</i> -methylurethan [19].
118	C26 cells were injected into the spleen, and cells that metastasized to the liver
119	were isolated. By repeating this injection-isolation cycle four times, LM4 cells
120	were isolated. The details of LM4 cells will be described elsewhere (EK,
121	manuscript in preparation). HL-60 and LM4-GFP cells were maintained in RPMI
122	1640 medium (Nacalai Tesque, Inc.) supplemented with 10% FBS and 1%
123	penicillin-streptomycin.
124	
125	Culture dishes
125 126	Culture dishes We developed a culture dish to exert static pressure on the self-organized capillary
125 126 127	Culture dishes We developed a culture dish to exert static pressure on the self-organized capillary system. This dish consisted of standard 35- or 60-mm glass-bottom tissue culture
125 126 127 128	Culture dishes We developed a culture dish to exert static pressure on the self-organized capillary system. This dish consisted of standard 35- or 60-mm glass-bottom tissue culture dishes with a glass separator. The 12 phi glass well part was left open (Fig. 1a).
125 126 127 128 129	Culture dishes We developed a culture dish to exert static pressure on the self-organized capillary system. This dish consisted of standard 35- or 60-mm glass-bottom tissue culture dishes with a glass separator. The 12 phi glass well part was left open (Fig. 1a). This type of dish was obtained from a local manufacturer or assembled using a
125 126 127 128 129 130	Culture dishes We developed a culture dish to exert static pressure on the self-organized capillary system. This dish consisted of standard 35- or 60-mm glass-bottom tissue culture dishes with a glass separator. The 12 phi glass well part was left open (Fig. 1a). This type of dish was obtained from a local manufacturer or assembled using a glass coverslip and bioinert adhesive such as replisil (silicone).

132 Generation of a self-organized vascular network

133	In the first protocol, endothelial cells generated a capillary network by self-
134	organization and the culture medium was perfused into the network by static
135	pressure. First, we mixed 1 \times 10 ⁷ HUVECs in a fibrin/collagen gel solution (5
136	mg/ml fibrin, 0.2 mg/ml type I collagen (rat tail, Enzo Life Sciences Inc., Alx-522-
137	435-0020), and 0.15 U/ml aprotinin with a 1/150 volume of 0.5 U/ml thrombin).
138	Then, we poured 150 μ l of the fibrin/collagen/HUVEC solution into the well to
139	separate the left and right halves of the dish divided by a glass separator. The
140	dishes were incubated for 5 min at room temperature and then for 1 h at 37 $^{\circ}$ C to
141	solidify the fibrin gel. Then, we added 5 $\times 10^5$ LFs in a 5 mg/ml fibrin gel solution
142	at the edge of a 35-mm culture dish to avoid physical contact of LFs and HUVECs.
143	The dishes were incubated again for 1 h at 37 °C to solidify the fibrin gel. Then,
144	we added 1 ml EGM-2 with 10 μM tranexamic acid to each well of the culture dish
145	(total amount: 2 ml) and incubated the dish for 7 days (depending on the HUVEC
146	activity, the culture period may be shorter). Culture media were changed once
147	every 2-3 days. After confirmation of capillary network formation with lumens,
148	we cut the edge of the preformed network using tungsten needles or a sharp

149	scalpel to make open ends. Then, we removed the culture medium from both wells
150	and added 1 ml of culture medium to one of the wells. The existence of flow was
151	confirmed by the flow of cell debris (Supplemental movie S2). Depending on the
152	flow resistance, the water level difference persisted for 24 hours.
153	
154	Observation of vascular extravasation of neutrophils and tumor cells
155	Neutrophil-like differentiated HL-60 (dHL-60) cells were prepared by treating
156	HL-60 cells with 1.25% DMSO (Nacalai Tesque, Inc.) for 2 days. Two pieces of
157	thin PDMS sheet of roughly 6-8 mm in size were placed on the glass bottom in
158	parallel to each other and perpendicular to the glass separator before applying the
159	HUVEC-containing fibrin gel. HL-60 and dHL-60 cells were visualized with
160	CellTracker Green CMFDA (1:1000, Thermo Fisher Scientific). Then, 4 \times 10 ⁶
161	HL-60, 1 \times 10 ⁶ dHL-60, or 1 \times 10 ⁶ LM4-GFP cells were suspended in 2 mL
162	EGM-2 and applied to one side of the dish. For endothelial activation, 10 ng/mL
163	human recombinant TNF- α (PeproTech, Inc.) was added to the medium
164	overnight before the experiment. The HUVEC vascular network was visualized by

rhodamine-conjugated UEA-I lectin 165 incubation with (1:1000, Vector 166 Laboratories) for 60 minutes in advance. Time-lapse and z-stack observations 167 were performed with a Nikon A1R microscope. 168 169 Generation of perfusable spheroids with vasculature 170 We also developed a protocol to perfuse spheroids with an endothelial cell vasculature (Fig. 8a). First, we prepared spheroids containing target and 171 172 endothelial cells, and embedded the spheroid in a 2-well dish with fibrin gel. After

173 the spheroids sprouted, we cut the tip of the sprout with a sharp scalpel and

174 exerted static pressure for perfusion. Detail of the protocol is described below.

175

Next, we embedded spheroids in the culture dish. We prepared the culture dish, 181 182 fibrin, and thrombin solution. The culture dish was cooled on ice. We collected 183 the spheroids in a 1.5-ml Eppendorf tube and removed the supernatants. Next, we added 150 µl of the fibrin gel solution to the Eppendorf tube on ice. Then, we 184 185 added 1 µl of the thrombin solution to the Eppendorf tube, quickly agitated the 186 spheroids, and then transferred the solution to the 2-well dish. We moved the dish 187 to the stage of an inverted microscope (×2 objective lens) and carefully adjusted 188 the locations of the spheroids using tungsten needles. The fibrin gel was solidified 189 for 5 min at room temperature and then for 1 hour at 37 °C. During this period, 190 we prepared LFs mixed with the fibrin gel solution. Finally, we added the 191 thrombin solution to the LF-fibrin solution and then transferred the LF-fibrin gel 192 solution to the side of the 2-well dish. After the fibrin gel solidified for 1 hour at 193 37 °C, we added 2 ml EGM-2 with 10 µM tranexamic acid and incubated the 194 dishes for 7 days for the sprouts to elongate. In some cases, we seeded HUVECs 195 on the solidified fibrin gel to prevent leak. Culture media were changed once every 196 2-3 days.

197

We used various flow and permeability tracers to observe the characteristics of flow. Whole blood from a volunteer was diluted 10-fold with EGM-2 culture medium to observe red blood cell perfusion of the capillary network. Fluorescent particles (5 µm, Duke Scientific) were used to visualize flow for particle image velocimetry (PIV). FITC-dextran (70 kDa) was used for the permeability experiment. We also used diluted milk (1/1000) as a tracer for brightfield imaging.

206 Histology and immunohistochemistry

207 Cultured blood vessels and spheroids were fixed in 4% PFA 208 (immunohistochemistry) or Bouin's fixative (HE staining) overnight. Fixed 209 specimens were dehydrated using 70% ethanol in situ, detached from the culture 210 dish, and transferred to a glass bottle. The samples were further dehydrated in 211 graded concentrations of ethanol. Then, the ethanol was substituted with xylene and paraffin. The paraffin block was cut at 10 µm thicknesses. For histology, these 212

213 sections were stained with hematoxylin and eosin.

214

215	For immu	unohisto	chemistry	and	Tdt	nick	end	labeling	(TUNEL),	sections	were
			2								

216 deparaffinized and stained using the protocols provided by the manufacturers.

217 Antibodies against PDGFB (Abcam, ab23914), type IV collagen (LSL, LB-0445),

and desmin (LabVision, MS-376-S0) were used. To detect apoptotic cells, we

219 used an In situ Apoptosis Detection Kit (Takara Bio, MK500).

220

221 Image acquisition and analysis

Observation of three-dimensional structures was conducted using a Nikon A1R confocal microscope. For long-term observation of the whole culture dish, we used a Keyence BZ-900 with a tiling function. All image analysis was performed using ImageJ [20] or Fiji [21]. To observe vessel wall movement in long-term culture, we used the "linear stack alignment with SIFT" plugin for registration of the figures obtained at various time points. We used the "Reslice" command to prepare kymographs of cell movements from time-lapse movies.

230 Results

231 Pattern formation capability of commercially available primary cells

232 First, we screened commercially available human endothelial cells for their pattern 233 formation capacity. The tested cells were HUVECs, HAECs, HMVECs, and 234 HPAECs (Fig. S1). These cells were cultivated in normal glass-bottom dishes, 235 Matrigel, collagen gel, and fibrin gel. In principle, all tested primary cell cultures were capable of generating a network of perfusable lumens only when the cells 236 237 were cultivated in fibrin gel with human LFs, indicating that we could choose any 238 type of primary endothelial cell. One exception was HPAECs that generated a 239 perfusable network in fibrin gel without lung fibroblasts. This characteristic was 240 observed in cells with low passage numbers up to 3.

241

242 Method for culture medium perfusion

Next, we developed a culture method to perfuse the self-organized network in a glass-bottom dish. Using the protocol described in the Materials & Methods, we induced flow in the self-organized capillary network. First, we prepared a glass-

246	bottom dish separated by a glass separator (Fig. 1a). Next, we allowed the cells to
247	self-organize and generate a vascular network with a lumen in a gel that separated
248	two wells of the dish. A mixture of HUVECs and fibrin gel was placed in the well
249	of the glass-bottom dish (Fig. 1b) and allowed to solidify for 30 min. Lung
250	fibroblasts for coculture were mixed in fibrin gels and placed at the edge of the
251	culture dish to avoid contamination of lung fibroblasts in endothelial cell networks
252	because fibroblasts inhibited formation of the endothelial cell network by direct
253	contact (Fig. 1c). Finally, the culture medium was added, and the cells were
254	incubated in a CO ₂ chamber (Fig. 1d).
255	

After 1 week, the vascular network with a lumen was generated spontaneously (Fig. 1e, g). Next, we exerted static pressure on the preformed capillary network as follows. First, we made a cut to generate open ends of the capillary network (Fig. 1e. h). Then, we removed the culture medium from both wells and added culture medium (and tracer) to one of the wells (Fig. 1f, i). If the lumens were connected, we observed flow using the various tracers. We perfused fluorescent beads to

262	detect the perfusability of the capillary network (Fig. 1j, Supplemental movie S1).
263	However, the fluorescent beads adhered to the endothelial cell surfaces and
264	interfered with the fluorescence observation. Therefore, this method was used
265	only once per experiment. When whole blood diluted with EGM-2 was loaded, we
266	observed the flow of red blood cells in the self-organized capillary network (Fig.
267	1k, l, Supplemental movie S2).
268	
269	Formation of a lumen around a solid object
270	In this culture system, lumen formation only occurred near the periphery of the
271	culture well. Thick, perfusable lumens were formed in the region at 1 mm around
272	the culture well wall or separating glass plate. This was not due to the high cell
273	density around the periphery of the dish because increased cell density did not
274	induce lumen formation in the center of the dish (Fig. S2a–d). We induced lumen
275	formation by embedding hard objects in the gel. When we mixed glass beads (1
276	mm diameter) with HUVECs at the beginning of the culture and cultivated the
277	cells for 120 hours, we observed lumen formation around the glass beads (Fig.

278 S2e-h).

279

280	Flow-induced collective cell migration and cell shape changes in the culture system
281	In this system, we observed the dynamics of endothelial cells in response to flow
282	(Fig. 2). It is known that, at a certain range of flow rate, endothelial cells migrate
283	collectively toward the upstream of blood flow[22-24]. We easily observed this
284	phenomenon in our culture system. We used Hoechst 33342 as a vital stain of
285	endothelial cell nuclei and exerted flow to a 35-mm culture dish. We then observed
286	the collective upstream movement of endothelial cells (Fig. 2a-c). In the region
287	with flow, the cells migrated collectively upstream of the flow (Fig. 2b). The white
288	arrow indicates the orbit of cell debris, indicating that the direction of cell
289	movement was opposite to that of the flow. In contrast, only random movement
290	of cells was observed in the non-flow region (Fig. 2c), indicating that this system
291	is useful to assess flow-endothelial cell interactions.

292

293 We next observed endothelial cell shape changes induced by the flow. In the fast

294	flow region, endothelial cells became elongated parallel to the direction of flow
295	(Fig. 2d-g). In the slow flow region, the endothelial cells remained unpolarized
296	(Fig. 2h-k). In the non-flow region, the endothelial cells formed isolated cysts with
297	cell debris inside (Fig. 2l–n).
298	
299	Reconstruction of vascular remodeling by long-term flow in the vasculogenesis
300	system
301	Because flow could be slow depending on the geometry of vasculature and the size
302	of the cut, we maintained the flow for a long time. As the reservoir medium
303	decreased, the pressure gradient changed. In general, we could maintain flow for
304	24 hours, which allowed long-term flow effects. We confirmed the flow by
305	observing the flow of cell debris in the brightfield view (Supplemental movie S3).
306	Unlike a two-dimensional culture system, HUVECs could be maintained for a very
307	long period of up to 1 month without degradation of the fibrin gel (Fig. 3a–c). The
308	openings remained unobstructed after 4 weeks of culture (Fig. S3). A high
309	magnification view revealed the occurrence of the remodeling process (Fig. 3d, e).

310	In the region with flow, the radius of the vascular segment was increased gradually
311	(Fig. 3d, d', Supplemental movie S4). In the region without flow, the vasculature
312	was degraded gradually and finally became fragmented vascular cysts (Fig. 3e, e',
313	Supplemental movie S5).
314	
315	Histological observation confirmed the remodeling process in this culture system.
316	The top of the culture area was covered with HUVECs (Fig. 3f, g). The flow region
317	was covered by a relatively thick HUVEC sheet (Fig. 3f, h). The non-flow region
318	contained several apoptotic bodies (Fig. 3f, i). To confirm the distribution of cell
319	death, we applied TUNEL staining. Positive signal was observed in the non-flow
320	region (Fig. 3j, k), confirming the histological observation. We also observed an
321	extracellular matrix sheath in which the basement membrane remained, while
322	endothelial cells were retracted in the non-flow region (Fig. 31). These
323	observations supported that vascular remodeling occurred in this culture system.
324	
0.05	

325 Effect of vascular flow on cell proliferation

326 Because the physiological role of vascular flow is the transfer of oxygen and 327 nutrients, we examined the effect of flow on cell proliferation outside the blood vessel. We used Fucci-containing NMuMG cells, with which we could dynamically 328 observe the cell cycle, to easily assess the effect of oxygen-nutrient transport by 329 330 the flow on the mesenchyme region. NMuMG cells were mixed with RFP-HUVEC 331 suspensions and cultivated for 1 week. The NMuMG cells formed sparse colonies in the region away from the vasculature, and the vasculature became narrower, 332 333 presumably due to the competition between HUVECs and NMuMG cells (Fig. 334 4a). Next, we made a cut to only a part of the network to form flow and non-flow regions (Fig. 4b). We then compared the number of proliferating cells in flow and 335 336 non-flow regions and detected increased fluorescence by exerting flow for 2 days 337 (Fig. 4c–e), indicating that the medium flow was effective for tissue maintenance in this culture system. 338

339

340 Dynamics of pericytes in the self-organized vascular network

341 Pericytes reside around endothelial cells and modulate their biological functions

342 [9]. It has been reported that pericytes play an important role in the vascular 343 remodeling process to generate a hierarchical vascular tree structure in developing 344 retina [25]. To examine whether addition of pericytes to this culture system affected the remodeling process, we cocultured pericytes in this culture system 345 346 and observed the long-term pattern change with flow. Vasculature with pericytes 347 grew normally, and we maintained the culture system with pericytes for up to 1 month (Fig. S4a, b). After 1 month, the vasculature was still perfusable without 348 349 leak (Fig. S4c, d). The morphology of vasculatures with pericytes was similar to 350 that without pericytes (Fig. S4c, d). In the region with flow, the diameter of the 351 vascular segment was increased (Fig. S4e, e'), whereas in the region without flow, 352 the vasculature was degraded gradually (Fig. S4f, f'). Unfortunately, the final 353 shape of the vascular network with pericytes appeared more or less the same 354 compared to that without pericytes (Fig. S4a-d).

355

Interestingly, pericytes disappeared around the fast flow region and surroundedthe endothelial vasculature in the non-flow region (Fig. 5a, b). Initially, pericytes

358	were distributed evenly (Fig. 5a). After 3 weeks of culture, spots of high pericyte
359	cell density appeared in non-flow regions (Fig. 5b, arrows). However, in the fast
360	flow region, the pericytes had disappeared (Fig. 5b, red circle). We observed
361	active migration away from the fast flow region (Fig. 5c. d, Supplemental movie
362	S6). In the fast flow region, a very small number of pericytes was observed (Fig.
363	5e). At the interface between flow and non-flow regions, we observed an increase
364	of pericytes only in the non-flow region (Fig. 5f). In the non-flow region, we
365	observed pericytes wrapped around cysts of endothelial cells containing debris
366	(Fig. 5g). To understand the reason for this uneven distribution, we observed the
367	distribution of PDGFB, a chemoattractant for pericytes (Fig. 5h-k). In the flow
368	region, the PDGF signal was low, while in the non-flow region, strong signals were
369	detected in endothelial cell cysts and pericytes (Fig. 5h-k). This result suggested
370	induction of PDGFB in the non-flow region was one of the reasons why pericytes
371	only remained in the non-flow region.

374 Reproducing extravasation of inflammatory cells from the capillary network

375	We next observed the interaction of blood cells and capillaries using this synthetic
376	system. At first, we perfused fluorescent beads (Fig. 1j) or red blood cells (Fig.
377	1k-l) in the self-organized vascular network. We also perfused the neutrophil cell
378	line HL-60 in the self-organized vascular network (Fig. 6a, b, Supplemental movie
379	S). We differentiated HL-60 cells by DMSO treatment and perfused the cell
380	suspension in the self-organized vascular network. The cells had the ability to
381	move through a very thin capillary segment (Fig. 6c). We also observed the time
382	course of extravasation (Fig. 6d-f). Three-dimensional observation confirmed
383	that the HL-60 cells were outside of the vascular network (Fig. 6g).
384	
385	Reproducing metastasis of cancer cells from capillary vessels

The other possible application of this culture system is assessment of hematogenous metastasis. We introduced the cancer cell line LM-4 into the culture medium with perfusion and observed the dynamics for up to 48 hours. As a result, the cells flowed inside the self-organized vascular network (Fig. 7a). The

390	cells also changed their shape during emigration from the vascular lumen (Fig.
391	7b). We next observed the detailed morphology of cancer cells after extravasation.
392	The emigrated cells maintained adherence to the vascular wall after extravasation
393	and extended protrusions along the endothelial cell surface (Fig. 7c-c"), which
394	may be regarded as filopodia-like protrusions in hematogenous metastasis [26].
395	In some cases, the extravasated cells influenced the shape of the vasculature (Fig.
396	7d, d'). We also observed vascular wall retraction at the sight of the extravasated
397	cancer cells.
398	
399	Vascularized spheroid culture system with flow
399 400	Vascularized spheroid culture system with flow We reproduced the spheroid culture system with perfusable vasculature [15] with
399 400 401	Vascularized spheroid culture system with flow We reproduced the spheroid culture system with perfusable vasculature [15] with a slight modification of the protocol (Fig. 8a). First, we produced spheroids using
399400401402	Vascularized spheroid culture system with flow We reproduced the spheroid culture system with perfusable vasculature [15] with a slight modification of the protocol (Fig. 8a). First, we produced spheroids using a 96-well plate. Then, the spheroids were embedded in the fibrin gel underneath
 399 400 401 402 403 	Vascularized spheroid culture system with flow We reproduced the spheroid culture system with perfusable vasculature [15] with a slight modification of the protocol (Fig. 8a). First, we produced spheroids using a 96-well plate. Then, the spheroids were embedded in the fibrin gel underneath a glass separator. When we cultured the spheroids for 1 week, HUVECs formed
 399 400 401 402 403 404 	Vascularized spheroid culture system with flow We reproduced the spheroid culture system with perfusable vasculature [15] with a slight modification of the protocol (Fig. 8a). First, we produced spheroids using a 96-well plate. Then, the spheroids were embedded in the fibrin gel underneath a glass separator. When we cultured the spheroids for 1 week, HUVECs formed sprouts with a lumen, which were as long as 1 mm (Fig. S5). Then, we cut the tip

- 407 By exerting static pressure between two wells, we observed the medium flow in
- 408 the connected spheroids (Fig. 8b). Interestingly, if we set two spheroids in close
- 409 vicinity, the vascular sprouts from both spheroids fused and made a serial cluster
- 410 of spheroids with perfusable vasculature.
- 411

412 Discussion

413 Reconstructive system of pattern formation

In the present study, we constructed a simple perfusion system to reproduce the 414 flow in a capillary network. The seminal work on this type of culture system with 415 416 flow was performed by Noo-Li Jeon's group [14]. However, the system needs an 417 elaborate microfluidic device that can only be fabricated by researchers with access to clean room facilities, and it is time consuming for biologists to fully use 418 419 the system including the device, tubing, and syringe pump. In contrast, our system 420 employs a standard glass-bottom dish without any additional pump, tubing, 421 reservoir, or engineering. The simplicity of the system enabled us to combine it 422 with time-lapse observation on a stage top incubator without any additional 423 apparatus. However, there are several shortcomings because of its simplicity. For 424 example, we could not regulate the flow rate in this system accurately because the 425 driving force for perfusion is static pressure between two wells. For detailed 426 control of flow, we need to use microfluidic devices.

428 Lumen formation capability of endothelial cells

429	The mechanism of lumen formation by endothelial cells remains to be elucidated.
430	ECM degradation and apicobasal polarity formation are thought to play a role [27].
431	In our culture system, one factor was the diffusible signaling molecules from LFs.
432	HUVECs cultivated in fibrin gel formed a network even without LFs, but we could
433	not induce a lumen without coculture with LFs. Two reports used a proteomics
434	approach to identify the diffusible factor responsible for lumen induction by LFs.
435	They identified several factors, but the effect of the combination of these factors
436	was less effective than lung fibroblast coculture [28,29]. We also found that
437	lumens were preferentially formed at regions near a hard object (Fig. S2). One
438	possible mechanism may be high cell density due to preferential migration of cells
439	toward the hard substrate (durotaxis) [30], but increasing the cell density as a
440	whole did not increase the lumen formation region around hard objects. In
441	addition, the lumen formation capacity of HUVECs and LFs differed significantly
442	depending on the production batch. We sometimes experienced HUVECs and
443	LFs whose proliferation appeared to be normal, but lumen formation was poor.

Increasing cell numbers sometimes compensated for the low lumen formation
activity, but in many cases, using a different batch of cells improved lumen
formation.

447

448 Effect of the extracellular matrix on the pattern formation mechanism

449 We used fibrin gel to generate a perfusable vascular network based on a previous

450 study [14]. Fibrin is the main component of a blood clot and not used in

451 physiological tissues. We tried to substitute fibrin gel with other physiological

452 extracellular matrixes such as Matrigel and type I collagen without success. This

453 may be due to the physical viscosity difference. A fibrin gel solution is less viscous

454 than a collagen gel solution. As a result, suspended HUVECs in fibrin gel gathered

455 at the bottom of a dish because of gravity. We succeeded in generating a lumen

456 structure in a type I collagen gel by embedding HUVEC spheroids, indicating that

457 the local cell density may be critically important.

458

459 Dynamics of pericytes in the capillary network with flow

460	For recruitment of pericytes to nascent blood vessels, platelet-derived growth
461	factor B (PDGF-B) produced by tip endothelial cells plays pivotal roles [25,31].
462	Notably, tip endothelial cells adjacent to hypoxic tissues are exposed to high
463	concentrations of VEGF-A [31]. Moreover, because of the absence of lumens, tip
464	endothelial cells have limited access to circulating blood [31]. Consistently,
465	cultured HUVECs under high oxygen pressure exhibit reduced production of
466	PDGF-B [32]. In our pericyte-HUVEC coculture with flow, pericytes
467	unexpectedly disappeared in the flow region. A possible reason may be the lack of
468	PDGF-B in the flow region. Endothelial cells in the flow region were under
469	normoxic conditions. There are no flow regions in which endothelial cells should
470	produce PDGF-B [32], and because of the PDGF-B gradient, pericytes might
471	migrate away from the flow region or extensively proliferate at non-flow regions.
472	

- 473 Connection of two vasculature systems
- 474 The connection between two different capillary systems still remains a major475 challenge. We tried to establish connections between the self-organized HUVEC

476	vascular network and the vascular network in embryonic tissue. The endothelial
477	cells from the embryonic tissue appeared to adhere to the HUVEC structure.
478	However, the lumens of these vasculatures did not form a connection. Therefore,
479	we could not perfuse the vasculature in embryonic tissue (Fig. S6). Additional
480	factors may be necessary to use this culture system as an alternative to organ
481	culture. Because direct connection of two vascular systems is still a major
482	challenge, currently, a technically simpler experimental model of vasculature-
483	blood cell interactions may be a major field of application. In the present study,
484	we demonstrated two applications, dynamics of inflammatory cells and
485	hematogenic metastasis. Various other system can be implemented with our
486	current model without additional costs.

487

488 Relationship between microfluidic device methods

489 This method may be a very good prescreening method for microfluidic device 490 experiments. The major merit of this method is the ease and low cost. We have 491 experienced difficulty in introducing blood vessel into a microfluidic device [15]

492	because it requires specialized skills to connect tubes without damaging gels or
493	endothelial cell networks. As a result, it is difficult to perform a large number of
494	microfluidic device experiments because of its technical difficulty. Although we
495	only used a constant pressure condition for medium perfusion and could not
496	strictly control the flow, this method may be a good starting point to roughly
497	estimate the effect of flow in biological laboratories.
498	
499	
500	Acknowledgments
500 501	Acknowledgments The authors thank Professor Fumio Arai for helpful suggestions. We also thank
500 501 502	Acknowledgments The authors thank Professor Fumio Arai for helpful suggestions. We also thank Mitchell Arico from Edanz Group (https://en-author-services.edanzgroup.com/)
500 501 502 503	Acknowledgments The authors thank Professor Fumio Arai for helpful suggestions. We also thank Mitchell Arico from Edanz Group (https://en-author-services.edanzgroup.com/) for editing a draft of this manuscript. This work was financially supported by JST
500 501 502 503 504	Acknowledgments The authors thank Professor Fumio Arai for helpful suggestions. We also thank Mitchell Arico from Edanz Group (https://en-author-services.edanzgroup.com/) for editing a draft of this manuscript. This work was financially supported by JST CREST (Grant Number JPMJCR14W4).
500 501 502 503 504 505	Acknowledgments The authors thank Professor Fumio Arai for helpful suggestions. We also thank Mitchell Arico from Edanz Group (https://en-author-services.edanzgroup.com/) for editing a draft of this manuscript. This work was financially supported by JST CREST (Grant Number JPMJCR14W4).

507 Kei Sugihara, Yoshimi Yamaguchi, and Shiori Usui undertook experiments. Yuji

508	Nashimoto and Sanshiro Hanada provided materials and designed experiments.
509	Etsuko Kiyokawa provided tumor cell lines. Akiyoshi Uemura designed
510	experiments, provided materials, and wrote the pericyte-related section in the
511	manuscript. Ryuji Yokokawa, Koichi Nishiyama, and Takashi Miura designed
512	experiments and wrote the manuscript.

514 Figure Legends

516	Figure 1: Culture system setup. (a) Side and top views of the culture dish before
517	setup. The dish was a normal 12-phi glass-bottom dish. A glass separator was set
518	at the center of the dish with a bioinert adhesive. (b) First, we placed 150 μl fibrin
519	gel mixed with HUVECs in the center of the glass plate, so that two sides of the
520	dish were separated by the glass separator and fibrin gel. We also added LF-
521	containing fibrin gel at the edge of the dish. (c) We incubated the dish for 30 min
522	to solidify the fibrin gel. (d) We added 1 ml culture medium to both wells and
523	incubated the dish for 1 week. (e) After 1 week of culture, a vascular network with
524	a perfusable lumen was formed in the glass-bottom region. Then, we cut both
525	edges of the regions to make openings. (f) After the cuts, we increased the amount
526	of culture medium on one side of the dish. This caused a static pressure difference
527	between both openings of the self-organized capillary network, resulting in steady
528	flow inside the apparatus. (g) A vascular network with a lumen was generated in
529	the fibrin gel region. RFP-HUVECs were cultivated in the fibrin gel, and we
530	observed the vascular network with lumens. (h) After the vascular network was
531	formed spontaneously, both sides of the network were cut to make openings. (i)

532	After making the cuts, we moved the culture medium, so we could exert static
533	pressure to one side of the vascular network. The water level difference was
534	maintained overnight, depending on the degree of lumen formation in the
535	vascular network). (j) Flow inside the lumen was visualized using fluorescent
536	beads. (k) Snapshot of the culture system when using whole blood as a tracer. Red
537	blood cells were flowing inside the self-organized vasculature. (1) Projection of
538	multiple frames of (k). Movements of red blood cells were visualized as a stream.
539	Scale bars: 100 μm (g); 500 μm (j); 50 μm (k, l).

541

Figure 2: Flow-induced collective cell migration and cell shape changes. (a) Initial shape of the vascular network. HUVECs were stained with UEA1 and nuclei were stained with Hoechst 33342. There was a flow-positive region (yellow-dashed line) and non-flow region (green-dashed line). Direction of flow is indicated by a white allow. (b) Kymograph of the yellow-dashed line region. Collective movement toward upstream of the flow was observed. White arrow indicates the flow of cell debris. (c) Kymograph of the green-dashed line region. Cell movement

550	was random. (d-n) Cell shape changes induced by flow: (d, e) Fast flow. When
551	FITC dextran was perfused, the vessel regions near the inlet or outlet showed fast
552	flow. (f) Brightfield view of the fast flow region. Endothelial cells became shaped
553	as spindles aligned parallel to the flow direction. (g) Fluorescence view of the fast
554	flow region. At the floor of the lumen, we observed spindle-shaped cells parallel
555	to the flow direction. (h, i) Slow flow. When FITC dextran was perfused, the vessel
556	regions far from the inlet or outlet showed slow flow. (j) Brightfield view and (k)
557	confocal view of the slow flow region. Endothelial cells did not show any polarity.
558	(l) Low magnification view of the non-flow region. (m) Brightfield view and (n)
559	confocal view of the non-flow region. Vasculatures were disconnected and became
560	thin endothelial cysts with cell debris inside. Scale bars: 1 mm (d, e, h, i, l); 200
561	μm (f, g, j, k, m, n).

563

565	Figure 3: Reconstruction of flow-induced remodeling. (a-c). Time course of the
566	vascular network of the two-well dish. (a) Vascular pattern at day 0. Locations of
567	the cut (white arrows) and high flow region (blue box), non-flow region (cyan
568	box) are indicated. A cut was made at the periphery of the culture area to induce
569	regions of flow and non-flow within a single dish. (b) Vascular pattern at day 21.
570	(c) Visualization of the perfusable area by FITC-dextran. Perfusable regions
571	existed near the inlet and outlet, near the glass separator and edge of the well. (d).
572	Remodeling process at the high flow region from day 0 to 21. (d') Kymograph of
573	the dotted line region in (d). Vasculature dilated gradually. (e) Remodeling
574	process at the non-flow region from day 0 to 21. (e') Kymograph of the dotted line
575	region in (e). The vascular diameter decreased. (f) Low magnification view of a
576	hematoxylin-eosin-stained EC monoculture sample. (g) Magnified view of the
577	upper surface of the gel. The surface of the gel was covered by endothelial cells.
578	(h) Magnified view of the large lumen inside the gel. The lumen was also covered
579	by endothelial cells. (i) Magnified view of the small lumen inside the gel. Small
580	necrotic cells were observed inside the lumen (arrows). (j) TUNEL staining of the

581	flow region. No dead cells were observed. (k) TUNEL staining of the non-flow
582	region. Dead cells were observed inside the vasculature. (1) Type IV collagen
583	staining of the long-term culture sample. There were some lumens positive for
584	type IV collagen without cells (arrows), indicating the ECM sheath of the
585	degraded vasculatures in non-flow regions. Scale bars: 3 mm (a–c); 500 μ m (d–f);
586	100 µm (g–l).

589 Figure 4: Effect of flow on cell proliferation. (a) Coculture of RFP-HUVECs and 590 NMuMG-Fucci cells. HUVECs and NMuMG cells segregated, and NMuMG cells 591 formed a colony in the interstitial region. (b) Experimental design. The upper 592 region (red-dotted line) was cut to induce flow inside the lumen. We did not 593 observe flow in the lower region (black-dotted line). (c) Flow region at 48 h. 594 Proliferative cells remained in the interstitial region (white arrowheads). (d) Non-595 flow region at 48 h. Proliferating cells disappeared in the interstitial region (white arrows). (e) Relative green fluorescence intensity ratio (24 h/0 h). A statistically 596

597 significant difference was found between flow and non-flow regions (Mann-

598 Whitney test, p < 0.05). Scale bars: 200 µm.

Figure 5: Dynamics of pericytes in the HUVEC-pericyte coculture system. (a) Low magnification view of the distribution of pericytes at day 0 (green). White arrows indicate the inlet and outlet. (b) Distribution of pericytes after 21 days of perfusion culture. We observed a high density region of pericytes (arrows) in the non-flow region and a low density region (red circle) in the flow region. (c) High magnification view of pericyte distribution at the flow region (day 0). (d) High magnification view of the pericyte distribution at the flow region (day 21).

608	Pericyte cell density was decreased in flow region and increased in non-flow
609	region. (e) 3D structure of the flow region at day 30. Endothelial cells (red)
610	formed vasculature with a perfusable lumen. Pericytes were virtually absent. (f)
611	Boundary between flow and non-flow regions. Pericytes resided in the non-flow
612	region. (g) 3D structure of the non-flow region. Vasculature was degraded and
613	flat cysts of endothelial cells with cell debris inside remained. Pericytes appeared
614	to surround the degraded structure. (h) Low magnification view of PDGFBB
615	immunohistochemistry. A positive signal was observed in the non-flow region. (i)
616	High magnification view of the flow region. No positive signal was observed. (j)
617	High magnification view of the non-flow region. The cell cyst and surrounding
618	pericytes had a high staining intensity. (k) High magnification view of pericytes
619	in the non-flow region. A positive signal was observed in the cytoplasm. Scale bars:
620	500 μm (a–g); 100 μm (h–k).
621	

623

624 Figure 6: Extravasation of leukocytes using the self-organized vascular network. 625 (a) HL-60 cells, an acute myelogenous leukemia cell line, were labeled with 626 CellTracker Green and introduced into the self-organized vascular system 627 visualized by UEA-I lectin. (b) Projection image of a time-lapse movie for 4 628 seconds. Movement of HL-60 cells inside the vascular network was observed. (c) 629 DMSO-induced differentiated HL-60 cells (dHL-60), which mimicked 630 neutrophils, passed through thin vessels with large deformation under the presence of TNF α . (d-f) Representative time-course of extravasation. 631

632	Extravasation occurred within a short time period (10 min.). Extravasating cells
633	(white arrows) extended protrusions toward the outside of the blood vessel when
634	emigrating from the blood vessel lumen. (g) Three-dimensional structure of
635	extravasated cells (white arrows) shown as max projection x-y and x-z/y-z single
636	slice images. We clearly observed extravasated cells outside of the vasculature.
637	Time separated with colons indicates hours and minutes. Scale bars: 50 μ m (a, b);
638	10 μm (c-g).
639	

Figure 7: Reproduction of hematogenous metastasis of cancer cells from the 641 capillary network. (a) LM4-GFP cells were introduced into the self-organized 642 643 capillary network consisting of HUVECs visualized by UEA-1 lectin. (b) High 644 magnification time-lapse view of (a). We observed cancer cells emigrating out of the blood vessels. (c) Detailed morphology of cancer cells on the endothelial cells. 645 646 Emigrated LM4 cells attached to the blood vessel with highly polarized 647 morphology and multiple protrusions. (c) Max projection image, (c') orthogonal section, and (c'') 3D-reconstructed image. White arrows: cancer cell protrusions. 648 (d) Blood vessel shape changes after cancer cell emigration (white-dotted line). 649 650 (d') Kymograph of the blood vessel wall corresponding to the white line in (d).

651 Time separated with colons indicates hours and minutes. Scale bars: 50 μm (a);

652 10 μm (b, c); 20 μm (d).

654

Figure 8: Perfusion of vascularized spheroids. (a) Experimental procedure.
Spheroids containing RFP-HUVECs and lung fibroblast were generated and
embedded in fibrin gel. After 1 week, sprouts from the spheroids became
sufficiently long. Then, we cut the tip of the sprouts from both sides of the well
and exerted static pressure to one side of the well. (b) Visualization of the
perfusion inside the spheroid using FITC-dextran. Scale bar: 500 µm.

661 Supporting information

S1 Fig: Screening for the pattern formation capability of various commercially available primary endothelial cells. All cells generated a meshwork structure on Matrigel (tube formation assay). In Matrigel or collagen gels, the cells simply became static and no pattern formation phenomena was observed. In fibrin gel, the cells tended to connect to each other, but a lumen was not formed, except for HPAECs. If we cocultured these cells with human lung fibroblasts (LFs), the cells formed a network with lumens.

672 S2 Fig: Lumen formation was observed only around solid objects. (a) Brightfield 673 image of HUVECs cocultured with LFs in fibrin gel in the *periphery* of the dish. 674 A lumen structure was observed. (b) Fluorescence image of HUVECs cocultured with LFs in fibrin gel in the *periphery* of the dish. HUVECs were stained with 675 676 UEA1-FITC. A lumen structure was observed (white arrows). (c) Brightfield 677 image of HUVECs cocultured with LFs in fibrin gel in the center of the dish. A lumen structure was not clear. (d) Fluorescence image of HUVECs cocultured 678 679 with LFs in fibrin gel in the center of the dish. HUVECs were stained with UEA1-680 FITC. Lumen formation was not clear. (e) Brightfield image of HUVECs cocultured with LFs in fibrin gel near 1 mm glass beads embedded in the fibrin 681

682	gel. We observed lumen formation around beads. (f) Confocal image of HUVECs
683	cocultured with LFs in fibrin gel near 1 mm glass beads (dashed red circle)
684	embedded in the fibrin gel. HUVECs were stained with UEA1-FITC. We
685	observed lumen formation around beads. (g) Brightfield image of HUVECs
686	cocultured with LFs in fibrin gel near 1 mm glass beads <i>placed on</i> the fibrin gel.
687	We observed lumen formation around beads. (h) Confocal image of HUVECs
688	cocultured with LFs in fibrin gel near 1 mm glass beads <i>placed on</i> the fibrin gel.
689	HUVECs were stained with UEA1-FITC. We observed lumen formation around
690	the beads. Scale bars: 100 µm (a–d); 1 mm (f, h).

S3 Fig: Three-dimensional structure of inlet and outlet regions. (a) Brightfield
image of the inlet hole region. Arrow: small hole made by fine forceps. (b) Threedimensional structure of the inlet hole observed by confocal microscopy. We
observe RFP-HUVECs covering the hole to make openings to the upper medium
reservoir. (c) Brightfield image of the outlet hole region. Arrows indicate a small
hole made by fine forceps. Cell debris from the vascular network accumulated near
the outlet region (arrowhead). Scale bars: 200 µm.

703 S4 Fig: Effect of flow on the self-organized endothelial cell network with pericytes.

704	(a) Low magnification view at day 0. Locations of the inlet and outlet are shown
705	by white arrows. (b) Low magnification view at day 21. (c) Confirmation of
706	perfusion at day 30. Endothelial cells were stained with UEA-1 lectin (red) and
707	culture medium with FITC-dextran (green) was perfused. Characteristics of the
708	vessel shape were similar to that without pericytes. (d) Three-dimensional view
709	of the vasculature. We did not observe leakage of FITC-dextran. (e) High
710	magnification view of the flow region [blue box in (a)]. Note that vascular regions
711	increased gradually. (e') Kymograph of the vascular region [dotted line in (e)].
712	Note that the vascular diameter increased gradually (double-headed arrows). (f).
713	High magnification view of the non-flow region [cyan box in (a)]. The vascular
714	region decreased gradually with cell debris inside the vascular lumen (double-
715	headed arrows). (f') Kymograph of vascular region [dotted line in (f)]. Vascular
716	diameter decreased gradually and debris accumulated inside the endothelial cyst
717	(double-headed arrows). (g) Histological observation of the flow region. (h)
718	Histological observation of the low flow region. (i) High magnification view of the
719	cyst structure in the non-flow region. (j) Histological structure of pericytes within

720	a gel in the non-flow region. (k) TUNEL staining of the flow region. No dead cells
721	were observed. (1) TUNEL staining of the non-flow region. A positive signal was
722	observed within the cyst. (m) Type IV collagen staining near the cyst. A large
723	ECM sheath structure was observed (arrowhead) near the cyst (arrow). (n) Type
724	IV collagen and desmin staining of the non-flow region. Desmin-positive pericytes
725	were observed within the gel, which colocalized with type IV collagen. Scale bars:
726	3 mm (a, b); 1 mm (c); 250 μm (d);100 μm (e, f).

728

S5 Fig: Quantification of the sprout length from endothelial cell-containing spheroids. Spheroids containing RFP-HUVECs were cultivated for 2 or 4 days in a culture plate and then transferred to fibrin gel. The length of angiogenic sprouts from the centroid of the fluorescent signal was measured every day. The length of the sprout became saturated after 7 days, and the radius was around 1 mm, which enabled us to directly cut the tip of the sprout to generate an open end.

735

- observation of the cultured tissue. Kidney explants formed collecting tubule-like
- structures, but the endothelial sprouts from the HUVEC spheroids did not form a
- 748 connection with the kidney structure.

750	Supporting movie S1: Flow of fluorescent particles in the self-organized capillary
751	network.
752	Real-time movie of fluorescent particles flowing in a synthetic vascular network in
753	fibrin gel.
754	
755	Supporting movie S2: Flow of red blood cells in the self-organized capillary network.
756	Real-time movie of red blood cell flowing in a synthetic vascular network in fibrin
757	gel. Blood was diluted 20× using EGM-2 and loaded on one side of the well (Fig.
758	1k,l).
758 759	1k,l).
758 759 760	1k,l). Supporting movie S3: Cell debris flowing during the medium change (long-term
758 759 760 761	1k,l). Supporting movie S3: Cell debris flowing during the medium change (long-term perfusion experiment).
758 759 760 761 762	1k,l). Supporting movie S3: Cell debris flowing during the medium change (long-term perfusion experiment). Real-time movie of cell debris flowing in a synthetic vascular network in fibrin gel
 758 759 760 761 762 763 	1k,l). Supporting movie S3: Cell debris flowing during the medium change (long-term perfusion experiment). Real-time movie of cell debris flowing in a synthetic vascular network in fibrin gel during the long-term perfusion experiment (Fig. 2). We confirmed perfusion
 758 759 760 761 762 763 764 	1k,l). Supporting movie S3: Cell debris flowing during the medium change (long-term perfusion experiment). Real-time movie of cell debris flowing in a synthetic vascular network in fibrin gel during the long-term perfusion experiment (Fig. 2). We confirmed perfusion during the medium change process.

- 766 Supporting movie S4: dilation of the vessels in the flow region
- 767 Time-lapse movie of the flow region in the long-term flow experiment (Fig. 3d).
- 768 The vessel with flow was maintained alive, and some vessels became dilated.
- Frame rate: 1 day/frame, 30 days.
- 770
- 771 Supporting movie S5: Disappearance of unused vessels in the non-flow region.

772 Time-lapse movie of the non-flow region in the long-term flow experiment (Fig.

- 773 3e). The vessel became disconnected and degraded gradually. Frame rate: 1
- day/frame, 30 days.
- 775

776 Supporting movie S6: Movement of pericytes in the flow region

777 Time-lapse movie of pericytes (green) in the flow region (upper half) and non-

- flow region (lower half). In the flow region, the pericytes simply disappeared,
- 779 whereas in the non-flow region, pericytes proliferated extensively.

780

782 Supporting movie S7: Flow of HL60 cells in the self-organized vascular network.

783 Time-lapse movie of HL60 (green) in HUVEC-RFP vascular network.

784

786 References

788	1.	Gilbert SF, Michael J. Barresi. Developmental Biology. 11th ed. Sinauer;
789		2018.
790	2.	Wolpert L, Tickle C. Principles of development. 4th ed. New York, New
791		York, USA: Oxford University Press; 2011.
792	3.	Sadler TW. Langman's Medical Embryology. 10th ed. Baltimore:
793		Lippincott Williams & Wilkins; 2006. doi:10.1097/00006534-198801000-
794		00024
795	4.	Shamir ER, Ewald AJ. Three-dimensional organotypic culture:
796		Experimental models of mammalian biology and disease [Internet].
797		Nature Reviews Molecular Cell Biology. 2014. pp. 647–664.
798		doi:10.1038/nrm3873
799	5.	Clevers H. Modeling Development and Disease with Organoids. Cell.
800		2016;165: 1586–1597. doi:10.1016/j.cell.2016.05.082
801	6.	Miura T, Yokokawa R. Tissue culture on a chip: Developmental biology

802		applications of self-organized capillary networks in microfluidic devices.
803		Development Growth and Differentiation. 2016. pp. 505–515.
804		doi:10.1111/dgd.12292
805	7.	Auger FA, Gibot L, Lacroix D. The Pivotal Role of Vascularization in
806		Tissue Engineering. Annu Rev Biomed Eng. 2013;15: 177–200.
807		doi:10.1146/annurev-bioeng-071812-152428
808	8.	Kubota Y, Kleinman HK, Martin GR, Lawley TJ. Role of laminin and
809		basement membrane in the morphological differentiation of human
810		endothelial cells into capillary-like structures. J Cell Biol. 1988;107: 1589–
811		1598. doi:10.1083/jcb.107.4.1589
812	9.	Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions.
813		Circ Res. 2005;97: 512–523. doi:10.1161/01.RES.0000182903.16652.d7
814	10.	Wagner DD, Frenette PS. The vessel wall and its interactions. Blood.
815		2008;111: 5271–5281. doi:10.1182/blood-2008-01-078204
816	11.	Williams MR, Azcutia V, Newton G, Alcaide P, Luscinskas FW. Emerging
817		mechanisms of neutrophil recruitment across endothelium [Internet].

818		Trends in Immunology. 2011. pp. 461–469. doi:10.1016/j.it.2011.06.009
819	12.	Gupta GP, Massagué J. Cancer Metastasis: Building a Framework
820		[Internet]. Cell. 2006. pp. 679–695. doi:10.1016/j.cell.2006.11.001
821	13.	Song HHG, Rumma RT, Ozaki CK, Edelman ER, Chen CS. Vascular
822		Tissue Engineering: Progress, Challenges, and Clinical Promise. Cell Stem
823		Cell. 2018;22: 340-354. doi:10.1016/j.stem.2018.02.009
824	14.	Kim S, Lee H, Chung M, Jeon NL. Engineering of functional, perfusable
825		3D microvascular networks on a chip. Lab Chip. 2013;13: 1489–1500.
826		doi:10.1039/c3lc41320a
827	15.	Nashimoto Y, Hayashi T, Kunita I, Nakamasu A, Torisawa Y, Nakayama
828		M, et al. Integrating perfusable vascular networks with a three-
829		dimensional tissue in a microfluidic device. Integr Biol. 2017;9: 506–518.
830		doi:10.1039/C7IB00024C
831	16.	Nashimoto Y, Okada R, Hanada S, Arima Y, Nishiyama K, Miura T, et al.
832		Vascularized cancer on a chip: The effect of perfusion on growth and drug
833		delivery of tumor spheroid. Biomaterials. 2020;229: 119547.

834		doi:10.1016/j.biomaterials.2019.119547
835	17.	van Duinen V, Zhu D, Ramakers C, van Zonneveld AJ, Vulto P,
836		Hankemeier T. Perfused 3D angiogenic sprouting in a high-throughput in
837		vitro platform. Angiogenesis. 2019;22: 157-165. doi:10.1007/s10456-018-
838		9647-0
839	18.	Nakatsu MN, Sainson RCA, Aoto JN, Taylor KL, Aitkenhead M, Pérez-
840		del-Pulgar S, et al. Angiogenic sprouting and capillary lumen formation
841		modeled by human umbilical vein endothelial cells (HUVEC) in fibrin
842		gels: The role of fibroblasts and Angiopoietin-1. Microvasc Res. 2003;66:
843		102-112. doi:10.1016/S0026-2862(03)00045-1
844	19.	Corbett TH, Griswold DP, Roberts BJ, Peckham JC, Schabel FM. Tumor
845		induction relationships in development of transplantable cancers of the
846		colon in mice for chemotherapy assays, with a note on carcinogen
847		structure. Cancer Res. 1975;35: 2434–9.
848	20.	Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years
849		of image analysis. Nat Methods. 2012; doi:10.1038/nmeth.2089

850	21.	Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch
851		T, et al. Fiji: An open-source platform for biological-image analysis.
852		Nature Methods. 2012. pp. 676–682. doi:10.1038/nmeth.2019
853	22.	Sato Y, Poynter G, Huss D, Filla MB, Czirok A, Rongish BJ, et al.
854		Dynamic analysis of vascular morphogenesis using transgenic quail
855		embryos. PLoS One. 2010;5: 1–12. doi:10.1371/journal.pone.0012674
856	23.	Ostrowski MA, Huang NF, Walker TW, Verwijlen T, Poplawski C, Khoo
857		AS, et al. Microvascular endothelial cells migrate upstream and align
858		against the shear stress field created by impinging flow. Biophys J.
859		2014;106: 366–374. doi:10.1016/j.bpj.2013.11.4502
860	24.	Hsu PP, Li S, Li YS, Usami S, Ratcliffe A, Wang X, et al. Effects of flow
861		patterns on endothelial cell migration into a zone of mechanical
862		denudation. Biochem Biophys Res Commun. 2001;285: 751–759.
863		doi:10.1006/bbrc.2001.5221
864	25.	Uemura A, Ogawa M, Hirashima M, Fujiwara T, Koyama S, Takagi H, et
865		al. Recombinant angiopoietin-1 restores higher-order architecture of

866		growing blood vessels in mice in the absence of mural cells. J Clin Invest.
867		2002;110: 1619–1628. doi:10.1172/JCI200215621.Introduction
868	26.	Shibue T, Brooks MW, Fatih Inan M, Reinhardt F, Weinberg RA. The
869		outgrowth of micrometastases is enabled by the formation of filopodium-
870		like protrusions. Cancer Discov. 2012;2: 706–721. doi:10.1158/2159-
871		8290.CD-11-0239
872	27.	Davis GE, Stratman AN, Sacharidou A, Koh W. Molecular Basis for
873		Endothelial Lumen Formation and Tubulogenesis During Vasculogenesis
874		and Angiogenic Sprouting. International Review of Cell and Molecular
875		Biology. 2011. pp. 101–165. doi:10.1016/B978-0-12-386041-5.00003-0
876	28.	Newman AC, Chou W, Welch-Reardon KM, Fong AH, Popson SA, Phan
877		DT, et al. Analysis of stromal cell secretomes reveals a critical role for
878		stromal cell-derived hepatocyte growth factor and fibronectin in
879		angiogenesis. Arterioscler Thromb Vasc Biol. 2013;33: 513–522.
880		doi:10.1161/ATVBAHA.112.300782
881	29.	Newman AC, Nakatsu MN, Chou W, Gershon PD, Hughes CCW. The

882		requirement for fibroblasts in angiogenesis: fibroblast-derived matrix
883		proteins are essential for endothelial cell lumen formation. Mol Biol Cell.
884		2011;22: 3791–3800. doi:10.1091/mbc.e11-05-0393
885	30.	Sunyer R, Conte V, Escribano J, Elosegui-Artola A, Labernadie A, Valon
886		L, et al. Collective cell durotaxis emerges from long-range intercellular
887		force transmission. Science (80-). 2016;353: 1157-1161.
888		doi:10.1126/science.aaf7119
889	31.	Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A,
890		Abramsson A, et al. VEGF guides angiogenic sprouting utilizing
891		endothelial tip cell filopodia. J Cell Biol. 2003;161: 1163–1177.
892		doi:10.1083/jcb.200302047
893	32.	Kourembanas S, Hannan RL, Faller D V. Oxygen tension regulates the
894		expression of the platelet-derived growth factor-B chain gene in human
895		endothelial cells. J Clin Invest. 1990;86: 670-674. doi:10.1172/JCI114759
896		