
1

1 New genotypic adaptability and stability analyses using 

2 Legendre polynomials and genotype-ideotype distances
3

4 Michel Henriques de Souza¹*, José Domingos Pereira Júnior¹, Skarlet De Marco Steckling², 

5 Jussara Mencalha¹, Fabíola dos Santos Dias¹, João Romero do Amaral Santos de Carvalho 

6 Rocha², Pedro Crescêncio Souza Carneiro², José Eustáquio de Souza Carneiro¹

7

8 ¹Departamento de Agronomia, Universidade Federal de Viçosa, Viçosa, CEP: 36570-900, 

9 Minas Gerais, Brazil.

10 ²Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, CEP: 36570-900, 

11 Minas Gerais, Brazil.

12

13 * Corresponding author - email: micheel.1992@gmail.com

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 1, 2020. ; https://doi.org/10.1101/2020.05.01.072090doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.01.072090
http://creativecommons.org/licenses/by/4.0/


2

33 Introduction
34

35 The main objective of a crop breeding program, is to develop cultivars that can replace 

36 those that are currently available [1]. In the final stages of a breeding program, the most 

37 promising lines are evaluated in trials conducted in different environments, such as different 

38 years, places, and seasons. In Brazil, these tests are called Valor de Cultivo e Uso (VCU), and 

39 their results are the basis for the cultivar recommendation [2].

40 Adaptability and stability studies are used to quantify the performances of the genotypes 

41 to make recommendations [3]. Adaptability is defined as the ability of a genotype to respond 

42 advantageously to its environment, while its stability is related to the predictability of its 

43 behavior [4,5]. It is thus possible to identify genotypes that have wide or specific adaptability 

44 to favorable or unfavorable environments. Finlay and Wilkinson [4] defined favorable and 

45 unfavorable environments as those that result in the average performance of the genotype being 

46 above or below the average of all the trials, respectively.

47 Genotypes that have specific adaptability to favorable environments, have genes that 

48 enable them to respond to improved environmental conditions, and should be recommended to 

49 farmers who wish to utilize the most current technologies. Genotypes with specific adaptability 

50 to unfavorable environments however, may have specific genes that enable them to grow in 

51 these environments. These are rustic genotypes and should be recommended to farmers who 

52 utilize lower level technologies. In general, rustic genotypes have more genes that tolerate biotic 

53 and abiotic stresses, which means they may be favored in more adverse environmental 

54 conditions.

55 In recent decades, several methods to analyze adaptability and stability have been 

56 proposed, based on different statistical principles. To identify genotypes that have general or 
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57 specific adaptability to favorable (requires a high level of technology) or unfavorable (requires 

58 a low level of technology) environments, methodologies that are based on linear regression 

59 models have shown promise [4–7]. Some of the previous methods  to determine the adaptability 

60 and stability included the ideotype concept [8–11], and resulted in an improved understanding 

61 of the relative behavior of the genotypes from a smaller number of parameters. According to 

62 Eeuwijk et al. [12], there are other methodologies to assess the behavior of genotypes that are 

63 of note, such as AMMI (Additive Main effects and Multiplicative Interaction) [13] and GGE 

64 biplot (Genotype main effects and Genotype x Environment interaction effects) [14]. However, 

65 the adaptability and stability analyses still have limitations, especially when used with trials 

66 with genetic or statistical imbalances, heterogeneity of residual variances, and genetic 

67 covariance. In this context, adaptability and stability analyses that use a mixed model approach 

68 are an effective alternative to the traditional analyses [15,16].

69 Another relevant factor is that traditional methodologies for the analysis of adaptability 

70 and stability, consider a priori, that the behavior of a genotype across environments is linear, 

71 which may not be true. As a consequence, recommendations based on these methodologies can 

72 be biased. This can be outlined by means of reaction norm models via mixed modeling, as they 

73 allow for improved modeling of the behavior of the different genotypes, based mostly on 

74 orthogonal polynomials. Among this class of polynomials, the Legendre's polynomials stand 

75 out, as they have the ability to describe the structures of variance and covariance between the 

76 genetic and environmental components [17].

77 In this way, the use of the reaction norms obtained from the Legendre polynomials can 

78 better quantify the adaptability and stability of a set of genotypes evaluated in different 

79 environments, aiming for greater accuracy in cultivar recommendations. Thus, the objectives 

80 of this investigation were to propose a new methodology for the analysis of adaptability and 

81 genotypic stability, based on Legendre polynomials and genotype-ideotype distances.
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82

83 Methods description (step by step)

84

85 Step one: Environmental gradient 

86

87 The first step is the classification of the trials as an environmental gradient. To define 

88 this gradient, trials in which the genotypes are evaluated must be ordered a priori, according to 

89 certain classification criteria such as Akaike Information Criterion (AIC) [18], Bayesian 

90 Information Criterion (BIC) [19], and Penalizing Adaptively the Likelihood (PAL) [20]. We 

91 consequently recommend the index proposed by Finlay and Wilkinson [4], since the 

92 adaptability of a genotype is its ability to respond to environmental improvements. The 

93 environmental index was determined as follows:

94

95 )   (1)𝐼𝑗 =  (𝑌𝑗 ‒  𝑌

96

97 where  is the average of the genotypes j-th trial (j = 1, 2, ..., na, where na is the total number 𝑌𝑗

98 of trials) and  is the general mean. Negative and positive index values indicate unfavorable 𝑌

99 and favorable trials, respectively.

100

101 Step two: Fitting reaction norm models
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102

103 Once the environmental gradient is established, different reaction norm models must be 

104 adjusted to identify what best quantifies the behavior of the genotypes in the different trials. 

105 The number of models to be tested depends on the number of trials used (determines the 

106 maximum order of the polynomial), the number of effects included in the model via the 

107 Legendre polynomials, and the residual covariance structures.

108 For the trials conducted in randomized block designs, for example, the model to be 

109 adopted was as follows:

110                                                                (2)𝑦𝑖𝑗𝑘 = 𝐴𝑗 + 𝑅/𝐴𝑗𝑘 + ∑𝑀 ‒ 1
𝑚 = 0𝛼𝑖𝑚Ф𝑖𝑗𝑚 +  𝑒𝑖𝑗𝑘

111

112 where: yijk is the observation of the i-th genotype (i = 1, 2,…, ng, where ng is the total number 

113 of genotypes), in the j-th trial (j = 1, 2,…, na, where na is the total number of trials), in the k-th 

114 block (k = 1, 2, 3); Aj is the effect of the trial; R/Ajk is the fixed effect of the blocks within each 

115 trial; αim is the reaction norm coefficient for the Legendre polynomial of order m for the 

116 genotypic effects of the genotypes; Фijm is Legendre's m-th polynomial for the j-th trial, 

117 standardized from -1 to +1 for the i-th genotype; M is the order of adjustment of the Legendre 

118 polynomial for genotypic effects; and eijk is the residual random effect associated with yijk.

119 In a matrix, the model above is described as: , where: y is the vector 𝑦 = 𝑋𝑏 + 𝑍𝑔 + 𝑒

120 of phenotypic data; b is the vector of the fixed effects of the combination of blocks × trials 

121 added to the general average; g is the vector of genetic effects (assumed to be random); and  𝑒

122 is the residue vector (random). X and Z represent the incidence matrix for these effects, 

123 respectively. It is assumed that: g ~ N (0, Kg ⊗ Ing), and e ~ N (0, Inp ⊗ ∑), where Ing and Inp 

124 are identity matrices of the order ng (ng is the total number of genotypes) and np (np is the 
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125 number of genotypes x the number of blocks), respectively. The symbol ⊗ denotes the 

126 Kronecker product. Kg is the matrix of covariance coefficients for genotypic effect. ∑ 

127 represents the matrix of residual variances.

128

129 Step three: Choosing the best fit model

130

131 To select the best fit model, criteria the AIC, BIC and PAL were utilized. These criteria 

132 are described as follows:

133      (3)𝐴𝐼𝐶 =  ‒ 2𝑙𝑛𝐿 + 2𝑝

134   (4)𝐵𝐼𝐶 =  ‒ 2𝑙𝑛𝐿 + 𝑝𝑙𝑛[𝑛 ‒ 𝑟(𝑥)]

135      (5)𝑃𝐴𝐿 =  ‒ 2𝑙𝑛𝐿 + 𝑛𝑙𝑛(ñ)
ln (𝑟𝑛 + 1)
ln (𝜌𝑛 + 1)

136 where;

137 𝑟𝑛 =  2𝑙𝑛𝐿𝑛 ‒ 1 ‒ 2𝑙𝑛𝐿1

138 𝜌𝑛 =  2𝑙𝑛𝐿ñ ‒ 2𝑙𝑛𝐿𝑛 ‒ 1

139

140 and lnL is the logarithm of the likelihood function; p is the number of estimated parameters; n 

141 is the number of observations; r(x) is the rank of the fixed effects matrix; and ñ is the highest 

142 number of parameters for the models.

143
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144 Step four: Genetic effects significance

145

146 To test the genetic effects, we utilized the Likelihood Ratio Test (LRT) [21], which is 

147 as follows:

148

149 LRT = -2*(LogLmod.r – LogLmod.c)   (6)

150

151 where: LogLmod.r is the logarithm value of the maximum likelihood function obtained for the 

152 reduced model (without the genotypic effect), and LogLmod.c is the logarithm value of the 

153 maximum likelihood function obtained for the complete model. 

154

155 Step five: Genotypic values at the original scale

156

157 To predict the genotypic values ( BLUPs), we suggest the use of the following 𝑔𝑖𝑗 ‒  

158 equation, as proposed by Kirkpatrick et al. (1990):

159

160    (7)𝑔𝑖𝑗 = ∑𝑀 ‒ 1
𝑚 = 0𝛼𝑖𝑚Ф𝑖𝑗𝑚

161
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162 where:  is the reaction norm coefficient of order m for the genetic effects of the i-th genotype. 𝛼𝑖𝑚

163 This equation includes a transformation to the original scale, as using the Legendre polynomials 

164 as a covariate affects the scale of the genotypic values.

165

166 Step six: Accuracy at the original scale

167

168 The prediction accuracy, also in original scale, is estimated according to the following 

169 equation:

170        (8)𝑟𝑔𝑔𝑖𝑗 = 1 ‒  
Ф𝑖𝑗𝑚𝑃𝐸𝑉𝑖𝑗 Ф '

𝑖𝑗𝑚

Ф𝑖𝑗𝑚𝐾𝑔Ф '
𝑖𝑗𝑚

171

172 where:  is the correlation between the predicted and real genotype values for genotype i in 𝑟𝑔𝑔𝑖𝑗

173 trial j, that is, the estimated accuracy;  is the Predicted Error Variance of the estimated 𝑃𝐸𝑉𝑖𝑗

174 coefficients for genotype i in trial j;  is the covariance matrix of the coefficients, estimated 𝐾𝑔

175 for the genotypic effect.

176

177 Step seven: Genotypic adaptability and stability 

178

179 To quantify the adaptability and stability of the genotypes, we proposed the use of the 

180 genotype-ideotype distance (converted into probability), using four ideotypes: i) genotypes of 

181 general adaptability (genotypes of maximum performance in both unfavorable and favorable 
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182 environments); ii) genotypes of maximum adaptability to unfavorable environments (genotypes 

183 of maximum performance in unfavorable environments, regardless of their performance in 

184 favorable environments); iii) genotypes of maximum adaptability to favorable environments 

185 (genotypes of maximum performance in favorable environments, regardless of their 

186 performance in unfavorable environments); and iv) genotypes with minimal adaptability.

187 From the genotypic values, the adaptability and stability of the genotypes were obtained, 

188 according to the estimator below:

189

190 𝑃𝑖𝑘 =  

1
𝐺𝐼𝐷𝑖𝑘

𝑛𝑔

∑
𝑖 = 1

1
𝐺𝐼𝐷𝑖𝑘

           (9)

191

192  are the probabilities referring to genotype i with regard to ideotype k (k = 1, 2, 3, 4; where 𝑃𝑖𝑘

193 1 = genotypes of general adaptability; 2 = genotypes of maximum adaptability to unfavorable 

194 environments; 3 = genotypes of maximum adaptability to favorable environments; and 4 = 

195 genotypes of minimal adaptability); and ng is the total number of genotypes.  is the 𝐺𝐼𝐷𝑖𝑘

196 standardized average Euclidean distance for genotype i in ideotype k, as given by:

197

198 𝐺𝐼𝐷𝑖𝑘 =  
∑

𝑗

[𝑔𝑖𝑗 ‒ 𝑖𝑑𝑒 (𝑔𝑖𝑗)]²

𝑛𝑗
        (10)

199
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200 where, if k = 1, j = 1, ..., na; if k = 2, j = 1, ..., nd; if k = 3, j = 1, ..., nf; if k = 4, j = 1, ..., na; and 

201 na is the highest assumed value for j; nd and nf represent the number of unfavorable and 

202 favorable environments, respectively;  is the ideotype drawn from the standardized 𝑖𝑑𝑒 (𝑔𝑖𝑗)

203 genotypic values.

204 It is important to emphasize that the estimators proposed above also considered the 

205 stability of the genotypes' behavior in relation to the ideotype, through the invariance in multi-

206 environment trials (MET).

207 We recommend evaluating the performance only in those genotypes that present an 

208 accuracy value of at least 80 % in the trials, since the accuracy is indicative of the precision in 

209 the prediction of genotypic values. Thus, the average accuracy of the trials considered in the 

210 cultivar recommendation will also show values equal to or greater than 80 %. The standard 

211 value is based on that of Resende and Duarte [23], who claimed to have at least 80 % accuracy 

212 values in VCU trials, when assessing the values of their cultivars. 

213

214 Application of the method with Phaseolus vulgaris L.

215

216 Genetic material 

217

218 We evaluated 105 common bean cultivars (Phaseolus vulgaris L.), 56 of which were 

219 Carioca grains and 49 were Black grains. These are the cultivars that have been recommended 

220 in Brazil by breeding programs since 1959. The cultivars used, as well as the institutions of 

221 origin and year of recommendation, are listed in S1 and S2 tables (supporting information).
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222

223 Trials

224

225 The trials were conducted in different environments (seasons, years, and places), during 

226 the dry and winter seasons, between 2013 and 2018, at the Experimental Stations in Coimbra 

227 county – Minas Gerais (Unidade de Ensino, Pesquisa e Extensão - UEPE Coimbra: latitude 

228 20°49ʹ44″ S, longitude 42°45ʹ56″ W and altitude of 713 meters) and Viçosa – Minas Gerais 

229 (Aeroporto, latitude 20°44ʹ38″ S, longitude 42°50'40” W and altitude of 654 meters; Horta 

230 Nova: latitude 20°45ʹ47″ S, longitude 42°49ʹ25″ W and altitude of 664 meters; Vale da 

231 Agronomia: latitude 20°46ʹ04″ S, longitude 42°52ʹ11″ W and altitude of 662 meters), thus each 

232 MET consisted of 13 trials. Over the years in which the trials were carried out, the cultivars that 

233 were recently launched by the breeding programs were included, thus causing a genetic 

234 imbalance (variation in the number of cultivars in the trials). The 13 trials and their 

235 characteristics are listed in S3 table (supporting information).

236 The trials were designed in randomized blocks with three replications. The plots 

237 consisted of four lines of two meters (m), spaced 0.5 m apart. The treatments used were in 

238 accordance with the recommendations for common bean cultures [24]. The evaluated 

239 characteristic was grain yield, and they were harvested from the two central lines of each plot. 

240 The data were corrected to 13 % humidity and converted to kg ha-1.

241

242 Data analysis

243
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244 To create and organize the environmental gradient, the 13 trials were classified as 

245 favorable or unfavorable, according to the environmental index (Eq. 1). We adjusted 14 reaction 

246 norm models to identify the model that best quantifies the behavior of the cultivars for grain 

247 yield in the MET, with trials ordered according to the environmental index. Among these 

248 models, seven were tested considering the homogeneous residual variance and the other seven 

249 with heterogeneous diagonal residual variance. The models were adjusted with Legendre's 

250 polynomials, considering the various adjustment orders and based on the general model 

251 presented in Eq. 2.

252 Different degrees of orthogonal Legendre polynomials were fitted to determine the best 

253 model (lowest mean square error and greater parsimony). The reaction norm models were 

254 compared using the AIC (Eq. 3), BIC (Eq. 4), and PAL (Eq. 5) criteria. The LRT test, presented 

255 in Eq. 6, was used to test the significance of the genetic effects. The genotypic values for each 

256 cultivar (BLUP), in each trial, were predicted according to Eq. 7. Prediction accuracy was 

257 estimated according to Eq. 8.

258 By using the BLUPs, the adaptability and stability of the cultivars were determined, 

259 aiming at the recommendations of the cultivars. In this way, we have calculated the probabilities 

260 for the recommendations of the cultivars, using the distance of the genotypes in the functions 

261 of the ideotypes. The probability values were obtained using Eq. 9. 

262 To view the results, the ten cultivars with the highest probability were selected to plot 

263 their curves with their respective reaction norms, for the three ideotypes, as we chose not to 

264 include ideotype IV, since it makes no sense to recommend cultivars of minimal adaptability. 

265 The BLUP of each cultivar was added, plus the environment average, and the general average, 

266 as well as two witnesses, Pérola (Carioca bean) and Ouro Negro (Black bean), for comparison 

267 purposes. These two cultivars were selected as witnesses, as they are used as references for the 
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268 productivity and quality of grain in consumer markets for the Carioca and Black beans, 

269 respectively [25]. The accuracy values (S4 table) and recommendation probability values (S5 

270 table) are available in the supporting information.

271

272 Software used

273

274 The joint analysis was carried out using ASREML software [26]. The study of the 

275 adaptability and stability of cultivars was carried out using R [27]. The code for the analyses is 

276 available in the S1 code.

277

278 Results

279

280 The environmental index values, according to Finlay and Wilkinson [4], are shown in 

281 table 1. Positive index values indicate favorable environments, while negative values indicate 

282 unfavorable ones [3]. Trials 12, 9, 4, 10, 8, and 6 were classified as unfavorable environments, 

283 while trials 5, 2, 3, 7, 1, 11, and 13 were favorable

284

285

286

287

288
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289 Table 1: Trials evaluated with their environmental index.

Trial Description Environmental gradient

12 Dry/2017/Aeroporto -1028.89

9 Dry/2016/UEPE Coimbra -868.67

4 Winter/2013/Vale da Agronomia -607.25

10 Winter/2016/UEPE Coimbra -500.76

8 Dry/2016/Aeroporto -466.43

6 Winter/2015/UEPE Coimbra -167.35

5 Dry/2015/UEPE Coimbra 31.02

2 Dry/2013/Vale da Agronomia 106.80

3 Winter/2013/Coimbra 127.71

7 Dry/2016/UEPE Coimbra 259.39

1 Dry/2013/Coimbra 486.60

11 Winter/2016/Horta Nova 758.98

13 Winter/2017/UEPE Coimbra 1868.83

290

291 We found that the different criteria (AIC, BIC, and PAL) pointed to different models as 

292 having a better fit. The AIC criterion identified model Leg.6.D, which has a diagonal structure 

293 for the residues and a grade six for the Legendre polynomials, as having the best fit (Table 2). 

294 The BIC and PAL criteria however, identified the Leg.5.D model as having the best fit. The 

295 AIC and BIC criteria prioritize, respectively, efficiency and consistency in their choices of 

296 model [28,29]. Corrales et al. [29], using simulated data, reported that when the true model was 

297 among the candidate models, the PAL and BIC criteria selected the same model. Furthermore, 

298 when the PAL and AIC criteria were used, the model selection was not always the same. When 

299 the real model was unknown, the AIC was more precise in choosing the best model, compared 

300 to the BIC. According to Vrieze [30], for very complex models (which include a high number 

301 of parameters) the BIC criterion was preferred over the AIC. Corrales et al. [29] stated that the 
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302 PAL criterion simultaneously considers the consistency and efficiency of a model and should, 

303 therefore, be preferred over the AIC and BIC criteria when choosing models. The model 

304 ultimately chosen was Leg.5.D.

305 Based on the chosen model (Leg.5.D), the random effects of the cultivars were modeled 

306 as linear functions using the Legendre polynomials, with grade five and heterogeneous residual 

307 variance (diagonal). This resulted in 34 estimated parameters, 13 of which were associated with 

308 residues, that is, one for each trial, and 21 related to the model's genotypic components. It is of 

309 note that the genetic effect was significant with the LRT test for all fitted models, indicating 

310 high variability between the cultivars evaluated (Table 2).

311

312 Table 2. Different fitted models using the Legendre polynomials (Leg).

Model¹ DEG p LOG L AIC BIC PAL LRT 

Leg.0.H 0 2 Converged 11307 11319 11303 377.68

Leg.1.H 1 4 Converged 11288 11312 11280 400.6

Leg.2.H 2 7 Converged 11255 11299 11257 438.8

Leg.3.H 3 11 Converged 11218 11286 11229 484.1

Leg.4.H 4 16 Converged 11191 11291 11217 520.7

Leg.5.H 5 22 Converged 11150 11286 11197 574.5

Leg.6.H 6 29 Converged 11134 11315 11243 603.7

Leg.0.D 0 14 Converged 11007 11094 10979 507.6

Leg.1.D 1 16 Converged 10983 11083 10951 534.9

Leg.2.D 2 19 Converged 10928 11046 10930 595.9

Leg.3.D 3 23 Converged 10865 11008 10885 667.2

Leg.4.D 4 28 Converged 10740 10914 10779 802.7

Leg.5.D 5 34 Converged 10648 10859 10730 906.2

Leg.6.D 6 41 Converged 10645 10900 10881 922.9
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313 Model structure, degree polynomial for the genetic effect (DEG), number of parameters (p), 

314 LOG L convergence, Akaike information criterion (AIC), Schwarz Bayesian information 

315 criterion (BIC), Penalizing adaptively the likelihood (PAL) and Likelihood Ratio Test (LRT). 

316 ¹The tested models can assume homogeneous (H) or diagonal (D) residual variance structure. 

317 The average accuracy for the prediction of the BLUPs for each cultivar, based on the 

318 Leg.5.D model, are shown in Fig 1. We found that the average accuracy of predictions was 

319 greater when more trials were used to evaluate the cultivars. The accuracy observed for the 

320 cultivars that were present in the 13 environments was the highest, while the accuracy estimates 

321 for the cultivars evaluated in only two environments were the lowest. It can also be seen in 

322 figure 1, that in trials six and eight (ordered according to the environmental gradient), the 

323 accuracy estimates were relatively low. It is also noteworthy that the estimates of genotypic 

324 variance in these two trials were also lower than in the others (data not shown). The accuracy 

325 values of each cultivar in each environment are available in S4 table (supporting information).

326

327 Fig 1: Average accuracy of the prediction in each trial for the genotypic values of the 

328 cultivars.

329 a) Cultivars evaluated in 13 trials (80 cultivars); b) cultivars evaluated in nine trials (20 

330 cultivars); c) cultivars evaluated in six trials (four cultivars); and d) cultivars evaluated in only 

331 two trials (one cultivar). The trials are ordered according to the environmental index (Table 1).

332

333 Using the proposed reaction norm methodology, the adaptability and stability of 100 of 

334 the 105 cultivars was quantified. These 100 cultivars were evaluated in at least nine of the 13 

335 trials, with the accuracy in predicting their genotypic values, equal to or greater than 80 %, 

336 including for those trials in which the cultivars were not evaluated (S4 table). 
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337 According to Eq. 9, the cultivars were recommended by comparing them with the four 

338 proposed ideotypes (four scenarios): cultivars of general adaptability, cultivars of maximum 

339 adaptability to unfavorable environments, cultivars of maximum adaptability to favorable 

340 environments, and cultivars of minimal adaptability. The probability values of each cultivar in 

341 each scenario are presented in S5 table.

342 Fig 2 shows the reaction norm curves of the ten bean cultivars with the highest potential 

343 (highest probability value), considering the general adaptability scenario (ideotype - maximum 

344 performance genotypes in both unfavorable and favorable environments), as well as the 

345 cultivars used as witnesses (Pérola and Ouro Negro). The probability of each cultivar was 

346 calculated according to eq. 9, in relation to the ideotype for the scenario of general adaptability. 

347 Among the ten selected cultivars, six had the Carioca grain type (BRS Estilo, IAC Formoso, 

348 IAC Imperador, IPR Andorinha, IPR Campos Gerais and VC 15), and four had the Black grain 

349 type (BRS Agreste, IPR Tiziu, IPR Tuiuiú and VP 22). The IPR Campos Gerais cultivar 

350 surpassed the Pérola cultivar in all trials, while the VP 22 cultivar surpassed the Ouro Negro 

351 cultivar in all trials.

352

353 Fig 2: Cultivars of Carioca and Black bean of general adaptability according to the 

354 ideotype.

355 The trials are ordered according to the environmental index (Table 1). *Cultivars used as 

356 witnesses. 

357

358 The reaction norm curves of the ten bean cultivars with the greatest potential (highest 

359 probability value), considering the scenario of maximum adaptability to unfavorable 

360 environments (ideotype - maximum performance genotypes in unfavorable environments, 
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361 regardless of their performance in favorable environments), as well as the cultivars used as 

362 witnesses, are presented in Fig 3. Of the ten selected cultivars, seven had Carioca grain (BRS 

363 Estilo, IAC Formoso, IAC Imperador, IPR Andorinha, IPR Campos Gerais, IPR Tangará and 

364 VC 15) and three had Black grain (IPR Tiziu, IPR Tuiuiú and VP 22). The cultivar IPR Campos 

365 Gerais surpassed the cultivar Pérola in all trials, and the IPR Tuiuiú, IPR Tiziu, and VP 22 

366 cultivars exceeded the Ouro Negro cultivar.

367

368 Fig 3: Cultivars of Carioca and Black bean of maximum adaptability for unfavorable 

369 environments according to the ideotype.

370 The trials are ordered according to the environmental index (Table 1). *Cultivars used as 

371 witnesses.

372 In Fig 4, the reaction norm curves for the ten cultivars with the highest potential (highest 

373 probability value), considering the scenario of maximum adaptability to favorable 

374 environments (ideotype - maximum performance genotypes in favorable environments, 

375 regardless of their performance in unfavorable environments), as well as the cultivars used as a 

376 witness, are shown. Of the ten selected cultivars, seven had Carioca grain (BRS Estilo, IAC 

377 Formoso, IAC Imperador, IPR Andorinha, IPR Campos Gerais, IPR 139 and VC 15) and three 

378 had Black grain (IPR Agreste, IPR Tuiuiú and VP 22). The IPR Campos Gerais cultivar 

379 surpassed the Pérola cultivar, in all trials, and the IPR Agreste, IPR Tuiuiú, and VP 22 black 

380 bean cultivars exceeded the Ouro Negro cultivar, in all trials.

381

382 Fig 4: Cultivars of Carioca and Black bean of maximum adaptability for favorable 

383 environments according to the ideotype.
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384 The trials are ordered according to the environmental index (Table 1). *Cultivars used as 

385 witnesses.

386

387 Discussion

388

389 Rating the variations of a set of trials, according to an environmental gradient, is 

390 essential when using methods based on linear regression that aim to quantify the adaptability 

391 of a cultivar. Finlay and Wilkinson [4] proposed using the average performances of the cultivars 

392 in each trial as a gradient, and estimating an environmental index using the differences between 

393 the average of the cultivars evaluated in each trial and the general average of the cultivars in all 

394 trials. Additionally, the fit of the regression model for each cultivar was made according to its 

395 performance, relative to the environmental index, in order to increase the values. The lack of 

396 an environmental gradient complicates the interpretation of the behavior of the genotypes in the 

397 face of the environmental variations [4].

398 When classifying the trials with the environmental index (in favorable or unfavorable 

399 environments), it was observed that the seasons, places, and years in which the trials were 

400 conducted did not determine the classification, as the trials from the same place and year could 

401 have very different results (trials 7 and 9), while those from different seasons, places, and years 

402 could be very similar (for example, environments 1 and 11). It should be noted that trial 9 was 

403 planted 44 days after trial 7, which may be one of the justifications for the different 

404 environmental index values. These results could be caused by edaphoclimatic variations, as 

405 well as variations in the incidence of pests and diseases in the environments in which the 

406 cultivars were evaluated, resulting in genotype by environment interactions (GEI). Several 
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407 authors have also previously [31–34] reported the influence of these factors on the 

408 environmental classification. For Ramalho et al. [35], the most significant contributions to the 

409 GEI in the bean cultures were due to the combinations of cultivar × season and cultivar × years.

410 The development of methods to model GEI is coupled with the availability of more 

411 genotypic and environmental information, in line with the advances in data collection and 

412 analysis. The first analyses were based on analysis of variance [36,37], with a single parameter 

413 to interpret the adaptability and stability. The advances with the development of new 

414 methodologies however, are based on regression analysis, with interpretations based on more 

415 parameters, such as the average, the regression coefficient, the regression deviation, and new 

416 definitions of adaptability and stability [4,7,38].  

417 Currently, the effects of genotypes and environmental conditions can be modeled by 

418 phenotypic values in regression with genetic markers and in environmental covariates, via 

419 mixed models [39]. However, these models based on regression, consider a priori that the 

420 genotype behavior is predetermined, based on linear regression equations, which may not 

421 equate to the genotypes actual behavior. Thus, reaction norm models in conjunction with 

422 Legendre polynomials are used to establish the order of the polynomials of the regression 

423 parameters later, according to the behavior of the genotypes in a series of environments (in a 

424 MET). Additionally, the mixed model approach also allows for the genotypic values of 

425 individuals to be predicted, as adaptability and stability are genotypic, and not phenotypic.

426 The use of reaction norm models associated with the use of orthogonal polynomials has 

427 been used mainly in animal breeding, defined as random regression, where the behavior of the 

428 genotypes over a period of time is described, mainly using covariance function information 

429 [40–42]. However, there are only a few studies in the literature that use reaction norm models 

430 with plants.
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431 According to Ni et al. [43], reaction norm models allow for the adjustment of an 

432 individual’s genetic effects with their exposure to the environmental effects, so that the 

433 genotypes are adjusted as a nonlinear function of a continuous environmental gradient. The 

434 adjustment of reaction norm models, as a function of the environmental gradient, considering 

435 Legendre polynomials, captures more adequately the behavior of the genotypes in a MET. The 

436 fact that an individuals' behavior is not predetermined, is an advantage of the proposed 

437 methodology in relation to the traditional methods of analysis of adaptability and stability.

438 To quantify the adaptability and stability using reaction norm models, the prediction 

439 accuracy represents the reliability in the evaluation of the behavior of the evaluated genotypes 

440 in different environments. In this work, most of the accuracy estimates obtained for each 

441 cultivar in each environment were greater than 80 %, which also resulted in an average accuracy 

442 of the 13 trials that was higher than this value. In the VCU trials, Resende and Duarte [23] 

443 recommended that the accuracy should be at least 80 %. Other previous investigations have 

444 also highlight the importance of prediction accuracies, using the reaction norm models in plant 

445 breeding experiments [39,44,45].

446 Another advantage of the proposed methodology, using reaction norm models, is the 

447 prediction of genotypic values for the cultivars for environments in which they were not 

448 evaluated, when the MET presents genetic imbalance. When using experiments with 

449 unbalanced data, or just a sample of the cultivars, the prediction accuracy estimates tend to be 

450 lower, and the model may not be efficient in evaluating the performance of the cultivars [46,47]. 

451 Cargnelutti Filho and Storck [48], affirmed that the accuracy has a direct relationship with the 

452 genotypic variance, and an inverse relationship with the residual variance. In this investigation, 

453 we observed accuracy estimates of at least 80 %, when the cultivars were evaluated in at least 

454 9 of the 13 environments (Figure 1).
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455 For Smith et al. [49], using accurate information for the behavior of the cultivars, 

456 allowed breeders to choose the best varieties, according to the needs of farmers, in order to 

457 maximize profitability and food security. One of the difficulties in assessing the behavior of a 

458 group of cultivars over MET was due to the fact that new genotypes were included in the trials 

459 over the years, in addition to the loss of information due to problems that occurred over the 

460 trials, resulting in genetic and statistical imbalances. In this context, Resende [16,50] states that 

461 the mixed model approach is a better alternative, for the analysis of such trials.

462 As noted, only 12 cultivars of superior performance were found in Fig 2-4, with eight 

463 carioca bean cultivars and four black bean cultivars, instead of 30 cultivars (10 per figure). This 

464 was because there were some cultivars that were widely adaptable and highly stable that were 

465 selected for more than one scenario, such as the IPR Campos Gerais and IPR Tuiuiú.

466 Cultivars with high phenotypic averages for high yield were identified, but they were 

467 not included in figures 2, 3, and 4, as those selected by the reaction norm models. This can be 

468 explained by the fact that the methodology when calculating the probability of each cultivar 

469 that was based on the cultivar-ideotype distance penalizes cultivars that showed great variation 

470 in their productivity during the trials, even if they presented high general averages. Thus, the 

471 reaction norm models can also quantify the stability of cultivars, defined as the variation across 

472 environments. Eeuwijk et al. and Van Oijen and Höglind [12,51] also reported this property of 

473 reaction norms. It is also worth mentioning that the use of the ideotype that was established 

474 from the data itself, had the advantage of comparing the genotypes with a real situation observed 

475 for that MET, since the ideotype is defined as the maximum value predicted in each trial.

476 The reaction norms, based on the mixed models, can also model the heterogeneity of 

477 the genetic variations and correlations between the environments, in addition to the spatial 

478 trends in the trials [22]. Furthermore, these models allow for more accurate estimations of the 
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479 genotypes in the trials, as well as better estimations of the genetic parameters, such as 

480 heritability, variances, covariances, and genetic correlations, while they become more difficult 

481 in models with only fixed effects [12].

482 VCU tests are the basis for the recommendation of a cultivar and it is required that they 

483 are carried out in various locations, seasons, and years of the macro-region where the cultivar 

484 is being recommended. Thus, the recommended cultivars are those with higher general averages 

485 across the environments, that is, wide adaptability. Cultivars with these behavior, beyond the 

486 interests of the breeders making the recommendations, are also of interest to the farmers, as 

487 beans are mostly cultivated by small farmers, who buy grains from other producers and regions 

488 to use as seed. Thus, there is often an overlap and lack of control as to what the planting season 

489 and region actually are for a cultivar, and its official recommendations [52].

490 It is expected that cultivars with maximum adaptability to unfavorable environments 

491 will be more desirable for these unstructured conditions. These environments can be described 

492 as having low levels of technological investment, which can be normal in small-scale 

493 agriculture [3]. In addition, adverse conditions caused by the climate, such as a lack or excess 

494 of rain and incidence of pests and diseases also contribute to the characterization of 

495 environments as unfavorable. Thus, it is desirable that cultivars that are recommended for 

496 unfavorable environments maintain a satisfactory standard of productivity, even in stressful 

497 situations, whether this is due to a lack or excess of any factor. However, in a situation of 

498 improvement of the environment, these cultivars will not be responsive to this increment of 

499 environmental quality. This illustrates the definition of adaptability as presented by Cruz et al. 

500 [3], as the differential response of cultivars due to a stimulus from the environment.

501 However, for the cultivars that are identified for favorable environments, we see the 

502 opposite behavior. It is expected that cultivars adapted to these locations would normally 
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503 respond satisfactorily to environmental improvements, reaching high levels of yield in order to 

504 return the investment made, since these environments have high technological use, such as 

505 irrigation and precision agriculture, and are commonly run by large scale practices. However, 

506 with inferior conditions, such as climatic adversity, they tend to have low production [3]. It was 

507 observed that the strains VP 22 and VP 33 showed superior performance in environments 

508 classified as favorable. The fact that the experiments conducted by the Programa Feijão - UFV, 

509 who are responsible for the selection of these strains and always utilize optimal cultivation 

510 conditions (fertilization, irrigation, and pest and disease control), may explain this.

511 The maintenance of productivity in different environments is explained by the response 

512 to the environmental stimulus, being caused by the differential expression of the genes present 

513 in each individual. In this way, the adaptability and stability indicated in the reaction norm 

514 curves of the cultivars, provides information regarding their capacity to express phenotypes that 

515 may better adjust to the environmental conditions [53]. In this sense, one way to improve the 

516 adaptability of cultivars to the different environments in which they will be cultivated, is to 

517 pyramid the genes of maximum expression in both the unfavorable and favorable environments. 

518 The superior cultivars in each studied scenario were developed in different breeding programs 

519 from four institutions (EMBRAPA, UFV, IAC, and IAPAR). This is indicative of the effort and 

520 success of these breeding programs, as well as the genetic diversity between them, since the 

521 breeding programs are independent, with their own parental lines. Possobom [54] demonstrated 

522 that cultivars originating from the same institution are usually more related, while cultivars 

523 from different institutions belong to different groups of dissimilarity. Thus, these outstanding 

524 cultivars also have the potential to be used in bean improvement programs.

525

526 Conclusion
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527

528 The reaction norm methodology to evaluate the adaptability and stability of cultivars 

529 appears to be an alternative in the evaluation of multi-environment trials, since it enables 

530 genetic and statistical imbalances to be addressed, as well an improved evaluation of cultivar 

531 behavior. 
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