
1 

RNA-GPS Predicts SARS-CoV-2 RNA Localization to Host Mitochondria and 
Nucleolus 

Kevin Wu1,2,3, James Zou1,2,*, Howard Y. Chang3,4,* 

1Department of Computer Science, Stanford University, Stanford, CA 94305, USA 
2Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305, USA 
3Center for Personal and Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA 
4Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA 
*Co-corresponding authors 

Abstract 
The SARS-CoV-2 coronavirus is driving a global pandemic, but its biological mechanisms 
are less well understood. SARS-CoV-2 is an RNA virus whose multiple genomic and sub-
genomic RNA (sgRNA) transcripts hijack the host cell's machinery, located across distinct 
cytotopic locations. Subcellular localization of its viral RNA could play important roles in 
viral replication and host antiviral immune response. Here we perform computational 
modeling of SARS-CoV-2 viral RNA localization across eight subcellular neighborhoods. 
We compare hundreds of SARS-CoV-2 genomes to the human transcriptome and other 
coronaviruses and perform systematic sub-sequence analyses to identify the responsible 
signals. Using state-of-the-art machine learning models, we predict that the SARS-CoV-2 
RNA genome and all sgRNAs are enriched in the host mitochondrial matrix and nucleolus. 
The 5’ and 3’ viral untranslated regions possess the strongest and most distinct 
localization signals. We discuss the mitochondrial localization signal in relation to the 
formation of double-membrane vesicles, a critical stage in the coronavirus life cycle. Our 
computational analysis serves as a hypothesis generation tool to suggest models for SARS-
CoV-2 biology and inform experimental efforts to combat the virus.  

Introduction 
COVID-19 (coronavirus disease 2019) has become a global pandemic, fueled by the rapid spread of the 
coronavirus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), a positive strand RNA virus 
(Sanche et al., 2020; Wu et al., 2020a). The scientific community is actively trying to understand SARS-
CoV-2’s biological mechanisms and effects. Here, we computationally analyze the subcellular localization 
patterns of SARS-CoV-2 RNA transcripts. Our results suggest potential avenues for experimental validation 
and follow-up, while providing a template for in silico analyses of viral biology. 

RNA subcellular localization is critical to a myriad of cellular processes (Buxbaum et al., 2015; Chin and 
Lécuyer, 2017; Ryder and Lerit, 2018). Researchers have also discovered that RNA localization plays a 
significant role in RNA viruses (Chou et al., 2013), with functions ranging from regulating sites of virion 
assembly (Becker and Sherer, 2017) to disrupting host mitochondrial function (Somasundaran et al., 
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1994). Thus, understanding the behavior and localization of SARS-CoV-2 RNA transcripts can lead to a 
better understanding of its function and pathogenicity, potentially revealing targetable mechanisms. 

We perform computational modelling for SARS-CoV-2 subcellular RNA localization. In particular, we build 
upon our recent work developing RNA-GPS, a state-of-the-art computational model predicting high-
resolution RNA localization in human cells (Wu et al., 2020b), trained on transcriptome-wide localization 
patterns of human RNAs across eight subcellular landmarks (Fazal et al., 2019). RNA-GPS’s strong 
performance, coupled with viruses’ dependence on hijacking existing cell machinery for reproduction, 
suggests that RNA-GPS could provide insights into SARS-CoV-2’s localization behavior and can focus future 
experimental efforts. 

We use RNA-GPS to interrogate the localization patterns of SARS-CoV-2’s genome, which spans 
approximately 30 kilobases of single-stranded positive-sense RNA (Kim et al., 2020) (Figure 1a). We predict 
that SARS-CoV-2 is enriched for localization in the nucleolus and the mitochondria. Comparison of SARS-
CoV-2’s predicted localization against that of other human coronaviruses, including strains causing the 
common cold, Middle East respiratory syndrome (MERS), and the SARS outbreak of 2003, shows that 
SARS-CoV-2 exhibits a stronger mitochondrial and nuclear localization signal than a large majority of its 
coronavirus relatives. We additionally find that this localization signal appears to be driven by many 
redundant motifs spread across the genome, suggesting its importance. We conclude by connecting our 
observations to known RNA and viral biology, proposing possible explanatory mechanisms for previously 
observed phenomena. Our analysis suggests experimental validation of our predictions and serves as a 
framework for applying data science for principled hypothesis generation, enabling targeted response to 
this and future outbreaks. 

Results 
We leverage our recent work developing RNA-GPS, a computational model predicting high-resolution RNA 
localization in human cells trained with HEK293T APEX-seq data (Wu et al., 2020b). Briefly, RNA-GPS 
predicts localization of RNA transcripts to eight different subcellular locations: the cytosol, endoplasmic 
reticulum, mitochondrial matrix, outer mitochondrial membrane, nucleus, nucleolus, nuclear lamina, and 
nuclear pore (Figure 1b), and has been shown to generalize well to additional cell lines including HeLa-S3 
and K562. Although RNA-GPS is trained on human, not viral, RNA transcripts, its strong test performance 
combined with the fact that viruses commandeer human cellular machinery suggest that it offers a 
reasonable hypothesis of viral transcript localization behavior given currently available data. 

We consider average localization predictions to each compartment across all released and annotated 
SARS-CoV-2 genomes available as of April 6, 2020 (n = 213) on GenBank (Coordinators, 2018). SARS-CoV-
2 is believed to enter the cell as a positive strand genomic RNA, subsequently forming 11 positive strand 
sub-genomic RNA (sgRNA) transcripts encoding different open reading frames and sharing the same 5’ 
leader sequence and 3’ untranslated region (UTR) (Figure 1a). Within each viral genome, we predict the 
localization of each sgRNA produced from the primary SARS-CoV-2 genome. To provide more context, we 
frame these predicted localization probabilities relative to the predictions of other relevant “baseline” 
transcript sequences. We consider two such baselines: the distribution of model predictions on transcripts 
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exhibiting significant enrichment within the human HEK293T cell line (n = 366 transcripts) (Fazal et al., 
2019), and the distribution of model predictions on transcripts derived from human coronaviruses, 
excluding SARS-CoV-2 (n = 191 genomes, spanning diseases from the common cold to MERS, 
Supplementary Figure 1a). The human baseline gives us an idea of how strong localization signals within 
SARS-CoV-2 are, relative to naturally occurring human transcripts with well-characterized localization 
behaviors. The coronavirus baseline focuses on differences in the localization behavior of SARS-CoV-2 
relative to similar viral specimens – differences that may help researchers focus on the particularities of 
this virus. For both baselines, we calculate the proportion of the baseline distribution that the SARS-CoV-
2 localization prediction exceeds, which we refer to as a rank score. For example, a localization score of 
0.6 for the nucleolus relative to human transcripts suggests that the particular viral RNA is more likely to 
localize to the nucleolus compared to 60% of the human RNAs that shows some localization to the 
nucleolus.  

SARS-CoV-2 RNA subcellular localization patterns 

We find that compared to transcripts with known localizations in human cells, SARS-CoV-2 has a notable 
localization signal towards the mitochondrial matrix, as well as the nucleolus (Figure 1c). We observe 
consistent localization predictions of different sgRNAs encoded by the virus (shown in each row, Figure 
1c). Interestingly, we do not see particularly strong transcript localization towards the ER membrane or 
the cytosol, compartments canonically known to harbor viral transcripts and proteins for replication and 
assembly. However, prior works have shown that some RNA viruses exhibit transcript localization to 
mitochondria (Somasundaran et al., 1994), and that the nucleolus plays a prominent role in the viral life 
cycle, even for viruses that primarily replicate in the cytoplasm as SARS-CoV-2 does (Salvetti and Greco, 
2014).  

In addition to framing our results with respect to endogenous human transcripts, we also compare 
predicted localization signals of SARS-CoV-2 sgRNAs to that of other human coronaviruses (Figure 1d). 
Here, we observe similar overall trends in our localization predictions. We see that the mitochondrial 
matrix localization signal previously described is recapitulated here, suggesting that not only does SARS-
CoV-2 have a mitochondrial matrix localization signature comparable to that of human transcripts also 
localizing to the mitochondrial matrix, but this signal is stronger than that of other coronaviruses. 
Additionally, we see an overall pattern suggesting that SARS-CoV-2 may have a greater affinity for nuclear 
localizations (nuclear pore, nucleus, nucleolus, and nuclear lamina) compared to other coronaviruses. 
Similar to our prior results, we also see that the ER membrane localization signals are weaker for SARS-
CoV-2, even compared to other human coronaviruses.  

We also evaluated how the viruses comprising the coronavirus baseline themselves localize, compared to 
human transcripts. We found that the most prominent localization signals for general human 
coronaviruses pointed towards the nucleolus, mitochondrial matrix, and ER membrane (Supplementary 
Figure 1b). Overall, our computational analysis suggests that SARS-CoV-2’s sgRNA transcript localization 
towards the mitochondrial matrix and nucleolus may be amplifications of localization behaviors that were 
already present in coronaviruses.  
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To validate the robustness of these localization trends, we also trained a different predictive algorithm (a 
recurrent neural network, see Methods section for additional details) on the APEX-seq data and 
performed a similar set of experiments, comparing SARS-CoV-2 localization predictions to human and 
coronavirus baselines. This alternative model also predicts strong mitochondrial matrix and nucleolus 
localization for SARS-CoV-2 (Supplementary Figure 2). Since this algorithm uses a very different modeling 
strategy as RNA-GPS and converges to similar findings, this suggests that the mitochondrial matrix and 
nucleolus signals are not artifacts of a particular model and increases our confidence in the findings. 

SARS-CoV-2 negative strand RNA also localizes to mitochondria and nucleolus 

During its replication life cycle, SARS-CoV-2 copies its positive strand RNA to create a negative strand RNA 
that serves as the template for viral “transcription” and production of sgRNAs (Wu and Brian, 2010). We 
applied RNA-GPS to the negative strand RNA and discovered that the negative strand RNA also exhibits 
localization signal to the mitochondrial matrix and nucleolus, albeit weaker than the positive strand 
sequence (Supplementary Figure 3). This result suggests that the sequence features driving these 
localization patterns are independently present in both positive and negative strand RNAs and can 
potentially drive viral double-stranded RNA accumulation at specific subcellular locales.  

SARS-CoV-2 5’ and 3’ UTRs contain strong localization signals 

In addition to predicting localization, our computational model can also help understand which regions of 
the transcript may be more responsible for driving these observed localizations. We specifically 
investigated the potential contribution of the three main regions of the SARS-CoV-2 genome: the shared 
5’ leader sequence, the shared 3’ UTR, and the variable “coding” sequence in the middle. We predicted 
the localization for each of these regions by itself (Figure 1e). The 5’ leader sequence shows the strongest 
localization signal to the mitochondrial matrix, and no signal for the nucleolus. In contrast, the 3’ UTR has 
the strongest localization for the nucleolus and also has strong signal for the mitochondrial matrix. The 
coding sequence (CDS) also shows specific signals for these two compartments. Because the 5’ and 3’ 
sequences are shared by the different SARS-CoV-2 sgRNAs, this is likely a strong factor behind the 
consistent localization patterns we find across the different sgRNAs. We performed further computational 
ablation studies of RNA binding protein (RBP) motifs in SARS-CoV-2 and found that the known motifs do 
not appear to be the primary drivers of the mitochondrial matrix and nucleolus localization patterns. 
Specifically, computational deletions of all instances of each RBP motif in SARS-CoV-2 sequence, repeated 
across all enriched RBPs, did not significantly alter the RNA-GPS predictions. This result suggests that the 
SARS-CoV-2 localization signal is highly redundant within the viral genome.  

Discussion 
In this work, we apply computational models of human RNA transcript localization to better understand 
the subcellular localization of the SARS-CoV-2 genome and its constituent sgRNAs. This approach builds 
upon the idea that viruses must use existing human cell machinery to reproduce, and consequently that 
sequence-based localization signals are likely shared between human and coronavirus transcripts. The 
strengths of this  approach include (1) the potential to understand viral RNA localization without the risk 
of live viral cultures; (2) the ability to examine hundreds of viral isolates and related coronaviruses and 
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thousands of RBP motif ablations; (3) the ability to examine viral genes, UTRs, and negative strands 
individually, which may otherwise require the ability to precisely synchronize and arrest the viral life cycle. 
We find that SARS-CoV-2 appears to harbor strong localization signals towards the mitochondrial matrix 
and nuclear compartments, comparable to human RNA and more so than other coronaviruses. This 
intriguing hypothesis suggests future experimental exploration and validation. 

These results might appear surprising, as one might expect localization signals to enrich towards regions 
like the endoplasmic reticulum, where viral translation, viral assembly, and disruption of normal cell 
activity are commonly known to occur (Fung and Liu, 2014; Minakshi et al., 2009; Nal et al., 2005). 
However, coronaviruses are known to produce complex double-membrane vesicle (DMV) structures 
during viral replication, which may serve functions like concealing the virus from cellular defenses 
(Hagemeijer et al., 2012; Knoops et al., 2008). While these DMVs are generally believed to be formed via 
viruses manipulating the ER membrane (Blanchard and Roingeard, 2015), the mechanism for importing 
and packaging proteins and RNA into these miniature organelles is not as clearly understood. One possible 
mechanism for importing viral RNA involves the virus exploiting endogenous RNA localization mechanisms 
that the cell already possesses for existing double-membrane organelles: namely, the mitochondria. 
Indeed, introducing just 2 amino acid point mutations in the murine coronavirus can cause both a 
significant drop in the number of DMV structures observed, as well as a sharp increase in viral protein 
localization at the mitochondria (Clementz et al., 2008). This suggests a high degree of resemblance 
between the DMV and mitochondrial localization mechanisms – leading to the hypothesis that our 
mitochondrial matrix localization predictions are capturing this similarity between the DMV and 
mitochondria. Furthermore, DMVs have been shown to contain double-stranded RNA (Hagemeijer et al., 
2012), and our strand-agnostic localization predictions are concordant with this evidence. Under this 
model, SARS-CoV-2’s strong mitochondrial localization signal relative to other coronaviruses may even 
contribute to its similarly high infectivity by increasing its efficacy in generating and importing materials 
into these DMV structures. 

Another possible interpretation of these localization results is that previously studied viral protein 
localizations are actually driven by transcript-level localizations, a mechanism that is highly prevalent for 
human proteins (Blower, 2013). Protein-protein interaction studies performed on SARS-CoV-2 have found 
that its NSP5 (within ORF1a), NSP13 (within ORF1b), ORF6, and ORF10 proteins interact with host proteins 
that predominantly localize to nuclear compartments (Gordon et al., 2020). The same study found viral 
interactions with Tomm70, a mitochondrial import receptor that plays a critical role in modulating 
interferon response – a critical anti-viral cellular defense pathway (Liu et al., 2010). In both cases, localized 
transcripts could be driving protein localization, enabling more focused protein-protein interactions. 

Additional protein localization patterns appear within SARS-CoV-2’s more thoroughly-studied relative, the 
SARS-CoV coronavirus, responsible for the 2003 SARS outbreak (Ksiazek et al., 2003). The nucleocapsid 
(N) protein has been shown to dynamically localize to the nucleolus (Cawood et al., 2007). The transcribed 
protein corresponding to ORF3 of SARS-CoV localizes to both the mitochondria (Yuan et al., 2006) and the 
nucleolus, causing cell cycle arrest and apoptosis (Yuan et al., 2005). Some even suggest a possible 
mechanism where translocation of this protein between the nucleus and mitochondria influences the 
cell’s interferon response (Freundt et al., 2009). It is plausible that this protein localization behavior is 
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conserved across both SARS-CoV and its contemporary SARS-CoV-2, especially given their relatively high 
sequence homology (Lu et al., 2020), and is likewise driven by underlying transcript localization. Indeed, 
these patterns can also be found much more broadly across viral species. For coronaviruses in general, N 
protein localization to the host nucleolus appears to be a fairly conserved functional attribute and may 
play a role in disrupting cell division and inhibition of cytokinesis (Rawlinson and Moseley, 2015; Wurm et 
al., 2001). Within the influenza A virus, nonstructural protein 1 localizes to the mitochondria (Tsai et al., 
2017). For many viruses that primarily replicate within cytoplasmic regions, multiple studies have found 
viral proteins that nonetheless localize to the nucleus to aid replication and disrupt host cell functionality 
(Hiscox, 2003; Weidman et al., 2003).  

One limitation of our work lies within its attempt to generalize models trained on human RNA transcript 
localization data, to transcripts derived from a different species. A model learned on HEK293T cells also 
may not be an appropriate model for cell types that are infected by SARS-CoV-2. Although the sharing of 
biological machinery between human cells and SARS-CoV-2 coupled with RNA-GPS’s strong performance 
on held-out test datasets leads us to believe that this approach is promising, viral infection also 
substantially remodels the cell’s internal  machinery, and the expression of viral RNA binding proteins (not 
accounted for in our model) can both introduce errors into our predictions. Thus, localization experiments 
are necessary to validate our computational analyses. Cross-referencing our results against existing 
literature is somewhat limited, as most studies have focused on the localization of viral proteins rather 
than viral transcripts. Furthermore, RNA localization is undoubtedly one of many pieces of complex, 
interconnected mechanisms that this coronavirus adopts, and our hypotheses presented here do not 
preclude (many) additional critical biological phenomena. 

In summary, we build upon recent computational models of RNA subcellular localization to study, in silico, 
the localization properties of SARS-CoV-2. Our results suggest that nuclear-mitochondrial transcript 
localization patterns may be an important, unique characteristic of SARS-CoV-2 that warrants additional 
study. We connect these observations to known viral biology regarding DMV structures in viral replication, 
as well as known protein localization patterns. In doing so, we propose potential cellular mechanisms that 
underpin viral biology – mechanisms that warrant experiments validating their accuracy, and perhaps 
even their potential as therapeutic targets. More broadly, we hope that our study helps define a 
framework for applying machine learning models to enable focused hypothesis generation, inspiring 
similar studies that leverage data science to rapidly respond to emerging epidemiological challenges. 

Code and data availability 
All data used to train RNA-GPS and auxiliary models is available through the Gene Expression Omnibus 
under accession GSE116008. All SARS-CoV-2 genomes analyzed are publicly available through the National 
Center for Biotechnology Information GenBank database. Code to query for these sequences and perform 
downstream analysis is available at https://github.com/wukevin/rnagps, specifically under the “covid19” 
directory. 
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Figures  

 

Figure 1: Depictions of the SARS-CoV-2 genome (a), the eight compartments that RNA-GPS predicts 
transcript localization to (b), and the predicted localizations for SARS-CoV-2 sgRNAs (c, d) and its 
individual 5’/CDS/3’ sequence segments (e). The SARS-CoV-2 genome produces a series of sub-genomic 
RNAs (sgRNAs), each encoding one or more genes/proteins (a). These sgRNAs share a common leader 5’ 
sequence and a common trailing 3’ UTR sequence (arrow blocks). For each sgRNA, RNA-GPS predicts 
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localization to each compartment shown in (b) (figure reproduced from (Wu et al., 2020b)), the results of 
which are shown in (c). This heatmap shows rank scores, indicating how strongly each sgRNA (rows) 
localizes to each compartment (columns), compared to a typical endogenous human transcript localizing 
to that compartment. Colors directly correlate with indicated rank scores. Most sgRNAs exhibit similar 
localization patterns, with a general enrichment towards the mitochondrial matrix and nucleolus. We also 
computed these rank scores against a baseline of other coronavirus localization signals in (d). SARS-CoV-
2 exhibits a stronger mitochondrial matrix localization signal than most other coronaviruses, along with 
greater overall nuclear localization, particularly at the nucleolus. Interestingly, localization to the ER 
membrane is not present as a particularly strong signal in either context. (e) Shows the predicted 
localization rank scores for shared 5’ and 3’ segments, and an averaged localization rank score for CDS 
segments. Even on their own, the short ~90-250 base pair 5’ and 3’ segments carry the mitochondrial and 
nucleolar localization signals. 
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Methods 

Obtaining viral genomes 

SARS-CoV-2 viral genomes were programmatically queried from the GenBank online database using the 
BioPython library’s Entrez module (Cock et al., 2009). Returned results were then filtered to retain only 
assemblies that included annotated, named sgRNA “genes.” In cases where the shared 5’ leader sequence 
or the 3’ tail were not explicitly annotated, their regions were inferred to be the 5’ and 3’ trailing bases 
outside of any coding regions, respectively. As there are many SARS-CoV-2 genome assemblies that fit 
these criteria, localization predictions are averaged across all genomes. 

Viral genomes constituting the coronavirus baseline follow an identical process, save for using a different 
query sequence with GenBank that specifically fetches matches to the six known coronaviruses known to 
infect humans (excluding SARS-CoV-2): 229E, NL63, OC43, HKU1, MERS-CoV (beta coronavirus that causes 
Middle East Respiratory Syndrome, or MERS), and SARS-CoV (the beta coronavirus that causes severe 
acute respiratory syndrome, or SARS) (Su et al., 2016). 

Sequence featurization and modelling 

RNA-GPS uses k-mer featurization with k = 3, 4, 5, applied independently to the 5’ untranslated region 
(UTR), coding sequence (CDS), and 3’ UTR parts of the transcript (Wu et al., 2020b). Extending this 
definition to the coronavirus sgRNA sequences, we consider the shared 5’ leader sequence the fixed 5’ 
UTR input to our model, shared 3’ UTR sequence the fixed 3’ UTR input to our model, and the variable 
sgRNA sequence the “CDS” input. For sake of consistency with sgRNA transcript mechanisms, this “CDS” 
sequence includes the current reading frame, along with any 3’ downstream bases until the shared 3’ UTR 
region begins. Each sgRNA is individually assigned predicted localizations. 

For the deep recurrent model, we implemented and trained a recurrent neural network that consumes 
raw bases as input, maps these to a 32-dimensional embedding layer, passes these through two 64-
dimensional gated recurrent units (GRU), and finally a fully-connected layer with sigmoid activation 
producing 8 localization predictions. This flavor of GRU network is popular in sequence modelling and uses 
“gating” mechanisms to enable improved learning of longer-range sequence dependencies (Chung et al., 
2014). The model was trained using the Adam optimizer (Kingma and Ba, 2014) with a batch size of 1, and 
early stopping based on validation set AUROC.  

Both RNA-GPS and the GRU model are trained and tuned on the same APEX-seq data, measuring 
localization within HEK293T cells (Fazal et al., 2019), using identical data splits of 80% train, 10% validation, 
and 10% train. Please see our RNA-GPS manuscript for additional information regarding dataset and 
modelling details (Wu et al., 2020b). 

Baseline construction and rank score 

Baseline distributions are constructed by running a set of baseline transcript sequences through a model 
predicting transcript localization. For both models (RNA-GPS and the auxiliary GRU model), there is a per-
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localization baseline derived from human APEX-seq measurements, and one derived from human 
coronaviruses excluding SARS-CoV-2. For each localization compartment within the human baseline, we 
consider only transcripts that exhibit significant localization to that compartment, as defined by having a 
logFC > 0 and adjusted p-value ≤ 0.05 when running differential expression analysis against the remainder 
of the cell. Additionally, we only use transcripts not used for model training/tuning (i.e. the test data split), 
as this most closely approximates what the model would predict when presented with novel sequences. 
For the coronavirus baseline, we do not have systematically measured localization data, so we do not filter 
as such. However, we make slight adjustments to the process of calculating the rank score (see below). 
Note that due to these differences, the values produced by these two baselines are not directly 
comparable.  

For these baselines, we define a rank score as the proportion of baseline values that a SARS-CoV-2 sgRNA 
localization prediction exceeds. A hypothetical value of 0.5 would correspond to a median, 0.25 would 
correspond to the first quartile, etc.; rank score is thus bound between 0 and 1. Note that this rank is 
calculated for each individual compartment separately, as the baselines themselves are compartment 
specific. For the coronavirus baseline, each SARS-CoV-2 sgRNA is also compared only to homologous 
sgRNAs from other coronaviruses. For example, the spike protein’s localization prediction is only 
compared against localization predictions of other coronavirus spike proteins. This limits our comparison 
to the set of genes with easily traceable homology across human coronaviruses, namely ORF1ab, spike 
(S), envelope (E), membrane (M), and nucleocapsid (N) (Woo et al., 2010). As previously discussed, 
localization predictions are averaged across all valid SARS-CoV-2 genomes prior to calculating rank scores. 

RNA binding protein PWM identification and ablation 

We use a database of 102 RNA binding protein binding motifs (Ray et al., 2013). To identify matches, we 
use the same methodology as was used in the RNA-GPS manuscript (Wu et al., 2020b). Briefly, we start 
with the position weight matrix (PWM) that describes the motif, adjust its probabilities to account for the 
background nucleotide composition of each sequence, define a cutoff score slightly lower than the 
maximum achievable log-likelihood for that PWM, and identify any subsequences that exceed that cutoff 
(see RNA-GPS manuscript for additional details). 

When ablating these PWMs, we use the same methodology for identifying hits, and subsequently replace 
all hits with “N” bases, re-featurizing the ablated sequence as necessary before feeding into the model, 
thus generating the ablated localization predictions. 

Plotting and additional metrics 

All plots were generated using a combination of seaborn and matplotlib Python packages (Hunter, 
2007). Statistical testing was done using functions available within the scipy Python package (Virtanen 
et al., 2020), and multiple hypothesis testing correction was done using the statsmodels Python 
package (Seabold and Perktold, 2010). 
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Supplementary Figures 

 

Supplementary Figure 1: Summary of the human coronavirus baseline. (a) shows the different viral 
strains comprising the human coronavirus baseline. (b) shows the localization patterns aggregated across 
all transcripts comprising the human coronavirus baseline. We see that coronaviruses in general primarily 
exhibit localization towards the nucleolus, mitochondrial matrix, and ER membrane – a pattern similar to 
that seen in SARS-CoV-2 (albeit less dramatic). 
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Supplementary Figure 2: Heatmaps of rank scores of SARS-CoV-2 localization predictions, relative to 
localized human transcripts (a) and other coronavirus genomes (b), according to a deep-learning 
recurrent model (GRU). This model takes a very different computational approach to predicting 
localization, and thus serves as an “orthogonal” validation of results covered in our primary figures. (a) 
Recapitulates that mitochondrial matrix and nucleolus are among the two most prominent localization 
signals for SARS-CoV-2. (b) Recapitulates that compared to other coronaviruses, SARS-CoV-2 generally 
exhibits a stronger nuclear localization signal.  
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Supplementary Figure 3: Localization of negative strand sgRNA precursors. Figure 1c shows that the 
positive strand sgRNA transcripts tend to exhibit localization towards the mitochondrial matrix and 
nucleolus. Here, we look at the negative-strand precursors to those sgRNAs and observe that these 
transcripts share similar mitochondrial matrix and nucleolus localization patterns. This is consistent with 
literature studying co-localization of coronavirus double-stranded RNA and suggests yet another layer of 
conservation of this localization signal.  
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