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Abstract 
There are many examples in the literature showing the negative impact of within-species             

contamination in sequencing datasets. Here, we describe haplocheck, a software tool that uses             

the human mitochondrial phylogeny to estimate the contamination level within samples. By            

analyzing wet-lab and in-silico mixtures, we show that haplocheck is able to detect             

contamination accurately in mitochondrial sequencing studies. We further demonstrate that          

haplocheck can be used as an efficient proxy for estimating the nuclear DNA contamination              

level and investigate the influence of the mitochondrial copy number. Haplocheck is available at              

https://github.com/genepi/haplocheck.  

Introduction 
The human mitochondrial DNA (mtDNA) is an extranuclear DNA of ~16.6 kb length (Andrews et               

al. 1999). It is inherited exclusively through the maternal line facilitating the reconstruction of the               

human maternal phylogeny and female (pre-)historical demographic patterns worldwide. The          

strict maternal inheritance of mtDNA results in a natural grouping of sequence haplotypes into              

monophyletic clusters, referred to as haplogroups (Kivisild et al. 2006; Kloss-Brandstätter et al.             

2011).  

Furthermore, next generation sequencing (NGS) or massive parallel sequencing (MPS) enables           

the detection of heteroplasmy over the complete mitochondrial genome. Heteroplasmy is the            

occurrence of at least two different haplotypes of mtDNA in the investigated biological samples              

(e.g. cells or tissues). Depending on the sequencing coverage, heteroplasmic positions are            

reliably detectable down to the 1% variant level (Weissensteiner et al. 2016; Ye et al. 2014). In                 

recent years, the issue on apparent heteroplasmy in mitochondrial data and data interpretation             

was addressed by several studies (Bandelt and Salas 2012; He et al. 2010; Ye et al. 2014; Just                  

et al. 2014a) resulting in a comprehensive review on the quality of mtDNA data derived from                

sequencing studies (Just et al. 2015). It has been shown that studies massively overestimate              

the presence of heteroplasmy, which can often be explained by external contamination (Yao et              

al. 2007; Just et al. 2014b, 2015; Brandhagen et al. 2020), artificial recombination (Bandelt et al.                

2004), artifacts or analysis software inconsistencies (Weissensteiner et al. 2016). Sample           

contamination is still a major issue in both nuclear DNA (nDNA) and mtDNA sequencing studies               
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that must be prevented to avoid mistakes as it occurred with Sanger sequencing studies in the                

past (Salas et al. 2005). Due to the accuracy and sensitivity of NGS combined with the                

availability of improved computational models, within-species contamination is traceable down          

to the 1% level in whole-genome sequencing (WGS) studies (Jun et al. 2012).  

Several approaches exist to detect contamination in mtDNA sequencing studies. In a recent             

work (Weissensteiner et al. 2016), we showed that a contamination approach based on the              

co-existence of phylogenetically incompatible mitochondrial haplotypes observable as        

heteroplasmy is feasible as already demonstrated by others (Avital et al. 2012; Li et al. 2010,                

2015). Other methods, such as a Galaxy-based approach (Dickins et al. 2014) facilitates the              

check for contamination by building neighbor joining trees. Mixemt (Vohr et al. 2017)             

incorporates the mitochondrial phylogeny and estimates the most probable haplogroup for each            

sequence read; the computational expensive algorithm implemented in Mixemt reveals          

advantages for contamination detection of several haplotypes within one sample and is            

independent of variant frequencies. For ancient DNA studies, schmutzi (Renaud et al. 2015)             

uses sequence deamination patterns and fragment length distributions to estimate          

contamination. Additionally, specific lab-protocols were designed for eliminating contamination,         

including double-barcode sequencing approaches (Yin et al. 2019).  

For contamination detection within mitochondrial studies, DNA cross-contamination is often          

investigated (Wei et al. 2019; Ding et al. 2015; Yuan et al. 2020) by applying widely accepted                 

software tools like VerifyBamID (Zhang et al. 2020; Jun et al. 2012). Nevertheless, it becomes               

apparent that a tool is missing to easily detect contamination and to distinguish it from real                

heteroplasmic positions in mitochondrial studies. Since mtDNA is also present hundred to            

several thousand-fold per cell depending on cell-type, even WGS datasets specifically targeting            

the autosomal genome also result in a high coverage over the mitochondrial genome.             

Therefore, we hypothesize that the nDNA contamination level might be estimated by looking at              

the mtDNA only.  

In this paper, we systematically evaluate the approach of using the mtDNA phylogeny for              

contamination detection and present the haplocheck software, which can be used as a tool to               

detect contamination in NGS studies. We show on different wet-lab and in-silico data sets that               

haplocheck is able to accurately detect heteroplasmic positions and therefore also           

contamination down to 1% in mtDNA studies. By creating in-silico WGS data and reanalyzing              

the 1000 Genomes Project data (1000 Genomes Project Consortium et al. 2015), we further              

demonstrate that haplocheck can be used as an efficient proxy for estimating nDNA             
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contamination level and investigate the influence of the mitochondrial copy number (mtCN).            

Finally, we show that haplocheck helps to discover the source of contamination due to the               

identified haplotypes within a sample.  

Overall, this work demonstrates the merits of the mitochondrial genome as an instrument for fast               

contamination detection in sequencing studies and provides a computational tool that takes            

advantage of a solid well-known mitochondrial phylogeny.  

Methods 
In general, haplocheck works by identifying two mitochondrial haplotypes that arise due to the              

existence of heteroplasmy within a sample. Haplocheck is able to detect heteroplasmic variants             

down to 1% and splits them by their allele frequency (AF) level into two haplotypes (or                

components). The resulting major (AF > 0.5) and minor haplotypes (AF <= 0.5) are classified               

into mitochondrial haplogroups and based on the mitochondrial phylogeny, the genetic distance            

between the two haplogroups is calculated. The identification of two stable haplogroups in             

combination with several quality criteria allows haplocheck to mark samples as contaminated.            

Haplocheck includes (a) an accurate homoplasmic and heteroplasmic variant calling method,           

(b) a robust method classifying variants into mitochondrial haplogroups and (c) quality control             

criteria to distinguish variant calling artefacts or heteroplasmic positions from real sample            

contamination.  

Three different scenarios need to be considered for contamination detection based on the             

mitochondrial phylogeny. First, two components branch into two different nodes: a major            

component with heteroplasmy level x and a minor component with heteroplasmy level 1-x             

(Figure 1A). Here, H1a1 represents the Last Common Ancestor (LCA) for both components.             

Second, if heteroplasmic sites are only identified in the major component, the minor component              

H1a1 is defined as the LCA (Figure 1B). Third, if heteroplasmic sites are only present in the                 

minor component, the major component H1a1 defines the LCA (Figure 1C).  
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Figure 1: All possible contamination scenarios. Here, a contamination level of 20% is shown in all three                 

scenarios A) to C). Shared polymorphisms of two haplotypes are included in a single branch, whereas the                 

split into two branches displays the different lineage components. A) Shared mutations defining H1a1              

(Last Common Ancestor, LCA) are present at 100%, while 7961C is present only at 20% defining the                 

minor haplogroup H1a1b, whereas 4639C and 10993A is present at 80% defining the major haplogroup               

H1a1a1. B) A mixture of two haplotypes within a single lineage but of different lineage depths (minor                 

component H1a1 and major component H1a1a1) is observed if no minor component can be found. C) A                 

mixture of two haplotypes within a single lineage but of different lineage depths (minor H1a1a1 and major                 

H1a1) is observed if the minor component results in a haplogroup. Shared homoplasmic sites facilitate               

the identification of the branching pattern in all three scenarios and improving the overall haplogroup               

quality.  
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Homoplasmic and Heteroplasmic Variant Calling 

The overall performance of haplocheck relies on an accurate homoplasmic and heteroplasmic            

variant calling. Therefore, we previously developed mtDNA-Server (Weissensteiner et al. 2016)           

that allows to detect heteroplasmic positions accurately down to 1%. We re-implemented            

mtDNA-Server as a standalone module (mutserve, https://github.com/seppinho/mutserve ) and        

integrated it into the haplocheck workflow. To detect heteroplasmic positions accurately, several            

quality criteria (e.g. check for strand bias (Guo et al. 2012)) and a Maximum Likelihood (ML)                

heteroplasmy model has been applied that takes the sequencing error per base into account              

(Ye et al. 2014). All sites with a log likelihood ratio (LLR) of ≥5 are tagged as heteroplasmic                  

sites. Detected heteroplasmic positions are reported in VCF format as heterozygous genotypes            

(GT) using the AF tag for the estimated contamination level. Although the term genotype makes               

sense in autosomal diploid scenarios, we use it here to refer to mtDNA variation patterns that                

resemble a genotype status. 

For homoplasmic positions, the final genotype GT ({A,C,G,T}) is detected using all input reads              

(reads) and calculating the genotype probability P using Bayes’ Theorem P(GT|reads) =            

P(reads|GT) x P(GT) / P(reads). To calculate the prior probability P(GT), we used the 1000               

Genomes Phase 3 VCF file and calculated the frequencies for all sites using vcftools (Danecek               

et al. 2011). To compute P(reads|GT), we calculate the sequence error rate (e i = 10 -Qi/10) for                

each base i of a read, whereas Q is the reported quality value. For each genotype GT (GT ∈                   

{A,C,G,T}) of a read, we determine the genotype likelihood by multiplying 1-e i in case the base                

of the read ri = GT and e i /3 otherwise over all reads (Ding et al. 2015). The denominator                  

P(reads) is the sum of all four P(reads|GT).  

Contamination Detection Model 

The contamination model within haplocheck includes steps for (a) splitting the profile into two              

components, (b) haplogroup classification for each component, and (c) applying several           

quality-control criteria. Within the split step, homozygous genotypes for the alternate alleles            

(ALT; i.e. homoplasmic sites) are added to both components and heterozygous genotypes (i.e.             

heteroplasmic sites) are split using the AF tag. Since mutserve always reports the AF of the                

non-reference allele, the split method applies the following rule: In case a GT 0/1 (e.g. Ref: G,                 
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ALT: C) with an AF of 0.20 is included, the split method defines C as the minor allele, 0.2 as the                     

minor level and 0.8 as the major level. In case a GT 0/1 (e.g. Ref: G, ALT: C) with an AF of 0.80                       

is included, the C defines the major allele. If no reference allele is included (e.g. 1/2), we use the                   

first allele as the major allele and assign the included AF to that allele.  

For haplogroup classification, we use HaploGrep2 (Weissensteiner et al. 2016b) based on            

Phylotree 17 (van Oven and Kayser 2009), which has been refactored as a module and               

integrated directly into haplocheck. As a result, Haplogrep2 reports the haplogroup of both the              

major component and of the minor component. For each analyzed sample, the LCA is              

calculated, which is required to estimate the final contamination level and to calculate the              

distance between the two components. Therefore, we traverse Phylotree from the rCRS            

reference to each node. The LCA is determined by starting at the final node of component 1 (c1)                  

and by iterating back until the reference (rCRS) is reached. Then, we iterate back to rCRS for                 

component 2 (c2) until the first node included in c1 has been identified. This node then defines                 

the LCA of both components. The contamination level is estimated by the AF of the detected                

heteroplasmic sites starting from the LCA. Only heteroplasmic positions showing a phylogenetic            

weight >5 are included. The phylogenetic weight describes the frequency of each mutation in              

Phylotree and is scaled from 1 to 10 in a non-linear way. SNPs with a high occurrence in                  

Phylotree are assigned a small phylogenetic weight. Furthermore, back mutations (mutation           

changes back to the rCRS reference within a specific haplogroup) and deletions on             

heteroplasmic sites are ignored by haplocheck.  

Using all previous information, we finally estimate the contamination level for samples fulfilling             

the following three quality control criteria: (a) >=2 heteroplasmic variants included (starting from             

the LCA), (b) >=0.5 haplogroup quality (calculated by HaploGrep2 using the Kulczynski metric)             

and (c) phylogenetic distance between both components of >= 2.  

Results 
Haplocheck detects contamination by using the mitochondrial phylogeny and consists of several            

workflow steps for variant calling, haplogroup classification and contamination detection. It can            

be either used as a standalone line tool or as a cloud web service. For both scenarios, the same                   

workflow is applied and a HTML report is generated that can be shared with collaborators. The                

Cloudgene framework (Schönherr et al. 2012) has been utilized to provide the workflow             
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as-a-service to users, which was also used for large-scale genetic services like the Michigan              

Imputation Server (Das et al. 2016) and the mtDNA-Server (Weissensteiner et al. 2016). 

Workflow  

Input Validation 
Haplocheck accepts mtDNA input data in CRAM/BAM or VCF format. Integrity checks are             

performed to verify that the uploaded files are valid and include all the required information. If all                 

input samples pass the validation step (i.e. valid files, BAM aligned to rCRS, VCF includes GT                

and AF tags), the subsequent steps are performed. 

Variant Calling  
Next, mutserve is automatically performed on each sample, applying by default filters for             

mapping quality (>20), base quality (>20) and alignment quality (>30). For usage within             

haplocheck, BAQ (Li 2011) has been disabled and the probability models applied. We also              

encourage users to mark duplicates in advance.  

Contamination Detection 
For contamination detection, a VCF file that has been either created by mutserve or any other                

variant caller is required. Heteroplasmic sites must be coded as heterozygous genotypes (GT)             

and must use the allele frequency tag (AF) for reporting the heteroplasmic level. The AF tag                

allows haplocheck to split the heteroplasmic sites into two components.  

Report  
Haplocheck reports the contamination result as a tab-delimited text file and as an HTML report.               

For each sample, haplocheck determines the final contamination status (yes/no), the           

mitochondrial contamination level and the mitochondrial coverage. Additionally, a graphical          

phylogenetic tree is generated dynamically for each sample, including the path from the rCRS to               

the two final components. This allows the user to manually inspect edge cases, visualize the               

contamination graphically or analyze the source of contamination (see Supplemental Figure           

S1).  

Evaluation 

To test the performance of haplocheck within mtDNA and WGS studies we created several data               

sets. In a first step, we created wet-lab mixtures of two mitochondrial samples to validate the                
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variant calling with mutserve (Kloss-Brandstätter et al. 2015; Weissensteiner et al. 2016). The             

mixtures were as follows: M1 - 1:2 (50%), M2 - 1:10 (10%), M3 - 1:50 (2%), M4 - 1:100 (1%),                    

M5 - 1:200 (0.5%, created in-silico). All mixtures and the two initial samples have been then                

sequenced on an Illumina HiSeq system. We analyzed the original samples (coverage 60,000x)             

and downsampled them accordingly. Table 1 summarizes our findings and shows the required             

coverage for each level.  

 Mixtures 

Coverage M1 (50%) M2 (10%) M3 (2%) M4 (1%) M5 (0.5%) 

60,000 0.464 0.126 0.023 0.011 0.006 

30,000 0.463 0.121 0.023 0.011 0.006 

6,000 0.462 0.118 0.023 0.011 0.006 

3,000 0.462 0.115 0.025 0.011 0.006 

2,500 0.465 0.114 0.026 0.011 0.006 

2,000 0.463 0.109 0.024 0.011 0.007 

1,800 0.464 0.111 0.025 0.012 0.007 

1,500 0.467* 0.116 0.025 0.012 n/a 

1,200 0.464 0.113 0.025 0.012 n/a 

900 0.461 0.106 0.031 0.013 n/a 

600 0.458 0.106 0.030 0.012* n/a 

300 0.454* 0.100 0.034* n/a n/a 

120 0.447* 0.113 n/a n/a n/a 

60 0.439* 0.143* n/a n/a n/a 

Table 1: Four wet-lab mixtures (M1-M4) and 1 in-silico mixture (M5) have been analyzed using                

haplocheck with varying coverage. The columns "M1-M5" indicate the mixture levels and the "Coverage"              

column indicates the downsampled coverage. Each cell in the table includes either the actual detected               

contamination level reported by haplocheck or n/a in case the contamination could not be detected by                

haplocheck. The asterisk (*) indicates that the expected haplogroups were not found by haplocheck, since               

not all SNPs were detected. 

We further generated NGS data starting from FASTA sequences (Huang et al. 2012), and              

simulated both different mixture levels (0.5%, 0.7%, 1%, 2%, 3% and 5%) and coverage values               
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(between 5,000x and 100x). The results were highly concordant with the wet-lab mixtures             

presented in Table 1 (see Supplemental Table S1). 

In a second step, we evaluated the performance of haplocheck compared to VerifyBamID2 by              

creating whole-genome in-silico mixtures. Therefore, we generated four in-silico samples from           

two random 1000 Genomes samples, each consisting of four different mixtures between 0.5% -              

10%. To analyze the impact of the mitochondrial copy number (mtCN), samples with different              

amounts of mtCN were chosen from the 1000 Genomes Project. Table 2 summarizes the              

findings, whereby each cell in the table includes the average delta between the calculated and               

the real value for all four different mixtures per sample (see also Supplemental Table S2).               

Values obtained from VerifyBamID2 and haplocheck correlate if the copy number (CN) for each              

component in the mixture is similar (1:1 and 1:0.8). Values obtained from mixture 3 (10:1) still                

correlate, since the main component shows a higher mtCN and is therefore unaffected by the               

lower mtCN of component 2. In a worst-case scenario (mixture 4, 1:10), where the main               

component has a lower mtCN and the minor component a higher mtCN, the values between               

haplocheck and VerifyBamID2 differ substantially.  

 

 

 

mtCN Ratio 

VerifyBamID2 Haplocheck 

HGPD_100K HGDP_10K 1000G_100K 1000G_10K Phylotree 17 

Mixture 1 1:1 -0.85% -0.51% -0.34% 0.11% 0.45% 

Mixture 2 1:0.8 -0.26% -0.08% -0.49% -0.12% 1.32% 

Mixture 3 10:1 -0.66% -0.66% -0.50% -0.61% -3.70% 

Mixture 4 1:10 -0.03% -0.06% -0.22% -0.36% 20.85% 

Table 2: Four different mixtures have been created and the average delta between expected and                

calculated contamination level reported. Each average delta consists of four different mixtures (1-10%)             

and has been calculated for VerifyBamID2 using a different set of markers as well as haplocheck.                

Haplocheck works well as a proxy for the first three sample mixtures, but differs as expected in                 

substantially uneven mtCN between the main component (low mtCN) and the second component (high              

mtCN).  

Nevertheless, such a drastic shift in the copy number is atypical for an NGS sequencing project.                

In (Zhang et al. 2017) the copy number of 1,500 women (age 17-85) have been analyzed and                 

show that most samples ranging from 100 - 300 (mean 169, DNA source whole-blood). In               

(Fazzini et al. 2019) the mtCN has been analysed in a cohort of 4,812 chronic kidney disease                 
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patients showing also only moderate differences (mean 107.2, sd 36.4, DNA source            

whole-blood). 

In a third step, we created and analyzed in-silico data by mixing random genotype profiles from                

the currently best available mtDNA phylogeny derived from Phylotree Build 17. The overall             

performance of haplocheck heavily depends on a good classification of samples into            

haplogroups even from noisy variant calling data sets. We initially created input profiles for each               

displayed haplogroup, amounting to 5,426 profiles in total. Each input profile consists of a list of                

polymorphisms from the tree reference (rCRS) to the actual node (or haplogroup). Our test data               

consists of 500,000 unique mixtures of pairwise haplogroup profiles derived from the overall             

phylogeny comprising of 5,500 haplogroups (250,000 contaminated, 250,000 not-contaminated         

samples) and 100,000 mixtures from the haplogroup H-subtree, including 977 haplogroups. The            

generation of in-silico data from the H-subtree allows us to test the performance of samples               

showing a smaller phylogenetic distance. 

To account for noisy input data, we artificially created random single nucleotide polymorphisms             

(SNPs) to each input profile. This has been done by removing expected SNPs from the input                

profile and adding random SNPs available within Phylotree. The amount of noise varies from 0 -                

8 SNPs for each mixture. The proportion of added versus removed SNPs is calculated              

randomly. To make it further restrictive, we only added phylogenetic relevant SNPs from             

Phylotree. SNPs that are not present in Phylotree (i.e. SNPs so far unknown in the phylogeny)                

would not affect the contamination estimation. Finally, 3 datasets (noise 0, 4, 8) derived from 2                

different trees (complete tree, haplogroup H subtree) have been generated, each consisting of             

500,000 and 100,000 mixtures respectively. F1-Score (defined as (2 x precision x sensitivity) /              

(precision + sensitivity)) has been calculated for each mixture to analyze the overall accuracy of               

haplocheck.  

To determine the best haplocheck configuration regarding accuracy, we tested different setups            

for all 6 datasets. Each setup includes a different threshold for (1) the amount of major and                 

minor heteroplasmic sites, (2) the minimum allowed phylogenetic distance between two profiles            

and (3) the haplogroup classification model (Kulczynski, Hamming, Jaccard). Figure 2           

summarizes the 6 best setups that have been tested to determine the optimal trade-off between               

noise, haplogroup distance and the overall F1-Score. In our experiments, Setup 3 shows the              

best trade-off between haplogroup distance and overall accuracy. This setup allows us to detect              

contamination of samples with a phylogenetic distance of at least 2 and has been used as the                 

final setup for the contamination method.  
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Figure 2: Tested haplocheck setups (=lines) to determine the best trade-off between noise and overall               

accuracy. Setup 3 (phylogenetic distance >= 2, amount of heteroplasmic sites >= 2, haplogroup quality >                

0.5, Kulczynski Metric) shows the best trade-off for all 6 datasets. Each dataset consists of 500.000                

mixtures (Overall Phylogeny) and 100.000 mixtures (Haplogroup H subtree) respectively. The x-axis            

includes the amount of noise, the y-axis the calculated F1-Score (scale from 0 to 1, where 1 equates to a                    

perfect precision and recall). 

  

11 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 8, 2020. ; https://doi.org/10.1101/2020.05.06.080952doi: bioRxiv preprint 

https://dict.leo.org/german-english/equates
https://doi.org/10.1101/2020.05.06.080952
http://creativecommons.org/licenses/by-nc/4.0/


 

Table 3 summarizes the F1 Score statistics for Setup 3. The result demonstrates that              

haplocheck is able to accurately detect contamination of two samples also in the case where               

noise is included in the input profiles and the distance between the two haplogroups is small.  

 

 

 

In-Silico Simulation  
Setup 3: Distance: 2; Heteroplasmies: 2, Kulczynski Metric 

Metric Noise 0 Noise 4 Noise 8 

F1 Score Complete Phylogenetic Tree 0.999 0.993 0.971 

F1 Score H Phylogenetic Tree 0.995 0.976 0.899 

Table 3: F1 Score for different noise categories using the finally chosen Setup 3. Noise 0 - Noise 8                    

includes the amount of added / removed SNPs from the input profile. The two experiments based on                 

different trees (mixtures derived from the complete phylogenetic tree and mixtures derived from the              

haplogroup H subtree only) show that haplocheck is capable of detecting contamination accurately. 

Analyzing 1000 Genomes Project Phase 3  

To evaluate haplocheck on a WGS study, we extracted the mtDNA genome reads (labeled as               

chromosome MT) from the 1000 Genomes Project (Phase 3), resulting in a sample size of               1

2,504 and a total file size of 95 GB. As an initial check, we compared variants detected by                  

mutserve to the official 1000 Genomes data release using callMom          

(https://github.com/juansearch/callMom) and determined the haplogroup using HaploGrep2.       

Overall, 98 % of the samples (n = 2,504) result in an identical haplogroup (See Supplemental                

Figure S2). The downloaded BAM files have then been used as an input for haplocheck to test                 

for contamination. Based on the mitochondrial genome, 4.75% (119 of 2,504) of all samples              

show signs of contamination on mtDNA > 1% (see Supplemental Table S3). Please note, that               

the 1000 Genomes Project only excluded samples with a contamination level > 3% (by using               

VerifyBamID). Since the performance of haplocheck as a proxy for nDNA is dependent on the               

mtCN, we also looked at the tissue source used for DNA extraction. As depicted in Table 4 and                  

1 ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/ 
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Supplemental Figure 3, there is a significant difference in the mtCN of the two different tissue                

types that have been used (p<2.2e-16 using an independent t-test). The mtCN has been              

inferred using the nDNA and mtDNA coverage (mtDNA coverage / nDNA coverage x 2) (Ding et                

al. 2015). 

 Tissue Cell Type 

 Blood LCL Not specified 

All Samples 

    Number of Samples 

 

364 (14.5%) 

 

506 (20.2%) 

 

1634 (65.3%) 

Contaminated Samples (Haplocheck) 

    Number of Samples 

    Mean of mtCN 

 

39 (32.8%) 

51.07 

 

10 (8.4%) 

745.58 

 

70 (58.8%) 

Not determined 

Table 4 - Tissue Cell Types of all 2,504 samples from the 1000 Genomes Project. Significant differences                  

in the mitochondrial copy number (mtCN) between 1000G samples can be seen. Each cell includes the                

absolute and relative number of samples. LCL: lymphoblastoid cell lines. 

 

Due to the different mtCN, we split our results into two groups (low mtCN and high mtCN) and                  

calculated the Pearson correlation coefficient (R) separately. Group 1 (mtCN mean of 746)             

shows a correlation of R = 0.75 between VerifyBamID and haplocheck and the contamination              

levels reported by haplocheck are ranging from 0.9% to 4.8% (see Supplemental Table 4).              

Group 2 (mtCN mean of 51) shows a correlation of R = 0.25 and contamination levels reported                 

by haplocheck are between 1% - 24.6 % (see Supplemental Table 5).  

In general, samples with a higher mtCN (group 1) are less vulnerable to level differences               

between nDNA and mtDNA. Therefore, mtDNA contamination levels are in a very similar range              

compared to those observed by VerifyBamID. Samples with a lower mtCN (group 2) are more               

vulnerable to mtCN differences. This is due to the fact that a contamination with a sample                

showing a higher amount of mtCN can affect the contamination level substantially. Therefore,             

group 2 shows a higher discrepancy in the contamination level compared to VerifyBamID.  

As mentioned earlier, such a drastic shift in the copy number is atypical for an NGS sequencing                 

project. For studies showing only moderate differences in the mtCN, haplocheck can be used as               

an efficient nDNA proxy. For studies showing a wider range of mtCN, the mtDNA level might                

differ from the reported nDNA level.  
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In the last step, we looked at samples that have been excluded from the 1000 Genomes Project                 

(nDNA contamination level >3%). In total, 4 samples have been excluded by VerifyBamID due              

to a high free mix (sequence-only estimate of contamination) and 8 samples due to a high chip                 

mix (for estimating contamination or swap using sequence+array method). Haplocheck was able            

to identify these samples as contaminated (R=0.89, see Supplemental Table S6).  

Nuclear DNA of mitochondrial origin 

Nuclear DNA of mitochondrial origin (NUMTS) can either result in (a) a coverage drop on               

mtDNA sites due to the alignment of mitochondrial reads to NUMTS or (b) false positive               

heteroplasmy calls due to the alignment of NUMT reads to the mitochondrial genome (Maude et               

al. 2019). Approaches exist (Goto et al. 2011; Samuels et al. 2013) that exclude reads mapping                

to the nDNA but overall reduce coverage and may result in false negatives (Albayrak et al.                

2016). In (Weissensteiner et al. 2016), we annotated mitochondrial sites coming from an             

NUMTS reference database (Li et al. 2012; Dayama et al. 2014), although limited to known               

NUMTS. For contamination detection with haplocheck, false positive heteroplasmic sites due to            

NUMTS are expected to only have a minor effect since they typically do not resemble the                

complete mitochondrial haplotypes. Nevertheless, sufficient coverage for the haplogroup         

defining SNPs is still required when dealing with NUMTS. In a study conducted by (Maude et al.                 

2019), an in-silico model has been set up to analyze the homology between mitochondrial              

variants and NUMTS. They show that 29 SNPs representing haplogroups A, H, L2, M, and U                

did not cause loss of coverage, nevertheless substantial loss of coverage has been identified for               

specific sites (e.g.G1888A, A4769G). Furthermore, (Balciuniene and Balciunas 2019) described          

the presence of a mega-NUMT that could mimic contamination on mitochondrial haplogroup            

level. This indicates that in very rare cases, NUMTs could indeed resemble complete             

mitochondrial haplotypes and yield to a false positive contamination result (Salas et al. 2020;              

Wei et al. 2020). While we did not observe NUMT-related issues in the validation of the 1000                 

Genome Project, we can not entirely rule out eventual NUMTs effects on contamination             

detection. 
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Runtime and Performance  

Haplocheck consists of several independent workflow steps. The most intensive computational           

workflow step is the variant calling step. Table 5 shows that our pipeline starting from BAM data                 

scales linearly with the data size (i.e. sequence reads). For the complete 1000 Genomes Project               

data, the contamination estimate has been calculated within 8 hours and 58 minutes starting              

from BAM using a single core (Intel Xeon CPU 2.30GHz) and 2 GB of RAM.  

Runtime Haplocheck File Size 

1 min 49 sec 0.19 GB 

2 min 58 sec 0.37 GB 

15 min 55 sec 1.85 GB 

31 min 26 sec 3.7 GB 

8 h 58 min 95 GB (2,504 samples) 

Table 5 - Haplocheck v1.1.0 runtime for different BAM files. Runtime includes variant calling (using                

mutserve) and contamination detection. Haplocheck scales with the amount of reads. All tests have been               

executed using a single core (Intel Xeon Processor E5-2650 v3) and 2 GB of RAM.  
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Table 6 includes a runtime comparison for 26 samples of VerifyBamID2 (input WGS data,              

varying amounts of markers and cores) with haplocheck (input mtDNA) starting from BAM data.  

 Haplocheck VerifyBamID2 

# Samples 

 

Phylotree 17  

(1 thread) 

1KP3 10k  

(1 thread) 

1KP3 100k  

(1 thread) 

26 samples 2 min 2h 12 min 4h 33 min 

Table 6 - Haplocheck v1.0.11 runtime for 26 samples of the 1000 Genomes Project data. For haplocheck,                 

runtime includes variant calling with mutserve and contamination detection. For VerifyBamID2, all            

autosomes have been analyzed with different sets of markers (10k and 100k), therefore resulting in a                

much larger data size. All tests have been executed on an Intel Xeon Processor E5-2650 v3 CPU using                  

OpenJDK 8. 

Contamination Source 

Haplocheck always reports both the major and minor haplotypes for each sample. Therefore,             

possible sources of contamination can be investigated. For example, sample HG00740 from the             

1000 Genomes Project shows a contamination level of 2.74% on nDNA (using VerifyBamID2)             

and 3% on mtDNA (using haplocheck). By looking at the phylogenetic tree that is created for                

each sample by haplocheck, the contaminating minor haplogroup B2b3a can be identified. The             

identical haplogroup is also assigned to sample HG01079 that has been analyzed in the same               

center with a similar mitochondrial copy number. Such phylogenetic information provided within            

the interactive HTML report can help in identifying the source of contamination for all three types                

of contamination.  

Discussion 
There are many examples in the literature showing the negative impact of artefacts on mtDNA               

datasets in different areas of research, including medical studies, forensic genetics and human             

population studies (Bandelt and Salas 2012; He et al. 2010; Ye et al. 2014; Just et al. 2014a).                  

The described approach in this paper takes advantage of the mitochondrial phylogeny and is              

capable of detecting contamination based on mitochondrial haplotype mixtures. By creating           

several in-silico data sets and analyzing the 1000 Genomes Project data we show that              

haplocheck can be used in both targeted mtDNA sequencing studies and WGS studies. We              
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also investigated the influence of the mitochondrial copy number (mtCN) and showed that it is               

the critical component when comparing mtDNA to nDNA levels.  

Several other methods for contamination detection exist. For nDNA sequences, VerifyBamID2           

(Zhang et al. 2020) offers an ancestry-agnostic DNA contamination estimation method and is             

widely used in WGS studies. Schmutzi (Renaud et al. 2015) provides a contamination             

estimation tool appropriate for ancient mtDNA. A further approach was suggested in (Dickins et              

al. 2014), describing a pipeline for contamination detection accessible through the Galaxy online             

platform (Afgan et al. 2018). 

We also identified limitations with the proposed phylogenetic based contamination check in this             

paper, previously applied in a semi-automatic manner (Avital et al. 2012; Li et al. 2010). There is                 

currently a publication bias in favor of the European mtDNA haplogroups that provides the most               

phylogenetic details, whereas especially African haplogroups are underrepresented (626 African          

haplogroups compared to 2,546 European haplogroups in Phylotree 17). While the major            

changes in the phylogeny were performed during the initial growing process of the tree, the last                

few years showed only refinements of lineages and branches. Therefore, major changes are no              

longer expected in the human phylogeny, but data from upcoming sequencing studies will help              

to refine existing groups. As a further limitation, contamination detection based on mitochondrial             

genomes is limited in scenarios where samples belong to the same maternal line (e.g.              

mother-offspring). If a contamination between mother and child exists, the presented approach            

is unable to detect it. A further limitation for WGS studies are possible differences between the                

reported mtDNA level and nDNA level due to the mtCN.  

Overall, we demonstrated that haplogroup-based analysis as carried out by haplocheck can be             

used systematically as a quality measure for mtDNA data. Such kind of analysis could become               

effective prior to data interpretation and publication of mtDNA sequencing projects. Additionally,            

haplocheck proves to be useful in WGS studies as a fast proxy tool for estimating the nDNA                 

contamination level. 

Software Availability 

Haplocheck is available at https://github.com/genepi/haplocheck under the MIT license and          

requires Java 8 or higher for local execution. All generated data, scripts and reports are               

available within this repository. The web service can be accessed via           

https://mitoverse.i-med.ac.at. 
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