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Abstract 
Motivation: Accurate prediction of drug response in each patient is the holy grail in personalized 
medicine. Recently, deep learning techniques have been witnessed with revival in a variety of areas 
such as image processing and genomic data analysis, and they will be useful for the coming age of big 
data analysis in pharmaceutical research and chemogenomic applications. This provides us an impetus 
to develop a novel deep learning platform to accurately and reliably predict the response of cancer to 
different drug treatments. 
Results: In this study, we describe a Java-based implementation of deep neural network (DNN) 
method, termed JavaDL, to predict cancer responses to drugs solely based on their chemical features. 
To this end, we devised a novel cost function by adding a regularization term which suppresses 
overfitting. We also adopted an “early stopping” strategy to further reduce overfit and improve the 
accuracy and robustness of our models. Currently the software has been integrated with a genetic 
algorithm-based variable selection approach and implemented as part of our JavaDL package. To 
evaluate our program, we compared it with several machine learning programs including SVM and 
kNN. We observed that JavaDL either significantly outperforms other methods in model building and 
prediction or obtains better results in handling big data analysis. Finally, JavaDL was employed to 
predict drug responses of several highly aggressive triple-negative breast cancer cell lines, and the 
results showed robust and accurate predictions with r2 as high as 0.80.  
Availability: The program is freely available at https://imdlab.mdanderson.org/JavaDL/JavaDL.php. 
 

1. Introduction  
Over the past ten years, many machine-learning methods have been developed to tackle the 

problem in biomedical research [1, 2]. Recently a new branch of machine learning known as deep 
learning has been gaining significant attention [3-8]. In particular, the resurgence of neural networks 
took place around 2005 when more efficient training algorithms were developed and improvements in 
overfitting were made. This has led to the success of deep neural networks with many applications to 
protein structure prediction and drug development [9-13]. Moreover, deep learning has been employed 
to diagnose diseases based on medical images [14-16].   

 
In the canonical configuration, a normal deep neural network (DNN) consists of an input layer 

where an input signal is fed, an output layer where predictions are generated, and several hidden 
(middle) layers which capture features during the training[17]. DNN is also considered a type of 
representation learning, in that it allows a machine to be fed raw data and automatically discover the 
representations needed for detection. During the training process, the raw data in the form of certain 
signals are fed into the input layer and then transported from one hidden layer to another, in each one 
leaving a trail forming a certain increasingly abstractive pattern. For instance, in image processing the 
raw data are arrays of pixel values, while in quantitative structure-activity relationship (QSAR) 
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modeling it may be descriptors including a variety of physical chemical properties of compounds. Such 
applications involve a large amount of input data, exposing the drawbacks of previous multilayer 
neural network (MNN) programs, which only accept limited numbers of input descriptors and have 
limited numbers of hidden layers and neurons in a hidden layer. Due to these limitations, networks 
with only a single hidden layer were largely abandoned [18].  

 
One of the major issues with artificial neural networks is that the models are significantly complex, 

since neural networks usually have large numbers of layers containing many neurons. The number of 
connections in these models is astronomical, easily reaching the millions, and overfitting thus becomes 
very common [19]. In general, there is a direct trade-off between overfitting and model complexity. 
Inadequately complex models may not be powerful enough to capture all the information necessary to 
solve a problem, but overly complex ones (especially with a limited amount of data) tend to run into 
the risk of overfitting [19]. Besides overfitting, another challenge in drug response prediction comes 
from the activity cliff that is formed when a pair of structurally similar molecules display a large 
difference in potency [20, 21]. From the perspective of chemical structures, the activity cliff indicates 
a lack of assayed compounds in the surrounding space. This can also lead to poorly generalized models 
and overfitting. Furthermore, the distance between compounds is defined based on their relationship 
to neighboring compounds.  Hence almost all current published prediction models are flawed to some 
degree due to the limitations that arise from one or more of the above problems. 

 
In the present study, we aim to develop a novel method and build robust models that accurately 

predict drug response in cancer cells. To this end, we designed an approach which employs deep 
learning algorithms for drug activity prediction. Our software package, termed JavaDL, integrates 
several of the latest improved techniques, including regularization, dropout, and early stopping, to 
mitigate the issues caused by overfitting and activity cliffs. In order to assess its robustness, we used 
two very different datasets: a Caco-2 dataset for permeability prediction and a hERG dataset for 
cardiovascular toxicity prediction. We also evaluated the ability and robustness of JavaDL to perform 
big data analysis using the Merck Molecular Activity Challenge dataset from Kaggle. Finally, our 
software was employed to predict the drug response of cancer cells using data we recently curated and 
experimentally measured. The results show that JavaDL could obtain significantly improved prediction 
and have broad applicability in a variety of datasets as well as a high capability to handle big data 
problems. 

 

2. Methods 

2.1 Datasets 
For model building and prediction evaluation, we compared JavaDL with several published studies 

using the exact same datasets. The first dataset was curated by our group and it has been used to build 
Caco-2 permeability prediction models with kNN and SVM [22, 23]. The whole dataset contains 174 
compounds with 334 descriptors calculated using MOE. Another dataset contains hERG blockers with 
their corresponding known hERG inhibition activity (pIC50) obtained from previous publications [24]. 
This dataset includes 639 hERG active and inactive compounds. Similarly, MOE was used to calculate 
the molecular descriptors which were normalized to avoid disproportional weighting for both datasets 
[24]. In addition, to evaluate the ability of JavaDL to handle big data, we obtained a dataset for the 
Merck Molecular Activity Challenge on Kaggle. The original training data set contained 1,569 
compounds with 4,505 descriptors, which after washing shrank to 1,983 descriptors [25]. Finally, we 
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applied JavaDL to predict the triple negative breast cancer (TNBC) cell response to drugs. The 
experimental data of cancer cell response to drugs were collected from the MIPE project at the National 
Center for Advancing Translational Science (NCATS) [26] and our own laboratory’s data. We focused 
on triple-negative breast cancer (TNBC) due to our own research interest, but the approach can be 
easily applied to other cancer cell lines or even other diseases. In particular, we selected four breast 
cancer cell lines, HCC-1937, MDA-MB-436, MDA-MB-231, and MDA-MB-453, representing four 
different TNBC molecular subtypes. The dataset contains 274 compounds used in all four cell lines. 
Each compound is described by 205 molecular descriptors and four half maximal activity (log) 
concentration (LAC50) values (one for each cell line). Although internal cross validation is generally 
considered sufficient to justify model predictive power [27, 28], many researchers have argued that 
external validation is crucial . In this study compounds in our datasets are divided into training and test 
sets via a rational approach based on the Sphere Exclusion algorithm [29, 30].  

2.2 Techniques to address challenges in DNN 

2.2.1 Activation function.  
For our program, we essentially adopted a 
backpropagation algorithm to train the deep neural 
network. Based on our experience and other reports [19, 
31-35], we included five total layers for our deep neural 
networks, with three hidden layers. Assuming five 
nodes in the input layer and one node in the output layer, 
three hidden layers each containing 20 hidden nodes 
makes the total number of variables (weight variables) 
920. In contrast to frequently used activation functions 
in previous studies [34], on each hidden node we 
adopted an activation function 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑥𝑥)  = 𝑒𝑒2𝑥𝑥−1

𝑒𝑒2𝑥𝑥+1
  (Fig. 

1),  with which one of the advantages is to avoid bias in 
the gradient during training. For the loss function we 
chose mean squared error. In the backpropagation 

process we employed the stochastic gradient descent algorithm for optimization. Additionally, JavaDL 
has been implemented in a way to deal with data featuring different scales and complexity. For 
instance, to build a model from a limited dataset, the 5-layer structure with each layer containing 20 
neurons is sufficient. However, for large datasets such as those in the Merck Molecular Activity 
Challenge competition, JavaDL can grow accordingly the number of layers and neurons with 
corresponding increase of the connections between neighboring layers.  

2.2.2 Regularization.  
To address the overfitting issue, we adopted a common regularization technique: addition of a 
regularization term to the cost function. It is based on the relation between the regularized overall 
squared-error cost function and the correlation coefficient 𝑞𝑞2. Given a training set of m examples, the 
overall squared-error cost function J(W, λ) is considered below: 
 

𝐽𝐽(𝑊𝑊, 𝜆𝜆) = 1
𝑚𝑚
∑ �ℎ𝑊𝑊�𝑥𝑥𝑖𝑖�−𝑦𝑦𝑖𝑖�
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Figure 1 Activation function based on the Tanh 
function tanh(x) and its derivative tanh'(x) 
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where 𝑡𝑡𝑙𝑙 denotes the number of layers in the network.  𝑆𝑆𝑙𝑙 represents the number of nodes on lay l, and 
𝑊𝑊𝑖𝑖𝑖𝑖

𝑙𝑙  denotes the weight of the connection between node 𝑖𝑖 on lay 𝑙𝑙 and node 𝑗𝑗 on lay 𝑙𝑙 + 1. The first 
term is an average sum-of-squares error. For simplicity, we neglect the bias term, but it can be easily 
taken into account. The second term is the weight decay term, which suppresses overfitting via tuning 
the value of λ to decrease the magnitude of the weights. The method of minimizing the cost function 
by searching for the optimal value of  𝜆𝜆   is introduced in [36].  This method, called Bayesian 
Regularized Neural Networks, involves incorporating Bayes’ theorem into the regularization scheme. 
It has been frequently used in current research.     
       We defined our own cost function by replacing the average sum-of-squares error with − q2  
 

     𝑞𝑞2 = 1 − ∑ �ℎ𝑊𝑊�𝑥𝑥𝑖𝑖�−𝑦𝑦𝑖𝑖�
2𝑚𝑚

𝑖𝑖=1

∑ �𝑦𝑦𝑖𝑖−𝑦𝑦��
2𝑚𝑚

𝑖𝑖=1
              (2) 

 
where 𝑦𝑦�  is the average actual activity of the training set. The relation in Eq. 3 guarantees the 
consistency between the results from the minimization of J and the maximization of q2; therefore we 
consider only the minimization of cost J(W, λ)  hereafter.  

J(W, λ) ∝ (1 − q2)∑ �𝑦𝑦𝑖𝑖−𝑦𝑦��
2𝑚𝑚

𝑖𝑖=1
2𝑚𝑚

            (3) 

2.2.3 Dropout and early stopping.  
It has been suggested to use at least two hidden layers with a minimum of 250 neurons in each layer 
[34]. Since our DNNs have a large number of layers containing many neurons, the increasing number 
of connections between these neurons makes the corresponding Hessian matrix in the backpropagation 
process increase complexity by O(N2), where N is the layer size, and the number of variables in these 
models can reach into the millions easily. To improve efficiency, JavaDL adopts a process of randomly 
“dropping out” some neurons in the hidden layers during the training process, which involves 
temporarily removing the randomly selected neurons from the network, along with all their incoming 
and outgoing connections [37]. This strategy reduces the complexity of JavaDL’s backpropagation 
computation and ameliorates overfitting as well. Several other methods have also been used to 
implement the early stopping strategy in JavaDL [38][39]. The default early stopping criterion of 
JavaDL is based on the evaluation of the cost function value on a test set.   

2.3 Implementation of JavaDL  

2.3.1 The overall framework.  
The overall framework of our system consists of 
four steps as illustrated in Fig. 2. The first step is to 
curate compound structures and their corresponding 
bioactivities from literature and other online 
sources. In the second step we calculate the 
descriptors of compounds with MOE [40] and 
CDK[41]. The third step is to clean the data as 
described below, and in the final step the data is 
used as input to JavaDL to train the program and 
build models. We chose XML as the format for 
parameter input to provide extra flexibility for the use of the program: since it is verbose, self-
describing and extendable, it can be easily incorporated in other applications. Our software was 

 
 
 
 
 
 
 
 
 
 
 

 
 Figure 2.  The overall framework of JavaDL 
including data processing and DNN implementation. 
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developed using DL4J, an open-source, distributed deep-learning library . For easy-to-access and easy-
to-use, the software package is made available online along with an instruction manual 
(http://imdlab.org/JavaDL/) for download upon request. 
 

2.3.2 Data cleaning 
 Online or published data are rich but often “dirty,” and thus generally need further cleaning and 

curation. Detection of true outliers is of particular importance; therefore, outlier separation from the 
main data is included in the data-washing step.  The premise here is that similar structures have similar 
biological activity and that the multidimensional response surface to densely sampled data follows a 
normal distribution [32, 42]. Therefore, we adopted the Pauta criterion to detect abnormal activity-
value points, defining a compound with activity value over three standard deviations (3σ) from the 
mean as an outlier. However, to be statistically significant, the number of compounds similar to the 
outlier in the descriptor space should be more than 10.  

 
Currently over 5000 molecular descriptors have been reported [43, 44], thus requiring selection of 

the most relevant and independent descriptors that can represent specific properties of the chemical 
entities, with smaller numbers of descriptors preferred. Principal components analysis (PCA) has been 
frequently employed to reduce the dimension of the descriptor matrix[45, 46]. Our initial 
implementation was based on PCA: given a descriptor matrix 𝑀𝑀𝑚𝑚×𝑛𝑛 = (𝑡𝑡1𝑇𝑇 ,𝑡𝑡2𝑇𝑇 ,𝑡𝑡3𝑇𝑇 ⋯𝑡𝑡𝑛𝑛𝑇𝑇), in which n 
denotes the number of compounds and 𝑡𝑡𝑖𝑖𝑇𝑇 represents the vector containing m descriptors; the algorithm 
is then described in the following steps: 
Step 1. Calculate the mean of each column  𝑡𝑡𝚤𝚤� = 1

m
∑ 𝑡𝑡𝑖𝑖𝑖𝑖m
j=1  and substract the mean (𝑡𝑡1�,𝑡𝑡2�,𝑡𝑡3�⋯𝑡𝑡𝑛𝑛�);  

Step 2. Calculate the covariance matrix; 
Step 3. Calculate the eigenvectors and eigenvalues of the covariance matrix 𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐, then order them by 
eigenvalues from highest to lowest;  
Step 4. Select P important eigenvectors from the highest P eigenvalues to compose a feature 
matrix Mfeature,n×p = �v1, v2,⋯ vp�;  
Step 5. With the new feature matrix, we derive a new low-dimension matrix via Mfeature,n×p

T × Mm×n
T  

for model building. 
 
        However, during the process, the challenge was that the descriptor covariance is too high and P 
is difficult to select. To overcome this problem, we implemented a simple workaround: instead of 
considering the covariance of descriptors between two compounds, we considered the correlation 
between two descriptors. In the descriptor matrix  𝑀𝑀𝑚𝑚×𝑛𝑛 = (𝑏𝑏1, 𝑏𝑏2⋯𝑏𝑏𝑛𝑛) , bi represents the ith 
descriptor vector. We assume if there is a high correlation between descriptor vectors bi and bj, they 
are not considered orthogonal to each other, since either alone carries enough information to 
distinguish signals during the training process. Our final implementation with a simple algorithm to 
exclude the redundant descriptors is as follows:  
 
1. For i = 1 to n  
2. For j = i to n  
3. If corr(bi, bj) > threshold  
4. Delete column j from M  
5. End if  
6. End for  
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where corr(bi, bj) is the function calculating the value of correlation between bi and bj, and “threshold” 
denotes the tolerance value for the correlation coefficient. Eq. 2 is used to evaluate the correlation 

directly. This is much more efficient and effective.  
 

2.3.3 Deep learning implementation.  
Our JavaDL employs deep layer neural networks 

as the primary training engine. A variable selection 
procedure was also implemented as an option, in 
particular for small datasets, where for each 
predefined number of variables it seeks to optimize 
the models with the highest correlation coefficient 
(q2) (Eq. 2) for both internal training set and external 
test set. Fig. 3 shows the flowchart of JavaDL 
training process, in which the backpropagation 
algorithm is utilized. The most time-consuming step 
in this algorithm is the calculation of the stochastic 
gradient descent (SGD) in each layer and the weight 
(neuron connections) adjustment to minimize the 
errors derived from our overall squared-error cost 
function J(W,λ) (Eq. 1) in each iteration. In other 
words, through the backpropagation algorithm, 

JavaDL knows how to reduce the error from the cost function, rather than from blindly wandering in 
space or being guided by a scalar quantity such as the random walk in the Metropolis algorithm.  

 
Generally, the time complexity is determined by the number of descriptors chosen and the structure 

of the neural network. Let k denote the number of descriptors picked from K total descriptors, 𝑚𝑚,𝑡𝑡 the 
number of layers and neurons, respectively, in each layer (assume each layer contains the same number 
of neurons), and d the size of the mini-batch representing the minimum iteration time in the training 
process, the time complexity is then 𝑂𝑂(𝐶𝐶𝐾𝐾𝑘𝑘𝑚𝑚𝑡𝑡𝑚𝑚).  

3. Results and Discussion 

3.1 Comparison with other machine learning 
programs 
 Before training, we first performed data wash 

as described previously and then divided the data 
into two sets using the Sphere Exclusion (SE) 
algorithm [29, 30]. For the Caco-2 dataset, one is 
for training with 80 compounds and the other is for 
testing with 20 compounds. It should be noted that 
the division process is executed each time after 
changing the descriptors during iterations. The 
same procedure was followed for the hERG dataset, 
with 133 compounds for training and 14 compounds for testing. Results from JavaDL are compared 
with those obtained by kNN and SVM methods as shown in Table 1 and Table 2. Also as illustrated 
in Fig. 4 our models show high correlation between the actual and predicted activities for the test sets. 

 
 
 
 
 
 
 
 

 
Figure 4. Predicted vs. actual activities obtained for 
test sets. (a) Prediction of Caco-2 permeability using 
JavaDL with five descriptors: BCUT_ PEOE_3, 
GCUT_SLOGP_1, mr, a_base, vsa_base. (b) 
Prediction of hERG activity with five descriptors: 
GCUT_PEOE_3, reactive, SlogP_V SA1, SlogP_V 
SA9, vdw_area. 

 
Figure 3. Overall flowchart of DNN Algorithm. 
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The statistical parameters used to assess models, including q2 and r2, demonstrate the comparable 
performance of JavaDL to other machine learning algorithms, particularly when datasets are small. 

 
We also examined our JavaDL program using a 
large data set from the Merck Molecular Activity 
Challenge as described above. Since this would 
make the training computationally intensive, we 
have implemented a parallel computing function 
for JavaDL so that it can efficiently handle big data 
with a large number of compounds and high 
dimensional space (number of descriptors). With 
250 compounds in the test set, our model achieved 
robust predictions with q2 = 0.99 and r2 = 0.65. 
These results demonstrate significant superiority to 
all published models released by the Merck 
Molecular Activity Challenge where r2 was below 
0.49. Our models and predictions are shown in Fig. 
5.  

Table 1. Method Comparison with the Caco-2 Dataset 
Caco-2 KNN SVM DNN 
Model 𝐪𝐪𝟐𝟐 𝐫𝐫𝟐𝟐 𝐪𝐪𝟐𝟐 𝐫𝐫𝟐𝟐 𝐪𝐪𝟐𝟐 𝐫𝐫𝟐𝟐 
1 0.54 0.78 0.50 0.80 0.80 0.78 
2 0.54 0.78 0.50 0.80 0.80 0.78 
3 0.46 0.77 0.50 0.80 0.80 0.73 
4 0.51 0.76 0.47 0.79 0.70 0.77 
5 0.48 0.77 0.47 0.79 0.65 0.75 
6 0.51 0.76 0.47 0.79 0.70 0.72 
7 0.51 0.76 0.43 0.76 0.69  0.80  
8 0.42 0.72 0.43 0.76 0.62  0.75  
9 0.42 0.72 0.43 0.76 0.65  0.60  

 
Table 2. Method Comparison with the hERG Dataset 

hERG KNN SVM DNN 

Model  𝐪𝐪𝟐𝟐 𝐫𝐫𝟐𝟐 𝐪𝐪𝟐𝟐 𝐫𝐫𝟐𝟐 𝐪𝐪𝟐𝟐 𝐫𝐫𝟐𝟐 
1 0.48 0.70 0.41 0.87 0.75 0.72 
2 0.48 0.70 0.43 0.87 0.80 0.83 
3 0.45 0.68 0.43 0.87 0.80 0.83 
4 0.45 0.68 0.46 0.82 0.80 0.83 
5 0.45 0.68 0.46 0.82 0.90 0.67 
6 0.50 0.66 0.45 0.81 0.90 0.73 
7 0.50 0.66 0.52 0.81 0.95 0.63 
8 0.50 0.66 0.52 0.81 0.90 0.73 
9 0.48 0.65 0.44 0.81 0.93 0.63 
10 0.48 0.65 0.44 0.81 0.90 0.67 

3.2 Predicting cancer response to drugs 

                                 

Figure 5.  Predicted vs. actual biological activities 
for the Merck Molecular Activity Challenge big data 
set in Kaggle competition.  The model was built using 
1,569 compounds with 4,505 descriptors.  Among 
them 250 compounds are picked out randomly for test 
predictions, and the best model derived q2=0.99, 
shown in the left panel, and r2=0.65, shown in the 
right panel.  
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As discussed, it is critical to predict individual cancer cell response to different drugs. Such information 
can provide insight into what drugs can be used to treat what type of cancer with the highest sensitivity. 
With TNBC screening data from NCATS and our own experiments, we performed data pre-processing, 
and the total number of compounds for each of the four TNBC cell lines was reduced to 186, 163, 146 
and 172, respectively. In each group we randomly selected 40 compounds as the external test set, and 
set 𝑞𝑞𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑟𝑟ℎ𝑐𝑐𝑙𝑙𝑜𝑜2 = 0.60  and 𝑟𝑟𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑟𝑟ℎ𝑐𝑐𝑙𝑙𝑜𝑜2 = 0.55 as criteria to determine if a model is acceptable. Since the 
data is sufficiently large and JavaDL can handle big data efficiently, we took into account all 
descriptors of the compounds for model building and final predictions. The measured and predicted 

activities with our best models are shown in Fig. 6.  

3.3 Discussion 
In this study, we present a new deep-learning 

method for predicting the efficacy of small-
molecule anti-cancer therapeutic agents. The 
novelty of this implementation lies in multiple 
aspects. The first is that prediction of drug response 
has been challenging due to the intrinsic complexity 
of cancer cells and various unknown cell survival 
mechanisms [47, 48]; DNN is exactly designed to 
handle this type of “black-box” problems through a 
continuous self-learning process. Second, we have 
implemented a variety of strategies to address 
several frequent issues including data cleaning, 
overfitting, outliers, and program complexity. 
Third, we designed a new scoring activation 
function and cost function. Fourth, JavaDL is able 
to predict the response of cancer cells to drugs using 
only structural information from compounds, and it 
can be easily expanded to include cell gene profile 
change upon drug treatment for predictions. 

Finally, DNN is combined with variable selection in this parallelized implementation and we could 
identify specific descriptors that are critical for activities. Such information is tremendously helpful to 
guide actual rational drug design.  

 
        Using two very well studied datasets (hERG and Caco-2) as benchmarks, we obtained robust 
results demonstrating the superiority of our multiple-layer DNN techniques to other traditional 
machine learning techniques such as kNN and SVM.  It also suggests that our models could effectively 
capture the abstract relation between the structural features of chemical compounds and their activities. 
Also as shown, JavaDL was successfully employed to predict the response of aggressive TNBC cell 
lines to different drugs, which has been a challenge in personalized cancer therapy. Moreover, this 
indicates that JavaDL may potentially be used as a general screening tool to predict activities of novel 
compounds in different cancer cells, and thus helping to lower costs of anticancer therapeutics 
screening. It is mostly worth to mention that, as one of the signified features of deep learning, our 
prediction of the Merck Molecular Activity Challenge dataset demonstrated the capacity of JavaDL to 
handle big data problems with a large number of points in a high dimensional space.  
 

 
Figure 6.  Predicted vs actual activities (LAC50) of 
drugs in TNBC, including HCC_1937, MDA_MB_436, 
MDA_MB_231, and MDA_MB_453. The red-circled 
compound 3-Methyladenine as an outlier was not 
accurately predicted. Further analysis shows that no 
compound in the training set is similar enough to 3-
Methyladenine while there are always similar 
compounds to the accurately predicted ones (blue-
circled Afatinib and UNC-0638).  
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     As mentioned, the variable selection feature in this implementation is particularly useful for rational 
molecular design, and identification of selected descriptors, when combined with chemical structures, 
can be employed to interpret the molecular structure-activity relationship and guide lead optimization 
in drug development. For instance, the descriptors selected in the Caco-2 permeability model are PEOE 
Charge BCUT, GCUT logP, molecular refractivity, number of basic atoms, and Van der Waals basic 
surface area. It makes sense that all of these properties, in particular logP, charges, and molecular 
refractivity, are highly correlated with the permeability of the compounds. While GCUT logP 
contributes positively to permeability, the other four have negative impact on permeability. Such 
relationship is demonstrated by the comparison of quinidine (Caco-2 P = -4.69) and ranitidine (Caco-
2 P = -6.31) where quinidine has much higher GCUT logP while the other four properties have lower 
values than ranitidine. Similar observations have been obtained in the case of hERG and TNBC studies.  
 
      Some cheminformatics practitioners contend that machine learning has not fulfilled its promise in 
predicting biological activity [49]. Poor predictivity is a problem in most models, and there are a variety 
of possible reasons for this including the incorrect assignment of molecular properties, chance 
correlation, rough response surfaces, and overtraining [24, 25]. With JavaDL we obtained significant 
improvement of prediction over other machine-learning models, with most of the prediction errors 
below one unit, which is usually acceptable in drug design and development. For a few compounds 
our prediction is not ideal. As shown in Fig. 6c, the compound 3-methyladenine (structure shown in 

Fig. 7) is identified as 
an outlier with the 
worst prediction in 
MDA-MB-453 cell 
lines. To elucidate the 
reason, we calculate the 
similarity of 3-
methyladenine to other 
compounds in the 
training dataset based 
on their Euclidean 

distance. We found that the distance to the most similar compound (theobromine) is SD3-methyladenine = 
1.49. Similarly, we randomly selected two compounds (afatinib and UNC-0638 shown in Fig. 7) that 
were accurately predicted (Fig. 6c) and computed their corresponding Euclidean distance to the most 
similar compounds. We obtained SDafatinib = 0.68 and SDUNC-0638 = 0.80, respectively. Using the 
Tanimoto coefficient (TC), we observed the similar trend: for 3-methyladenine the highest TC = 0.40 
(to theobromine); for afatinib and UNC-0638, TC = 0.61 (to pelitinib) and TC = 0.50 (to XL-647), 
respectively. This indicates that when there are similar compounds in the training set, the prediction is 
relatively accurate, in agreement with the general principle of QSAR that similar structures tend to 
have similar activities.  
 

 Our java-based DNN program JavaDL is not limited to drug response predictions; rather it can be 
very easily used for studies of large genomic and bioinformatics data to predict gene-disease 
association, identify biomarkers with whole genome profiling, and develop treatment algorithms based 
on patient response to drugs. Our promising results shown here suggest that JavaDL can be used as a 
general tool for the discovery and design of biologically active agents as well as for many other types 
of biomedical research. 

    

Figure 7.  From left to right is 3-Methyladenine, Afatinib and UNC-0638, respectively. 
3-Methyladenine was not accurately predicted while the other two compounds 
obtained accurate prediction of their activity in TNBC cell line. 
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Supporting Information Available 
The file for input parameters for training data set HCC_1937 is named “HCC_1937.xml”. The node 
labeled “net” denotes the configuration of the deep neural networks. It is also available online for 
download, along with other example files at https://imdlab.mdanderson.org/JavaDL/JavaDL.php. 
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