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Abstract (300 words) 

To monitor cell state transition in pluripotent cells is invaluable for application and basic 

research. In this study, we demonstrate the pertinence of use non-invasive, label-free Raman 

spectroscopy to monitor and characterize the cell state transition of mouse stem cells undergoing 

reprogramming. Using an isogenic cell line of mouse stem cells, reprogramming from neuronal 

cells was performed, and we showcase a comparative analysis of single cell spectral data of the 

original stem cells, their neuronal progenitors, and reprogrammed cells. Neural network, 

regression models, and ratiometric analysis were used to discriminate the cell states and extract 

several important biomarkers specific to differentiation or reprogramming. Our results indicated 

that the Raman spectrum allowed to build a low dimensional space allowing to monitor and 

characterize the dynamics of cell state transition at a single cell level, scattered in heterogeneous 

populations. Ability of monitoring pluripotency by Raman spectroscopy, and distinguish 

differences between ES and reprogrammed cells is also discussed.  
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Introduction 

Pluripotent stem cells are defined as cells that are able to differentiate into all three embryonic 

layers and they hold enormous potential for future medical applications and basic research 1, 2,3,4. 

Pluripotent stem cells can be directly obtained from a developing embryo, and in that case are 

called embryonic stem cells (ESCs), or can be artificially produced by somatic cell 

reprogramming and are then called induced pluripotent stem cells (iPSCs) 5. Reprogramming is a 

lengthy process that involves profound changes to the cells’ transcriptional, proteomic, 

metabolomic, etc. 6. Monitoring of the cell dynamics during reprogramming and recording the 

occurring changes is of utmost importance for both applied medicine and basic research as it can 

reveal important qualities of the process itself and of the cells going through the process. 

Conventional monitoring of the cell dynamics during reprogramming includes fluorescence 

microscopy/immunostaining for common pluripotency factors such as Nanog and Oct4, western 

blotting, and gene expression measurements by quantitative PCR or RNA sequencing. These 

approaches are informative in regard to pluripotency status, but they are destructive, cell-

invasive and entail significant costs for evaluation of the cell quality.  

 

A promising alternative to the above methods is Raman spectroscopy which is a non-invasive, 

low-cost and rapid single-cell imaging technique 7, 8, 9. Raman spectroscopy is a type of non-

linear vibrational spectroscopy whose output is a spectrum of molecules (molecular bounds) 

present within the sample being studied. Usually this “chemical fingerprint” is a complex 

mixture of convoluted signals from various molecules. Previous works have demonstrated that, 

however, that the major constituents of cells such as cytochromes, proteins, aromatic 

compounds, nucleic acids and lipids can be identified by this technique. Raman spectroscopy is 

increasingly used for the identification of cell types or dynamics across many biological systems 
10, thanks to the rich signature obtained from cells.  

 

The use of Raman spectroscopy in the stem cell biology has been investigated by several groups.  

Notingher and colleagues 11 first used Raman spectroscopy to examine live murine ESCs over 

the course of 16 days of differentiation. Chan and colleagues 12 used Raman spectroscopy to 

examine live human ESCs during differentiation into cardiomyocytes. They reported the changes 

in intensities of the RNA peak (~ 811 cm−1) and DNA peaks (~ 785, ~ 1090 cm−1) during 

differentiation, confirming the observation by Notingher and colleagues. Schulze et al. 13 

analyzed hESCs obtained from dried colonies to characterize the differentiation process between 

ES cells and spontaneously differentiated cells. Using the spectral range of 690-1210 cm−1, 

authors revealed spectral differences and calculated a number of ratios of possible interest, such 

as a ratio between protein-related bands (~ 752cm−1) to nucleic acid bands (~ 786 cm−1) which 

may reflect the differentiation process. Our group previously showcased the large spectral 

information contained in the 700-1800 cm−1 fingerprint region, which was useful to visualize the 

transition of the cellular dynamics through multiple “states” of mouse differentiation 10. 
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These previous studies demonstrated that Raman spectroscopy is useful to monitor the process of 

differentiation in stem cells. From a system-biology point of view, the possibility to define a low 

dimensional space from spectral characteristics is particularly useful to monitor the dynamics of 

the differentiation process. In this space, different clusters of cells would represent different 

cellular states which have different characteristics. However, as far as we know, no study was 

performed on the reprogramming process as of today. A comparison between both differentiated 

and reprogrammed cells from the same isogenic cell line is therefore of interest to reveal the 

characteristics of spectral signatures of cells undergoing reprogramming by comparison to their 

differentiated states or by comparison to the embryonic cell state. In addition, it worth comparing 

if the ES and reprogrammed cells are, based on their spectral characteristic, associated to a 

similar state or not. 

 

In this paper, we aim to assess the spectral differences and similarities of embryonic stem cells 

(ES), the differentiated progeny of these embryonic cells (called N31), and cells collected at 

three time points during reprogramming of N31 (hereafter, called N31d5, N31d10, N31d20). For 

this purpose, we carried out iPS reprogramming of mouse neural progenitors and obtained their 

Raman signature throughout the process. We characterized the pluripotency status of mouse cells 

during the iPS reprogramming using conventional methods such as immunostaining. Label-free 

spectroscopy and spectral analyses were then performed on living cells with the aim of finding 

spectral differences specific to each state. Machine learning analyses were used to classify cells 

with excellent accuracy and retrieve the cell state specific spectral information to characterize 

each cell state. Finally, ratiometric analysis revealed pairs of spectral bands representative of the 

cell states dynamics.  

 

 

Materials and Methods 

Cell culture 

Embryonic stem cells. EB5 embryonic stem cells were purchased from RIKEN Cell Bank (Cell 

ID #AES0151) and kept in DMEM (Gibco, #11960) with the addition of 10% FBS (Gibco, 

#16141), 1% GlutaMAX-I (Gibco #35050), 1% NEAA (Gibco #11140), 1% Nucleosides 

(Millipore ES-008-D), 1% Sodium pyruvate (Sigma-Aldrich #S8636), 0.1% 2ME (Sigma-

Aldrich #M7522), 1% Penicillin-Streptomycin (Sigma-Aldrich #P4333-100ML) and 0.1% LIF 

(Sigma-Aldrich #L5283). The EB5 cells were used for Raman imaging after two passages. 

Differentiated cells. N31 cell is a neural lineage derived from EB5 as described in Hikichi et. al. 
14. The N31 clone was kindly provided by Prof. Shinji Masui from Kyoto University. To obtain 

N31, a doxycycline-inducible iPS OKSM system based on PiggyBac transposition was 

introduced into the EB5 cell population in order to facilitate iPS induction experiments 14. EB5 

cells were differentiated for 7 days then seeded onto gelatin-coated T75 flask in 10 mL of NPC 

as single cells so as to obtain clones (for details, see 14). The resulting cell state, designated as 

clone N31, was maintained on gelatin-coated dishes in RHB-Basal medium (Clontech Takara, 
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#Y40000) with NDiff® N2 neural cell supplement (Clontech Takara, # Y40100) and 1% 

Penicillin-Streptomycin (Sigma-Aldrich #P4333-100ML). The N31 line was subsequently used 

for Raman imaging, representing a differentiated state.  

N31 reprogramming. For converting the differentiated cells (N31 line) into iPS cells, we induced 

the iPS reprogramming process in the N31 line for the total duration of 15 days. On the day of 

reprogramming induction the RHB-Basal medium was replaced with serum-free, chemically 

defined iPS induction medium PSGro® (StemRD, # PGro-500) with the addition of 10 ug/ml 

doxycycline, and the medium was exchanged every day until the reprogramming was complete. 

When ready, cell colonies were harvested, dissociated, and single cells were directly used for 

Raman imaging. Colonies were picked up after 5, 10 and 20 days during the reprogramming 

process (Figure 1a).  

 

Immunostaining 

For immunofluorescence analyses cells were grown on glass bottom 30-mm dishes coated with 

collagen type I (IWAKI #4970-011). On the day of immunostaining cells were briefly washed 

with PBS, fixed with 4% PFA (Santa Cruz #sc-281692) for 15 min at room temperature and 

permeabilized with 0.5% Triton in PBS with 10% FBS addition for 30 min. Primary antibodies 

were applied: Anti-Oct 3/4 (Santa Cruz #sc-5279, 1/250 dilution), Anti-Nanog (Abcam 

#ab80892, 1/250 dilution), Nestin, Neurofilament  in PBS with 10% FBS addition, for 1 hour in 

room temperature. After washing cells were incubated with secondary antibodies: Anti-mouse 

Alexa Fluor® 594 (Cell Signaling #8890, 1/500 dilution) and Anti-rabbit Alexa Fluor® 488 

(Cell Signaling #4412, 1/500 dilution) in PBS with 10% FBS addition for 1 hour at room 

temperature, then cells were washed 4 times with PBS and 2ml PBS per dish was added for 

imaging.  

 

Alkaline phosphatase staining and imaging 

For alkaline phosphatase staining cells were briefly washed with PBS, fixed for 5 min with 4% 

PFA (Santa Cruz #sc-281692) at room temperature and stained with Alkaline phosphatase kit II 

(Stemgent, #00-0055) according to the manufacturer’s protocol. Imaging was carried out on 

Olympus CKX41 inverted microscope (Olympus, Tokyo, Japan). 

 

Raman spectroscopy and spectral pre-processing 

A homemade confocal line-scanning Raman microscope was used, which optical system is 

described in details in a previous study 7. The spatial resolution of our system is approximately 

300 nm, and spectral resolution approximately 1 cm−1.  A 532 nm diode-pumped solid-state laser 

(Ventus, Laser Quantum, UK) was focused through a water-immersion objective lens (NA: 1.20, 

UPLSAPO60×W, Olympus, Tokyo, Japan). In this study, cells were kept alive, which contrasts 

with several previous studies 15,16. Glass bottom dishes were placed onto a heated micro-

chamber, set at 37°C and 5% CO2 to encourage the cell survivability and avoid metabolic stress. 

Single living cells were line-scanned using a 5 sec laser exposure per line and only 10 lines per 
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cell were taken, so as to accelerate measurements. Measurements were performed using 

WinSpec (Princeton, New Jersey, USA) synchronized to a home-made automated program 

developed in IGOR (IGOR Pro v6, WaveMetrics, Inc., Portland, US). Raman spectral data were 

first treated to remove cosmic rays. For each single cell image, the pixels corresponding to the 

cell were averaged, and the pixels corresponding to background were averaged. After 

background subtraction, a single spectrum is obtained for each cell. Then, a polynomial baseline 

correction using the ModPoly algorithm 17 was applied on background subtracted spectra for the 

range 550 to 1750 cm−1. Because Raman spectra measured on different days can produce slight 

shifts, due to the imperfect reproducibility of the grating angle in the polychromator, data were 

interpolated using a cubic spline function allowing to recalculate the x-axis. Then edges were 

cut-off, to give spectra for the range 590 to 1710 cm−1 with 1129 variables. Then the spectral data 

were vector normalized. These pre-processing steps were conducted using homemade functions 

in MatLab (MatLab 2015a, Mathworks, US). Local maxima of specific Raman bands were 

identified for each single cell by using a home-made algorithm using a pre-given range of search 

around known wavelengths.  

Multivariate analyses 

Neural Network classification model. To determine if the spectral variations were significant 

among strains, classification analysis was performed using a Neural Network model. 

classification was performed using 1 dimensional convolutional Neural Network (1DCNN) 

which is composed of convolution layers, max pooling layers and fully connected layers (Figure 

S1). Batch normalization and dropout were also used to enhance the robustness of the prediction 

results.  In the training and prediction process we adopted 8-fold nested cross validation, in 

which all data was divided into 8 datasets and the ratio of training data, verification data, and test 

data was distributed at 6: 1: 1. There were a total of 56 ways to divide by the distribution ratio, 

and 56 types of 1DCNN models were trained. In this case, since 7 models were trained on 1 test 

dataset, and 7 predictions were obtained for each data. Through the above processes, prediction 

of the 1DCNN was performed for all data. To visualize the wavenumbers that contributed to the 

classification of each cell state, a score was extracted. After training with all the data and the 

same model as 1DCNN used for the prediction, the wavenumber was output to all the data by 

Grad-CAM 18.  

 

PLS-DA models. While the Neural Network model aimed at classifying the five cell states from 

each other, we then wanted to visualize the wavenumbers contributing to different cell states 

“direction”. To do so, we computed two distinct low dimensional spaces using Projection on 

Latent Structure-Discriminant Analysis (PLS-DA) model 19, by considering pairs of two cell 

states: EB5/N31 in the first model, and N31/N31d20 in the second, respectively. In this the two-

dimensional space, the F1 axis represents the direction that best separate the two types of cells. 

The Variable Importance on Projection (VIP) scores, which represents the importance of each 

wavenumber in separating the cell types, were also calculated. Prior to analysis, normalized 

spectral data were mean centered. A 100-splits venetian blind cross-correlation method was 
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applied. The model complexity (the number of components in the model) was determined by 

using the complexity that minimized the RMSECV value. Model complexity was found to be 4, 

for the comparison EB5/N31, and 2 for the comparison N31/N31d20. Then, with the hypothesis 

that ES cells and differentiated cells define “two ends” of the range of possible cell-state, we 

wanted to see how the intermediary states would be defined along this axis. We used the above 

PLS-DA trained from the Raman spectral data of the ES (EB5) and differentiated cells (N31). In 

this low dimensional space, we then projected the spectrum of cells during reprogramming 

(N31d5, N31d10, N31d20) in the already built space (as test data) and compared the distribution 

of F1 scores of all cell states. Models were computed using the PLS toolbox in Matlab 

(EigenVector, Manson, USA).  

 

 

Results  

Confirmation of cell states by AP staining and immunofluorescence 

The Figure 1a describes the experimental layout and the cell states induced and assessed in a 

mouse isogenic cell line called EB5. As shown in the figure, EB5 cells were differentiated in 

vitro to create neural-lineage N31 cells, and then N31 cells were iPS-reprogrammed, and 

samples were taken throughout the process on days 5, 10 and 20 for Raman imaging. Thus, all 

cells used in this study are isogenic progeny of the original ES cell line EB5 and can be referred 

to as “cell states”. Figure 1bcd shows the alkaline phosphatase (AP) and immunofluorescence 

analyses of these cell states, with immunofluorescence and AP staining serving as conventional 

methods to verify the pluripotency status 20. Figure 1b illustrates the gradual changes in AP 

positivity in N31 cells during the reprogramming process, confirming that N31 cells underwent 

the reprogramming as intended. Figure 1c shows the immunofluorescence analyses of the 

original ES cell line EB5 and of N31 cells after 20 days of reprogramming (N31d20), confirming 

that both ES and N31d20 colonies were positive for pluripotent markers Nanog, Oct4, Sox2 and 

SSEA1. Figure 1d shows the immunofluorescence analysis of differentiated cell line N31 

demonstrating the presence of neural progenitor markers characteristic of neural lineage cells 20  

and absence of these markers from N31d20, confirming that N31 cell line was differentiated, 

while N31d20 lost these differentiation markers after 20 days of iPS reprogramming. 
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Figure 1. Cell states derived from the original stem cells, and assessment of reprogramming 

by AP staining and immunostaining. a) ES stem cells EB5 and its neural progenitors N31 

make an isogenic cell line. N31 was then subjected to reprogramming for 20 days, and Raman 

spectral measurements were performed at three time points during reprogramming. b) Alkaline 

phosphatase staining of N31 cells during the reprogramming process. Dark red indicates positive 

staining. c) Immunofluorescence analysis of EB5, and N31 cells after 20 days of reprogramming. 

Both exhibit colonies which are positive for pluripotent markers Nanog, Oct4, Sox2 and SSEA1. 

d) Immunofluorescence analysis for neural progenitor markers Nestin and Neurofilaments of the 
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differentiated cells N31and reprogrammed iPS-like colony obtained 20 days (upper row - N31, 

lower row - 20 days after reprogramming). Nuclei stained with DAPI appear in blue. 

 

Label-free Raman spectroscopy highlights cell-state-specific signatures 

The state of living single was then evaluated by Raman spectroscopy. About 40 peaks were 

clearly visible from the spectral signature. The molecular peak assignment of spectral data was 

performed according to previous studies 7, 11, 13. In Figure 2a, the averaged normalized spectra 

were compared for visualization purposes. These data highlighted strong differences between the 

cell states derived from ES cells, notably, the peaks at ~718 cm−1 (CH, CS quinolo), ~752 cm−1 

(Tyr, CC, cytochrome), ~786 cm−1 (PO2 stretch of DNA, cytosine), ~ 989 cm−1 (ß-sheets of 

protein), ~1260 cm−1 (nucleic acids, Amide III of lipids), and ~1445 cm−1 (CH2 deformation - 

lipids and proteins), highlighted strong differences between ES cells and cells undergoing 

reprogramming and their progenitor N31. Despite variations of spectral intensities within each 

cell state, the differences of the local maxima of each band at the aforementioned wavelengths 

were found significant (p < 0.05, ANOVA followed by a post-hoc Tukey HSD). In particular, 

stem cells exhibited high intensity for fatty acids (double bond stretching at ~1260 cm−1 and 

~1650 cm−1) and lower amounts in unsaturated lipids (~1445 cm−1) than other cells.  The 

differences between ES cells and N31d20 are highlighted in Figure S2.  
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Figure 2. Comparison and prediction of cell states from single cell spectral data by machine 

learning. a) Normalized averaged spectral data of single cells across the five cell states. ES cells 

(EB5 n = 62), neural cells (N31 n = 68), and cells undergoing differentiation for 5 days (N31d5, 

n = 61), 10 days (N31d10 n = 71) and 20 days (N31d20 = 68).  b) Confusion matrix for the 

predictions of 1DCNN versus the true labels. The numbers represent the average probabilities of 

the 7 times predictions due to 8-fold nested cross validation in each class.  c) Hierarchical 

clustering (Euclidian, average) of the weights associated to each wavelength extracted from the 

neural-network classification. The result shows the similarities between N31 and N31d5, and 

similarities between ES cells EB5 and N31d10 and N31d20. 

 

A neural network-based classification model was developed to measure the ability to predict 

each cell state based on the whole Raman spectra of single living cells (Figure 2b). The dataset 

was divided into training and test dataset by holding out 20% of the spectra. Each cell state was 

discriminated against each other with a very good accuracy, ranging from 0.66 to 0.96%, and an 

average accuracy of 88.2%. This result demonstrate that Raman spectroscopy data are very rich 

to allow the prediction of the cell state by CNN. The lowest score of 0.66% was observed for 
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N31d5 data, which highlight a stronger variability in the molecular signatures of these cells. To 

visualize the similarities between cell states, the weights associated to each wavelength using the 

output of Grad-CAM (Supplementary Data) were used to compute a hierarchical clustering 

(Figure 2c). Figure 2c shows the N31 and N31d5 were clustered together, suggesting their close 

similarities in spectral profiles. ES cells (EB5) were clustered with cells after 10 or 20 days of 

reprogramming (N31d10, N31d20) suggesting similarities. This clustering results valid the 

reprogramming process is effective and push N31d10, N31d20 cells towards the EB5 stem cell 

state.  

 

Exploring possible spectral biomarkers of differentiation and reprogramming 

To highlight the spectral bands that can potentially account for differences during the process of 

differentiation or reprogramming is of interest to this study. We therefore performed a data-

driven analysis of ES cells (EB5) against ES-derived differentiated cells (N31) by computing a 

PLS-DA, a classification model, using all samples from these two cell states (Figure 3a). The 

spectral data were projected in a low dimensional space built on two-components. Our analysis 

shows the cross-validated model can identify these two cell states from their F1 scores (Figure 

3a, left panel). The F1 vector (Figure 3a, right panel) highlights the wavelengths of importance to 

classify into one cell state or the other. We also extracted the VIP scores which calculates the 

contribution of each wavenumber in identifying these strains (Figure S4). Both F1 score and VIP 

scores matched the local maximum of known Raman bands, allowing us to identify the peaks 

representative of the cell states. Notably, the bands at ~752 cm−1 (Tyr, CC, cytochrome),  ~1002 

cm1  (phenylalanine - protein), ~1133 cm1  (C-H in-plane bending mode of phenylalanine, 

cytochrome proteins), ~1260 cm1  (nucleic acids, Amide III of lipids) and ~1445 cm1  (CH2 

deformation - lipids and proteins) strongly contributed to identify neuronal cells (N31). 

Oppositely, the band at ~786 cm−1 and ~1240 cm−1 were important to characterize ES cells.  

 

Similar to the above, we compared the differences between N31 and N31d20 by computing a 

PLS-DA model with these two cell states (Figure 3b) to search for potential spectral biomarkers 

accounting for the reprogramming process of neuronal cells toward IPS-cell state. The F1 vector 

shows the peaks contributing to identify neuronal cells (N31) are similar than in the above 

model, at the exception of the 1445 cm−1 (CH2 deformation - lipids and proteins) which this time 

strongly contributed to identify reprogrammed cells (N31d20).  

 

With the possibility that N31 and EB5 are two “ends” of the cell state transition in isogenic cell 

state, we verified how spectral data of cells undergoing reprogramming (N31d5, N31d10, 

N31d20) would position along this axis. We then used the data of cells undergoing 

reprogramming (N31d5, N31d10, N31d20) as test data which were plotted into the already-built 

dimensional space defined by stem cells and neuronal cells (Figure 3a). We found that the F1 

scores of the data classify these cells state at intermediary scores. The distribution of the F1 
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scores for each cell state follows a normal distribution (data not shown). The F1 scores N31d10, 

N31d20 and EB5 were statistically different from the other cell states.  

 

 
 

Figure 3. Cell-states and characteristic analysis by PLS-DA. a) PLS-DA trained using ES 

cells (EB5, n=62) and its neural progenitor (N31, n= 68). The F1 scores (left panel) extracted 

from the model show the possibility to identify the two cell-states along the F1 vector (right 
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panel) which show the characteristic wavelengths of importance to identify each cell state. A few 

important peaks are shown. Horizontal axis of right panel are expressed in Raman shifts (cm−1). 

b) A PLS-DA model was trained using N31 cells (n=68) and its reprogrammed counterpart 

(N31d20, n= 68). The F1 scores (left panel) and F1 vectors (right panel) specific to this model 

are shown. X axis of the right panel are Raman shifts (cm−1).  c) Using the low dimensional 

space built in Figure 3a, spectral data of cells undergoing reprogramming (N31d5, N31d10, 

N31d20) were used as test data and plotted in the already-built space. The F1 scores extracted 

from the model reveal the possibility to identify each cell state along the continuum N31- EB5. 

Asterisks over groups show statistical differences between indicated pairs, according to an 

ANOVA followed by a post-hoc Tukey HSD test (p < 0.05). 

 

Ratiometric analysis 

The above machine learning-based analyses reveal spectral data contain invaluable features to 

characterize the differentiation and reprogramming process. To describe differences in cell 

states, one can also calculate the ratios between the intensity of the peaks identified in the above 

analyses. Table 1 gives a list of a few ratio values we explored, which also included ratios 

described in previous literature. Ratio were calculated using the local maxima of peak of 

normalized spectrum, for each sample. Ratios were arbitrarily annotated from R1 to R8. 

Ratiometric data and results of statistical tests performed using single cell data, are provided in 

Supplementary Data. Ratios were plotted in Figure S5 and S6 with their standard deviation. 

Several of the shown combinations were particularly efficient at discriminating cell states, at 

single-cell level, with significant p values. In particular, the average value ratio for ~752 / ~786 

cm−1 provided the strongest change across cell state, specifically a 4-time change, as the average 

value ranged from 2.02 for N31 to 0.56 for EB5, with intermediary values for cells undergoing 

reprogramming. A post-hoc Tukey HSD test highlighted significant (p < 0.05) differences 

between the states N31d5, N31d10, N31d20 and EB5. However, no statistical difference was 

found between N31 and N31d5 using this specific ratio. In addition, the ratios R1 (~718 / ~756 

cm−1) and R5 (~1260 / ~1445 cm−1) allowed to distinguish EB5 against the others 

(Supplementary Data) but did not allowed to distinguish N31 against the reprogrammed cells.  

For several ratio pairs, the N31 and EB5 showed the strongest or weakest values by comparison 

to cells undergoing reprogramming (Supplementary Data).  

 

 

Table 1. Ratiometric analysis of bands of interest during reprogramming and 

differentiation in mouse cells. Spectral intensity values were obtained from the local maximum. 

*Peak values are expressed in Raman shifts (cm−1). For each ratio, at least one cell state was 

statistically different from the others (ANOVA, post-hoc Tukey HSD p < 0.05). Standard 

deviations and statistical groups identified by a post-hoc Tukey HSD test are not shown in the 

table for clarity but are provided elsewhere (Supplementary Data, Figure S5, S6). 
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Discussion 

It is well known that stem cells undergoing differentiation undergo deep changes in their 

metabolic properties and gene expression, and to monitor such processes in a non-invasive 

manner, novel bioimaging techniques are particularly desirable. Using a modest single-cell 

dataset of mouse ES, differentiated neuronal cells, and cells undergoing reprogramming, this 

study exemplified that Raman spectral characteristics and machine learning allow to monitor 

cell-state transition in an isogenic cell line, while providing biologically-relevant biomarkers to 

characterize these cells states. Our classification model based on a neural network shows a good 

accuracy in identifying unknown (new) cells from their chemical profiles (Figure 2bc). This 

shows the ability of Raman spectroscopy to discriminate accurately each cell state, and even 

predict the states from the spectral measurement of unknown cells using a trained model. A 

hierarchical clustering performed using the output of Grad-CAM (Figure 2c) seemed to reflect 

the biological proximity of cell-states, such as N31 and N31d5 which clustered together and 

were significantly different from the other states. Interestingly, a similar result was also obtained 

by building a low dimensional space with ES and neuronal cells and plotting other cell states in 

this space and extracting their F1 scores (Figure 3c). Therefore, one key result of this study is 

that the chemical or metabolic properties of cells captured by Raman spectroscopy could define a 

low dimensional space in which the different cell states were visualized, monitored and 

characterized. While the ability to monitor the dynamic of differentiation in a different cell line 

has been reported previously 10, a study of cell states during the reprogramming process using an 

isogenic cell line is reported for the first time.  

 

Potentially, prediction scores or F1 value distribution can also highlight which cell-state is the 

most difficult to characterize. N31d5 cells, in particular, had a strong lower score in the CNN 

model (Figure 2b) and strong variation in F1 scores (Figure 3c). Hypothetically, this low score 

may be due to the inherent large heterogeneity of metabolic state in the early reprogramming 

process, with the expectation that while some cells started the reprogramming, others didn't. A 

similar result was found by Ichimura and colleagues 10 for an “intermediary” state during 

differentiation. To further investigate whether Raman spectroscopy is sensitive enough to 

monitor the cell state transition in early reprogramming, additional experiments should be carried 

out by measuring cells every day or every 2 days.  

Ratio peak 1* peak 2* Associated molecules EB5 N31 N31d20

R1 ~718 ~752 CH, CS (quinolo) / δ(C-C) Tyr (cytochrome) 0,851 0,553 0,498

R2 ~718 ~786 CH, CS (quinolo) / PO2 strech, cytosine (DNA) 0,458 1,094 0,615

R3 ~752 ~786  δ(C-C) Tyr (cytochrome)  / PO2 strech, cytosine (DNA) 0,562 2,023 1,332

R4 ~752 ~852  δ(C-C) Tyr (cytochrome)  / lipid protein 1,088 2,282 1,870

R5 ~989 ~1005 β-sheet (protein) / Phe ring breath., C-C skeletal (Protein) 0,493 0,460 0,372

R6 ~1260 ~1445 Amide III (protein, lipids) / CH2 (saturated lipids) 0,771 0,583 0,624

R7 ~1260 ~1648 Amide III (protein, lipids) / υ(C=C) cis.,  Amide I envelope (proteins) 0,700 0,575 0,639

R8 ~1445 ~1648 CH2 (saturated lipids) / υ(C=C) cis.,  Amide I envelope (proteins) 0,909 0,990 1,064
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This study also identified the so-called spectral biomarkers using several methods such as 

spectral differences (Figure S2), F1 vector analysis (Figure 3ab, Figure S3) and ratiometric 

analysis (Table 1, Figure S5). Ratio of spectral intensities are powerful tools when analyzing 

Raman spectral data in the sense that they provide an “unbiased” way of exploring the data. In 

fact, one can expect that ratio values to be conserved across different platforms with different 

optical setups (despite possible differences in background level or sensitivity), if at least the 

excitation wavelength remains the same. In previous studies, Schulze and colleagues proposed a 

ratio of the differentiation state marker, specially using the ~752 cm−1 and ~786 cm−1 bands in 

human cells 13. However, in this pioneer work, only a few cells were used, and the spectral area 

that was investigated was limited to 663-1220 cm−1. In our study, all ratios shown in Table 1 

could significantly distinguish between specific pairs of cell states. The ratios R1 (~718 / ~756 

cm−1) and R5 (~1260 / ~1445 cm−1) for instance, allowed to distinguish EB5 against the others 

(Supplementary Data). The ratio R3 (~752 /~786 cm−1), associated with cytochrome/proteins, 

was extremely valuable to monitor both the differentiation and the reprogramming process and 

can be considered as a good spectral biomarker.   

 

The ratio between ~1260 / ~1445 cm−1 (Amide III and Amide I, respectively) highlight changes 

in unsaturated/saturated lipids, as the first band is an important indicator for unsaturated acids 

(such as DAG),  which get stronger during the loss of unsaturation such as oxidation, and the 

second an important marker for saturated fatty acids 21. By comparison to neuronal cells, the 

lower ratio for EB5 cells suggests it has more unsaturated fatty acids than saturated ones. The 

Figure 1a also suggests it as EB5 clearly displays a lower intensity value at ~1445 cm−1 by 

comparison to other cell states. Interestingly, this observation is consistent with the fact that ES 

cells have high amount of ω-6 and ω-3 polyunsaturated fatty acids (e.g., arachidonic acid, 

docosahexaenoic acid and linoleic acid) which are quasi-absent in differentiated cells and low in 

cells undergoing reprogramming 22. The spectral variations at ~1260 and ~1445 cm−1 seem 

therefore useful to monitor the reprogramming and differentiation process. Further work must be 

conducted to show how lipids bands correlate with fatty acid synthesis, which is known to be 

critical for stem cell pluripotency23.   

 

Interestingly, the above results hint at differences between ES and cells undergoing 

reprogramming (N31d20), even at later stages (N31d20, positive for pluripotency markers 

Nanog, Oct4, Sox2 and SSEA-1). We cannot fully exclude the possibility that the differences 

between ES cells and N31d20 are due to the incomplete iPS reprogramming or the heterogeneity 

of N31d20 cells. We should highlight, though, that the immunofluorescence analysis showed no 

differences in expression of pluripotency markers Nanog, Oct4 and Sox2 in ES and N31d20 

cells. Nevertheless, the spectral differences at 1445 cm−1 (Figure S2, Figure 1a) make a strong 

case for substantial differences between these cell states. Again, fatty acid synthesis is known to 

be critical for stem cell pluripotency23.  Thus, the observed spectral difference is of interest with 
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regards to medical applications of iPS cells such as transplantation 2,3,4, as the quality or safety of 

iPSCs is often performed by comparing the cells to naturally occurring embryonic stem cells 

(ESCs). Yet, whether the iPS cell state constitutes an equivalent to naturally occurring ES 

pluripotency is an undergoing debate in the community. Numerous attempts have been made to 

find differences that distinguish ESCs from iPSCs, identifying dissimilarities in gene expression 

patterns 24- 28 DNA methylation 29- 31) and chromatin modifications 28, 32. Comparisons with label-

free imaging data are therefore desirable and in the light of our results, we speculate that spectral 

methods have a strong potential in highlighting differences between ES and reprogrammed cells.  

 

To conclude, this study showed the possibility to discriminate the differentiation and 

reprogramming process of living cells by label-free spectral measurements, showing the richness 

and unique information brought by vibrational spectroscopy. Our data reports for the first time 

several important biomarkers specific to differentiation or reprogramming in mouse cells, which 

confirm or complement previous studies on human investigations. This gives a strong basis for 

selecting the wavelengths identified in this study to develop high-throughput label-free 

identification pluripotency or cell-state dynamics, by selecting a pre-given number of 

wavelengths or ratios. Additionally, we demonstrated how cells undergoing reprogramming 

exhibited different states in a low dimensional space built upon ES and neuronal cells signatures, 

and it could be interesting to evaluate how the cell-state defined by different modalities can 

complement each other’s. As a perspective, we expect that data-integration of Raman data 

(image, or spectra) can be done with complementary modalities, such as metabolic analyses (eg. 
27 ), and that will extend our understanding of the biological causes for spectral shifts observed 

between cell-states. We hope this modest study will become a valuable reference for future 

studies of cell-state investigations in differentiated and iPS cells. 

 

 

Link to datasets 

Our datasets and analysis reports are provided into an excel file for convenience, available at 

XXXXX. 
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