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Obtaining accurate mutational profiles from single cell DNA is essential for the analysis of genomic

cell-to-cell heterogeneity at the finest level of resolution. However, sequencing libraries suitable for

genotyping require whole genome amplification, which introduces allelic bias and copy errors. As a

result, single cell DNA sequencing data violates the assumptions of variant callers developed for bulk

sequencing, which when applied to single cells generate significant numbers of false positives and false

negatives. Only dedicated models accounting for amplification bias and errors will be able to provide

more accurate calls.

We present ProSolo, a probabilistic model for calling single nucleotide variants from multiple displacement

amplified single cell DNA sequencing data. It introduces a mechanistically motivated empirical model of

amplification bias that improves the quantification of genotyping uncertainty. To account for amplification

errors, it jointly models the single cell sample with a bulk sequencing sample from the same cell

population—also enabling a biologically relevant imputation of missing genotypes for the single cell.

Through these innovations, ProSolo achieves substantially higher performance in calling and genotyping

single nucleotide variants in single cells in comparison to all state-of-the-art tools. Moreover, ProSolo

implements the first approach to control the false discovery rate reliably and flexibly; not only for single

nucleotide variant calls, but also for artefacts of single cell methodology that one may wish to identify,

such as allele dropout.

ProSolo’s model is implemented into a flexible framework, encouraging extensions. The source code

and usage instructions are available at: https://github.com/prosolo/prosolo

1 Introduction

Originally, genome sequences have been queried for genetic germline variation or for highly abundant

somatic variation, for example in cancer. The advent of high-throughput single cell sequencing has

recently turned the spotlight on a type of so far understudied variation: the often less abundant somatic or

post-zygotic variation that constantly accumulates with every mitotic cell division throughout the lifetime

of an organism, turning every individual into a complicated genomic mosaic1. Estimates for somatic

single nucleotide variants (SNVs) range from around 0.6 · 10−9 up to 60 · 10−9 mutations per genome

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2020. ; https://doi.org/10.1101/2020.04.27.064071doi: bioRxiv preprint 

https://github.com/prosolo/prosolo
https://doi.org/10.1101/2020.04.27.064071
http://creativecommons.org/licenses/by/4.0/


position per cell division2–5, with a recent estimate6 based on single-cell sequencing at 2.66 ·10−9. With

the size of the human (reference) genome at approximately 3.2 ·109 base pairs, these numbers indicate

that even during healthy development, most cells harbour cell-specific point mutations. This enables

retrospective monitoring of lineages involved in normal organism development, merely by sampling some

cells7, without having to interfere with its general development, or kill the individual. In other words, this

establishes a universally applicable methodology for in vivo lineage tracing.

In cancer development, this variation can be used to trace the cellular ancestry of tumour subclones

and metastases8–11, and to characterise the evolutionary dynamics of cancer progression12, 13. In the long

run, methods that account for the dynamics of mutational signatures in cellular evolution will improve

diagnosis, treatment and prognosis of diseases for which somatic alterations are a key factor. To this end,

obtaining accurate profiles of the genetic variation affecting single cells is essential.

In sequencing libraries prepared directly from single cells, only a small fraction of the genome is

sampled. To obtain coverage levels that allow for the consistent identification of SNVs across larger

parts of the genome, in vitro whole genome amplification is crucial. Among whole genome amplification

methods, multiple displacement amplification (MDA14) has proven the least error-prone and is therefore

considered the state-of-the-art in single cell SNV profiling15–18. But, although the type of polymerase

used in MDA (Φ29) has the highest fidelity currently attainable (due to its proof-reading functionality),

amplification errors still occur at a rate of 1.24 ·10−6 to 9.5 ·10−6 per copied base15, 19–22—three orders

of magnitude higher than the estimates for the somatic mutation rate. Further, the efficiency and fidelity

of Φ29 polymerase depends on the template sequence context23, implying that the amplification error

rate systematically varies around this average. Moreover, the degree of amplification depends on the

quality of the template DNA extracted from the single cell24 and how accessible each stretch of DNA is to

amplification initiation via priming25. As a result, sequencing coverage after amplification differs both

between sites along the genome and between the two alleles at a particular site, up to the entire dropout of

alleles26. Because standard variant callers assume that alleles are uniformly covered, they do not perform

well on the resulting data and are substantially outperformed by single-cell variant callers27, 28. Clearly,

when calling SNVs for single cells, the statistical uncertainties introduced by the amplification need to be

dealt with at the largest possible accuracy.
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Thus, variant callers for whole-genome-amplified single-cell data need to account for both amplification

errors and allelic bias, in addition to accounting for the site-specific variation. However, state of the art

single cell SNV callers routinely assume fixed global rates when modeling uneven allelic coverage (up to

dropout) and amplification errors. For example, to reflect the amplification error rate, both MonoVar27

and SCcaller28 work with global false positive error rates for calling the presence of an alternative allele

at a particular site. This assumes that Φ29 polymerase is agnostic to local template sequence context,

although it is not23. Similarly, for modelling allele dropout, MonoVar27 and SCIPhI29 assume that one

rate applies globally (and across all cells). This neglects that allele dropout, as the extreme case of uneven

allele coverage, varies greatly along the genome and in particular also between cells, because their DNA is

amplified separately. Interestingly, SCIPhI29 additionally models allelic amplification bias to be governed

by one global beta-binomial distribution (to apply for all cells in a dataset), thereby accounting for allelic

dropout a second time (as the extreme values at 0 and 1 of that distribution). Improving on that point,

tools exist that account for local variation in allelic amplification bias. SCcaller28 and SCAN-SNV30 both

estimate the minor allele frequency from nearby germline heterozygous sites. However, SCcaller employs

a fixed global false positive error rate for the calling of alternative alleles28, and SCAN-SNV makes use

of heuristics for filtering candidate variants30. Thus, to the best of our knowledge, there is no statistical

model that allows for local variation of bias and errors due to amplification, and for statistically sound

false discovery control when calling and genotyping SNVs in single cells.

We describe ProSolo, a variant caller using a unifying statistical framework that takes into account all

relevant MDA related biases and errors, allowing for them to vary locally. Importantly, our model further

enables a computationally efficient implementation, which is challenging even in bulk variant calling when

considering local effects due to statistical uncertainties affecting the data31. ProSolo’s statistical rigor

allows for an accurate control of the false discovery rate when calling alternative alleles or identifying

other relevant effects, such as allele dropout.
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2 Results

2.1 Single Cell Sequencing Model

We describe a novel probabilistic model that addresses the genotyping of diploid single cells whose DNA

has been subject to whole genome multiple displacement amplification (MDA)14. In the following, we

introduce the central innovations of our model and demonstrate its advantages in comparison to existing

approaches. More details and a detailed derivation of all model elements can be found in the Supplement,

including a summary of the core model.

Our model addresses the two major issues of MDA: (i) the differential amplification of the two alleles

present in a diploid cell (”amplification bias” in the following); (ii) MDA induced errors (”amplification

errors” in the following) which are copy errors introduced by the Φ29 polymerase used in MDA. To address

amplification bias, we leverage a mechanistically motivated, empirically derived model of differential

amplification of alleles. To assess amplification errors, we evaluate single cell samples together with a bulk

sample from which the single cell is supposed to stem. Regarding the latter, we argue that a bulk sample

should be added to single cell sequencing experiments wherever possible: it samples from the same cell

population without requiring amplification, and is therefore unaffected by amplification bias and errors

and thus makes a particularly useful background sample to address the statistical uncertainties and biases

induced by MDA. At the same time, one of the major features of the core model and its implementation is

that it can easily be adapted to flexibly deal with other sampling setups, so it could be extended to further

scenarios. For related work on flexible bulk sequencing sample composition, see Köster et al.31.

A mechanistically motivated model of amplification bias, trained on data, gives realistic cover-

age-specific single-cell (genotype) likelihoods. To account for MDA amplification bias up to the

complete dropout of individual alleles, we distinguish between two alternative allele frequencies: (i) The

theoretical underlying allele frequency at a site in a single cell: θs. This can be assigned one of three

possible values, namely θs ∈ {0,0.5,1}, where 0 and 1 represent the homozygous reference and alternative

genotype and 0.5 a heterozygous genotype. However, the ratio of reads harboring the different alleles

from a single cell sequencing experiment does not reflect the true allele frequency, because of the biases

induced by amplification. Instead, the ratio of reads reflects (ii) the allele frequency after its distortion
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Figure 1. A,B Exemplary alternative allele read count distributions for sites covered by 20 reads, as
derived by Lodato et al.22 Homozygous reference sites in (A) are assumed to follow a beta-binomial
distribution; sites heterozygous for the alternative allele in (B) are assumed to follow the linear
combination of two symmetrical beta-binomial distributions (dotted and dashed lines). (C) Toy example
of calling the same genomic site in two single cells from the same population that differ in their true
underlying allele frequencies for alternative allele C (blue, θs = 0 vs. θs = 0.5). Alternative nucleotide T
(orange) is an amplification error. Empirical distributions in A and B account for the amplification bias,
and likelihoods for the alternative allele candidates from the bulk reduce the likelihoods of amplification
errors, thereby correctly identifying both the error and the original true mutation. This is formalised with
the model in D. (D) Definition of single cell events based on true underlying alternative allele frequencies
in the single cell (θs) and the bulk (θb) (assuming that the bulk sample has a deep coverage that captures
somatic variants). The bulk is always assumed to be a combination of a maximum of two genotypes at a
particular site, generating all possible θb (bottom panel).
ADO – allele dropout, alt – alternative, err – error, het – heterozygous, hom – homozygous, ref – reference.
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through amplification bias. For a site with total coverage of l reads, of which k reads bear the alternative

allele, the formal definition of this measurable frequency is ρs =
k
l . To accurately quantify the uncertainty

introduced by amplification bias, we consider

P(ρs | θs) for θs ∈ {0,0.5,1}, (1)

the probability distributions that reflect the shift from the true allele frequency θs to the distorted

allele frequency ρs, as induced by MDA (Figure 1C). We thus formally describe the statistics of read

counts skewed by MDA at all sites, encompassing sites that are homozygous for the reference allele,

heterozygous, or homozygous for the alternative allele.

To do this, we follow the considerations of Lodato et al.22 (see Figure S5 and the section “Modeling

MDA-derived alternative read counts” of the respective supplement for the details), who fitted well-studied

probability distributions to empirical distributions they obtained for P(ρs | θs) of θs ∈ {0,0.5}. For sites

that are homozygous for the reference allele, amplification bias cannot initially happen. However, once

an amplification error creates an alternative allele, this can be amplified to large frequencies due to

amplification bias. Lodato et al.22 thus consider the empirical distribution P(ρs | θs = 0) to follow a beta-

binomial. Effectively, this means that the probability of a non-zero alternative read count (ρs > 0, which is

any alternative read count above 0 in Figure 1A) will be non-zero (P(ρs | θs = 0)> 0), merely because

of sequencing and amplification errors. In contrast, at heterozygous sites (Figure 1B), the distribution is

dominated by amplification bias. Thus, for P(ρs | θs = 0.5) they found a mixture of two beta-binomial

distributions to appropriately fit the empirically observed distributions (Figure 1B). We further motivate

the choice of the beta-binomial distribution mechanistically by an analogy to its generative urn model

named after Pólya32: Take an urn with two white and two black balls, where each ball represents one

strand of each (double-stranded) allele at a heterozygous site. In the Pólya urn model, drawing a ball

leads to replacement of that ball with two balls of the same color, analogous to a strand copy by the

Φ29 polymerase (additional discussion in the Supplement, Section S 1.2.1). Finally, the necessity for a

mixture of beta-binomials (Figure 1B) becomes evident when contrasting it with the binomial distribution
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observed at heterozygous sites in bulk experiments. Namely, the bulk distribution for reads supporting the

alternative allele would narrowly peak at a count of k = l
2 , which is not the case for the corresponding

k = 10 in Figure 1B. Instead, the mixture of beta-binomials peaks at the extreme read counts of k = 0

and k = l, highlighting that the dropout of the alternative or reference allele is quite likely to occur.

Most likely, this mixture arises from differences in the accessibility of different pieces of the genomic

DNA for amplification25 (Supplement, Section S 1.2.1). Finally, for homozygous alternative sites (i.e.

P(ρs | θs = 1)), we rely on the symmetry of the cases θs = 0 and θs = 1. In summary, we obtain the

following equations for P(ρs | θs):

P(ρs =
k
l
| θs = 0) = BB( k, l; α(l), β (l) ),

P(ρs =
k
l
| θs =

1
2
) = w(l)×BB( k, l; α1(l), α1(l) ) +

( 1−w(l) )×BB( k, l; α2(l), α2(l) ),

P(ρs =
k
l
| θs = 1) = BB( k, l; β (l), α(l) ).

(2)

Here, BB represents the beta-binomial probability mass function where k ∈ {0, ..., l} with l being the

total read coverage of the site that is considered. All of parameters α,α1,α2, β , and w scale linearly in

l. Allowing to vary distributions through these parameters allows amplification bias to depend on the

total coverage of a site, and thereby to vary locally. Symmetry of distributions for the homozygous sites

(θs = 0 in Figure 1A, and θs = 1) is established by swapping the shape parameters α(l) and β (l). The

distribution for heterozygous sites (Figure 1B) corresponds to a mixture of two beta-binomials with shape

parameters α1(l) = β2(l) and α2(l) = β2(l), where equality of α(l) and β (l) yields symmetry of the

distributions relative to k = l
2 (the expected value for alternative read counts at heterozygous sites). Slopes

and intersects for the scaling of all parameter values across different choices of l are given in Table S 1.

Using bulk evidence of alternative alleles to increase the accuracy of variant calls. A bulk se-

quencing sample of the same cell type from the same organism is a much larger sampling of that cell

population than the sequencing of dozens of single cells. Unless a single cell is the only one to harbour a

particular mutation, a deep enough sequencing of the bulk sample from which the single cell was drawn
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should contain reads from cells that share the particular mutation with the single cell. Thus, considering

bulk samples corresponds to drawing unbiased samples of the entire population (of genome copies),

in contrast to single cells that correspond to heavily distorted measurements on pairs of copies. This

establishes a formal, statistical argument to why one should consider bulk experiments in single cell

sequencing whenever possible and why the identification of a mutation in an accompanying bulk sample

lends further credibility to the mutation in the single cell in a data-driven way, without assuming any fixed

error rate (Figure 1C). As a consequence, bulk samples can be employed to improve both the sensitivity

and specificity of variant calls in the single cell, where increasing depth of coverage of the bulk sample

increases the accuracy of the calls.

For our model, we derive likelihoods for all possible alternative allele frequencies in the background

bulk sample. Given a set of n reads from the bulk (b) read data Zb = {Zb
1,Z

b
2, . . . ,Z

b
n}, and discrete possible

allele frequencies m
n (m ∈ 0,1, . . . ,n), we compute the probability of the data given a particular allele

frequency as the product of the probabilities of all the reads:

L
(

θb =
m
n
| Zb
)

∝ P
(

Zb | θb =
m
n

)
=

n

∏
j=1

P
(

Zb
j | θb =

m
n

)
(3)

Here, the probability of an individual read, given a particular allele frequency, P(Zb
j | θb = m

n ), is

defined as in Equation S 21, based on the model described in Köster et al.31.

Calculating posterior probabilities for events at single cell sites, including a bulk background

sample. With single cell genotype likelihoods adjusted by our empirical amplification bias model

(Equation 2) and auxiliary evidence on alternative alleles from a bulk sample (Equation 3), we define

mutually exclusive single cell events. Figure 1C gives a simplified illustration of how the combination

of likelihoods works for calling genotypes in the single cell. However, our model fully defines the

two-dimensional space of possible underlying alternative allele frequencies in the two samples as:

E = {0, 1
2
,1}θs× [0,1]θb. (4)
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Within this space, we define single cell events as mutually exclusive subspaces, for example an error-

free homozygous alternative site is defined by allele frequencies Ehom alt = {1}θs× (1
2 ,1]θb or the dropout

of an alternative allele across allele frequencies EADO to ref = {0}θs× [1
2 ,1)θb (Figure 1D, Table S 2). We

thus obtain a set of mutually exclusive single cell events (Figure 1D):

E= {Ehom ref,Eerr alt,EADO to alt,Ehet,EADO to ref,Eerr ref,Ehom alt} (5)

Assuming a flat prior across the possible underlying allele frequencies for both the bulk and the single

cell, we can compute likelihoods for all those single cell events (e.g. Equation S 28). The sum of the

likelihoods of all these (mutually exclusive) events yields the marginal probability (Equation S 26). Using

the marginal probability, we can calculate the posterior probability for any of these events. For example,

the posterior probability of event Ehom alt (Figure 1D) can be calculated with:

P(Ehom alt | Zs,Zb) =
1

∑Ee∈EP(Zs,Zb | Ee)
×P(Zs,Zb | Ehom alt)

=
1

∑Ee∈EP(Zs,Zb | Ee)
×P(Zs | θs = 1)×P(Zb | θb ∈ (

1
2
,1])

(6)

Accounting for the sample likelihoods based on Equation S 23 (assuming ρb = θb for the bulk that has

no amplification step, Equation S 3), and evaluating only point estimates of these likelihoods at possible

alternative allele frequencies, this gives:

P(Ehom alt | Zs,Zb) =
1

∑Ee∈EP(Zs,Zb | Ee)
×

l

∑
k=0

{
P(Zs | ρs =

k
l
)×P(ρs =

k
l
| θs = 1)

}
×

n

∑
m= n

2

P(Zb | θb =
m
n
)

(7)

Accounting for amplification bias with Equation 2 and computing the likelihood of the sample-specific
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allele frequency ranges with Equations S 22 and 3, this becomes:

P(Ehom alt | Zs,Zb) =
1

∑Ee∈EP(Zs,Zb | Ee)
×

l

∑
k=0

{
l

∏
i=1

P(Zs
i | ρs =

k
l
)×BB( k, l; β (l), α(l) )

}
×

n

∑
m= n

2

l

∏
j=1

P
(

Zb
j | θb =

m
n

) (8)

With read probabilities calculated with Equation S 21, we can calculate the posterior probability of the

Ehom alt event (for an analogous and more detailed derivation for EADO to ref, see Supplement, Section S 1.4).

To obtain posterior probabilities for compound events, we sum up the posterior probabilities of the events

it comprises, effectively joining up their respective allele frequency range combinations into compound

range combinations. For the site-specific single cell probability for the presence of an alternative allele in

the single cell, we thus get the compound event (blue events in Figure 1D; Table S 2):

Ealt presences
= EADO to ref ∪ Eerr ref ∪ Ehet ∪ EADO to alt ∪ Ehom alt

= {0}θs× [
1
2
,1)θb ∪ {0,

1
2
}θs× [1]θb ∪ {

1
2
}θs× (0,1)θb ∪

{1}θs× (0,
1
2
]θb ∪ {1}θs× (

1
2
,1]θb

= {0}θs× [
1
2
,1]θb ∪ {

1
2
,1}θs× (0,1]θb

(9)

whose posterior probability we can obtain from this sum:

P(alt presences | Zs,Zb) = P(EADO to ref | Zs,Zb) + P(Eerr ref | Zs,Zb) +

P(Ehet | Zs,Zb) + P(EADO to alt | Zs,Zb) + P(Ehom alt | Zs,Zb)

(10)

To genotype, we calculate the posterior probability of all three possible single-cell genotypes and

choose the genotype with the maximum posterior probability. In Figure 1D, events are colored purple
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when implying the homozygous reference genotype, light blue when implying the heterozygous genotype

and dark blue when implying the homozygous alternative genotype (Table S 2). Similarly, to calculate the

posterior probability of an allele dropout at a particular site, we sum up the posterior probabilities of the

two ADO events.

For any such compound event, we can estimate a threshold on the posterior probabilities that controls

for a specified false discovery rate. This is based on the approach described by Müller et al.33, 34—for

further details see the Supplement (Section S 1.6) and Köster et al31.

Biologically relevant imputation based on the bulk sample. As argued above, a large enough sam-

pling of the bulk cell population that the single cell comes from should contain the single cell’s genotype

at a particular site, unless this cell is genuinely the first cell to harbour a mutation at that site. This bulk

background sample can thereby render credibility to single cell variants with low coverage, while at the

same time eliminating amplification errors in the single cell sample, as these will not exist in the bulk

sample. Interestingly, the bulk sample also provides a mechanism of biologically meaningful imputation at

sites that have no read coverage in the single cell. If imputation is desired for sites with no read coverage

in the single cell, we set P(Zs | θs = 0) = P(Zs | θs =
1
2) = P(Zs | θs = 1) = 1, rendering all (unknown

underlying) single cell genotypes equally likely. Thus, the posterior probabilities of events at sites with

no read coverage become solely dependent on the read data from the bulk sample, providing the most

common genotype in the bulk. However, while this is a biologically meaningful way of imputation at

the vast majority of genomic sites, it should be noted that this imputation will usually favor germline

genotypes over any existing (lower frequency) somatic genotypes at a site.

ProSolo is an easy-to-use command-line tool, based on a modular framework. ProSolo is an

easy-to-use command-line tool—following usability standards35—and its source code is available at

https://github.com/prosolo/prosolo, including instructions for an easy installation via

Bioconda36. Its main contribution in terms of software is the implementation of its comprehensive

statistical model into the Rust variant calling library of Varlociraptor31. See the Supplement (Section S 1.6)

for further implementation details.
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Figure 2. Benchmark Datasets. For single cells, DNA was multiple displacement amplified (MDA). A
Whole genome sequencing (WGS) dataset, generated from a clonal population started with an individual
cell28, and expanded further downstream to generate different bulk samples (C1, C2, C3, IL-1C). B Newly
generated whole exome sequencing (WXS) dataset of blood cells. Ground truth genotypes of patient CCS1
were determined from sequencing data of family members (boxes male; circles female). Granulocytes
were isolated from blood using magnetic and fluorescence activated cell sorting (MACS and FACS).

2.2 Benchmarking

We compare ProSolo to the state-of-the-art for SNV calling from single cell sequencing data of multiple

displacement amplified (MDA) DNA: MonoVar27, SCAN-SNV30, SCcaller28 and SCIPhI29. We used

Snakemake37 (version 5.4.0) to implement the benchmarking workflows. For detailed information on

benchmarking setup and results, see Supplementary Section S 2. All code used for benchmarking is

available at: https://github.com/prosolo/benchmarking_prosolo (or as preserved by

Zenodo at: https://doi.org/10.5281/zenodo.3769116).

2.2.1 Datasets and Ground Truths

We benchmarked ProSolo on two experimental datasets (Figure 2), each with a different kind of ground

truth:

Whole genome sequencing of almost identical kin-cells from a cell line28. The first dataset comes

from the publication of the SCcaller software28 (Figure 2A, dataset available from project PRJNA305211,

accessions SRR2976561 to SRR2976566). A single starting cell was grown in two steps (Figure 1 of
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the original paper28): After an initial mini-expansion, a single cell was selected as the founder for the

secondary IL expansion into 20-30 cells. From this, two cells were extracted (IL-11 and IL-12) and

sequenced following MDA. The remaining kindred cells from that clone were used as a bulk sequencing

sample without amplification (IL-1C). IL-1C serves as the ground truth, as these cells are only very few

cell divisions away from IL-11 and IL-12, and thus have almost no difference in the somatic mutations

acquired. The ground truth genotype was generated using GATK HaplotypeCaller to call variant sites and

bcftools mpileup to identify homozygous reference sites (with read coverage above 25 but no alternative

allele present). IL-1C was only used as a ground truth and not provided as input to any of the software

compared here. Three more distant clones (C1, C2, C3), generated from cells after the first mini-expansion,

were merged into a further bulk sample for SCcaller and ProSolo (see Software and Parameters below).

Unlike other callers (all of which finished in less than 5 days), SCIPhI took five weeks to finish on this

dataset in sensitive mode and 7.5 weeks in default mode.

Whole exome sequencing of five human granulocytes with a pedigree ground truth. For the

second benchmarking dataset, blood was taken from a patient with a constitutional mismatch repair-

deficiency38 after informed consent. Granulocytes were selected via Magnetic-Activated Cell Sorting

(MACS) and Fluorescence Activated Cell Sorting (FACS, Figure 2B, dataset available as EGAD00001005929

in EGA study EGAS00001004123). Individual cells were isolated using a microfluidics device and sub-

jected to multiple displacement amplification (MDA). Using a panel of 16 primer pairs covering different

genes across chromosomes for quantitative real-time PCR, we selected granulocytes where at least 15

of these loci were properly amplified. For those cells, we performed whole exome capture, sequencing

library preparation and paired-end Illumina sequencing. From the remaining sorted cell population, we

also extracted bulk DNA and submitted it to whole exome capture and paired-end Illumina sequencing

without MDA, to generate a bulk background sample for ProSolo and SCcaller.

To generate the ground truth of this dataset, we could leverage previously sequenced bulk whole

exome data from the same person, their parents and three siblings38 (Figure 2B). To create ground truth

germline alternative allele calls, we ran three pedigree-aware variant callers (BEAGLE4.039, polymutt40
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Figure 3. Precision-recall plots for alternative allele calls of ProSolo, MonoVar, SCAN-SNV, SCcaller
and SCIPhI. Note that both panels are strong zoom-ins, focusing on (different) areas of interest. Global
views of these panels are provided in Figure S 5. A Precision and recall average of two whole genome
sequenced single cells IL-11 and IL-12 against their kindred clone IL-1C as ground truth genotypes. B
Precision and recall average of the five whole exome sequenced single granulocytes against their
pedigree-based germline genotype ground truth.
Threshold parameters: MonoVar --t; ProSolo --fdr; SCAN-SNV --fdr; SCcaller -a cutoff;
SCIPhI none available. Software modes: MonoVar with consensus filtering (default) or without (no
consensus); ProSolo with minimum coverage 1 in single cell (default), or imputing zero coverage sites
based on bulk sample (imputation); SCcaller with recommended settings (default) or with a more sensitive
calling; SCIPhI with default parameters (default) or all heuristics off (sensitive).

and FamSeq41, 42) and created a consensus by including only calls where all callers agree at a site and

where a maximum of one caller not calling the site was allowed (Figure S 4).

2.2.2 ProSolo achieves highest alternative allele calling accuracy

The most precise single cell variant callers to date, SCcaller and SCIPhI, only call the presence vs. the

absence of an alternative allele (i.e. the heterozygous and the homozygous alternative genotypes called

jointly, the joint probability of the blue event areas in Figure 1D). We thus focused on this for the main

benchmarking.

The whole genome cell line dataset (Figure 2A) seems much less challenging than the other dataset,

as all methods achieved very high precision in alternative allele calling (Figures 3A and S 5A), at recall
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rates of 45% and higher. In comparison to all other tools, ProSolo shows striking increases in recall.

For example, an increase of nearly 10% for a precision above 99%, where its maximum recall is 76.6%,

compared to 70.5% for MonoVar, 68.7% for SCIPhI and 61.0% for SCcaller. The only exception with a

recall of 0.01% is SCAN-SNV (at a precision of 99.2%). This can be explained by it aiming at somatic

mutations, while the vast majority of SNVs in a genome will be germline variants.

Although a relative increase in recall of about 10% at utmost precision is certainly remarkable, ProSolo

demonstrates its power on the second (whole exome) dataset (Figure 2B). For this dataset, only SCcaller,

SCIPhI and ProSolo achieved a precision above 99%, with ProSolo reaching a 20% increase of recall

to 17.6%, compared to SCIPhI’s 14.6%, and SCcaller with 7.2% (Figures 3B and S 5B). In comparison,

MonoVar achieved a maximum precision of only 96.29%. However, this was at a much higher recall

(14.13%) than for example SCcaller (9.55% at a precision of 97.23%). SCcaller’s decreased recall on

this dataset might be due to its estimation of local allelic bias by also taking biases at neighboring sites

into account—in whole exome data the number of neighboring sites available for this estimation will be

limited and might lead to less reliable estimates.

On this dataset, SCAN-SNV’s recall increased to 0.16% at a decreased maximum precision of 89.7%.

Most likely, this decreased precision is an artefact of using the germline genotype as ground truth. At the

sites with somatic mutations in single cells, which SCAN-SNV focuses on, this ground truth will instead

contain the homozygous reference germline genotype and will incorrectly classify (existing) alternative

alleles as false positives. Due to this effect, we also expect the calculated precision of all the other tools to

be an underestimate. However, as the other tools also provide alternative allele calls for all sites where the

single cells retained this germline genotype, the relative effect on their precision will be smaller.

At the same time, this germline ground truth caveat also indicates that the recall of SCIPhI’s sensitive

mode and ProSolo’s imputation mode will be an overestimate. Whenever coverage of a site is missing in a

single cell, SCIPhI may impute the genotype with the last common ancestor genotype of the most closely

related cells, while ProSolo will impute to the majority genotype in the bulk sample. Both strategies

provide a biologically meaningful imputation that will be more useful than post-hoc modes of imputation.

However, at single cell sites where a somatic mutation has created a true alternative allele, but no coverage

is provided, we expect that both methods are most likely to call the homozygous reference germline
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genotype. In then comparing this to the germline genotype as the ground truth, these calls will be classified

as true negatives even though they really constitute false negatives, thus artificially increasing recall. While

the underestimation of precision equally affects all tools and generally means that benchmarking results

are more conservative than with a more accurate (somatic) ground truth, this overestimation of recall in

only these modes of two tools does not allow for a fair comparison. We have thus excluded both SCIPhI’s

sensitive mode and ProSolo’s imputation mode from the discussion of the whole exome dataset with its

germline ground truth (but their results are nevertheless displayed in Figures 3B, S 5B, S 6B and S 7B for

reference).

Finally, a feature where ProSolo clearly stands out is the control over the false discovery rate. As

can be seen in Figure 3 (and Figure S 5), ProSolo provides flexible control over precision vs. recall via

specifying a false discovery rate of interest. While no other tool provides a formal control over the easily

interpretable false discovery rate, several of the tools provide other types of thresholds that we varied in

attempts to achieve higher precision or recall. However, none of them provide control over similar ranges

of precision and recall. The only limit to that range with ProSolo’s current model, is that it becomes less

accurate when controlling for very small false discovery rates (below 0.01% for alternative allele calling

in the whole genome dataset, see Supplement Section S 2.4). But this still leaves ProSolo as the only tool

that provides the user with the choice of either aiming for more discoveries at the cost of a higher rate of

false discoveries, or at aiming for a more limited number of discoveries with higher confidence in each of

them.

2.2.3 Estimates of allele dropout rate validate ProSolo’s model

Leveraging our ground truths and using three different ways to calculate the allele dropout rate, we can

confirm the general validity of our single-cell event definitions and also explore limitations of the current

model. For the allele dropout rate, we will focus on the set of sites where the respective ground truth

call is heterozygous, as these are the sites where the dropout of one of the alleles can be identified in a

non-ambiguous manner.

More details for the three ways in which we calculate allele dropout rates are given in the Supplement

(Section S 2.5). Here, we give a short explanation:
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Figure 4. Concordance of three differently calculated per-cell (IL-1 and PAG cells) allele dropout rates
across ground truth heterozygous sites, in the context of allele dropout rates from the
literature21, 22, 26, 43–47. The expected value of the allele dropout events in ProSolo (dark gray) is
concordant with the number of false homozygous genotype calls made by ProSolo on those sites (black)
and both values are well within the range of published allele dropout rates for single cell MDA sequencing
data (”published”, to the right, very light gray). The naive allele dropout rate (light gray)—calculated as
ground truth heterozygous sites with a minimum coverage of seven and either no read with the reference
allele or no read with the alternative allele—shows discrepancies with ProSolo’s estimates of allele
dropout for samples with a more uniform coverage (IL-11, PAG1, PAG10, Figure S 3).
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1. At each ground truth heterozygous site, we sum the posterior probabilities of the two allele dropout

events defined in ProSolo (”ADO to alt” and ”ADO to ref” in Figure 1D) to obtain a total allele dropout

probability (Equation S 31) and use these to compute the expected value of allele dropout across all

sites. This gives us an expected allele dropout rate (”expected value” in Figure 4, Equation S 34). 2. We

genotype all the ground truth heterozygous sites with ProSolo, take the most likely genotype and then

compare against the ground truth: heterozygous sites that ProSolo calls as homozygous are counted as

dropout sites. The number of such sites is divided by the total number of ground truth heterozygous sites

where the respective single cell had coverage (”hom at ground truth het” in Figure 4, Equation S 35). 3. We

identify all heterozygous ground truth sites with a coverage of at least 7, where without amplification bias

we could be reasonably sure to sample both alleles (for the reasoning see Supplement, Section S 2.5). We

then count a site as an allele dropout if there is one allele (reference or alternative) with no read coverage

at all, and again divide by the total number of ground truth heterozygous sites where the respective single

cell had coverage (”no alt/ref read at ground truth het” in Figure 4, Equation S 36).

The expected allele dropout rates based on the ProSolo probabilities for allele dropout clearly fall into

the range of previously published allele dropout rates21, 22, 26, 43–47 (”published” in Figure 4). This analysis

also clearly shows that the ProSolo expected allele dropout rates, based on the model’s probabilities,

correspond to those determined by comparing ProSolo genotypes with the ground truth (Figure 4). This

demonstrates that the explicit modelling of allele dropout events works and is useful for genotyping.

However, in that comparison, the expected allele dropout rate was consistently underestimated on our own

whole exome data (”granulocytes”, Figure 4), and slightly overestimated for the data from Dong et al.28

(”Dong 2017”, Figure 4). The comparison to a naively calculated allele dropout rate consistently shows an

overestimation of the allele dropout probability, which is strongest for the samples with a higher overall

coverage (IL-11, PAG1, PAG10, Figures 4 and S 3). However, this overestimation of the allele dropout

probability does not seem to impact the genotyping resolution (Figures S 8 and S 9).

3 Discussion

ProSolo is the first method for SNV calling from MDA single cell sequencing data to comprehensively

model both amplification bias and amplification errors in a way that allows for site-specific variation
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(Figure 1). We achieve this by combining a data-driven model of amplification errors that incorporates a

bulk background sample alongside the single cell sample with an empirical model of amplification bias,

based on a statistical understanding of the MDA process that is mechanistically motivated and dependent

upon a site’s coverage. The underlying model calculates posterior probabilities for fine-grained single

cell event definitions, whose false discovery rate can be controlled for and that can pass more information

about data uncertainties to probabilistic models in downstream analyses. Using a whole genome and a

whole exome dataset—each with a different type of ground truth (Figure 2)—we demonstrate that these

two innovations of ProSolo combined to achieve better accuracy (Figure 3). Moreover, the model allows

to accurately control the false discovery rate of variant calls, another novelty of great practical value, and

both the model and its modular implementation are easy to adapt and extend.

Especially the joint modeling of a single cell and a bulk sample is favorable from a statistical point of

view: in terms of MDA induced bias, the bulk acts as an unbiased sample of the population from which

the single cell was drawn. This provides a drastically more sensitive approach compared to, for example,

the consensus rule of calling alternative alleles only when there is evidence in at least two (or even three)

single cells (as implemented in MonoVar27). A more systematic and biologically relevant model of sharing

information is implemented in SCIPhI, where the phylogenetic relationship of cells is part of the estimated

parameters. Intuitively, if two cells are closely related, they have a higher likelihood of sharing a genotype

at a particular site. However, both the consensus rule and the sharing of information via an inferred

phylogeny requires that more than one single cell exhibit sufficient coverage of an alternative allele to

call it reliably. This will rarely be achieved in single cell MDA experiments, which are often limited to

a few dozen cells. In contrast, bulk sequencing can easily be scaled to a much larger sampling of a cell

population—representing hundreds or thousands of cells of a cell population—simply by adding a single

higher coverage sample. Our benchmarking demonstrated that ProSolo achieves a substantially higher

recall than any other tool for a precision above 99% in identifying the presence of an alternative allele.

To summarize our benchmarking of alternative allele calling: SCcaller seems optimized for precision,

MonoVar achieved higher recall than SCcaller, and SCAN-SNV does not seem suitable for general variant

calling on MDA single cell sequencing data, but is only applicable when restricting interest to somatic

variants. ProSolo clearly achieves the best accuracy, with particularly striking increases in recall. The
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only other tool that shows consistent performance across both datasets, but with a recall 10 to 20% below

ProSolo, is SCIPhI. However, SCIPhI takes several weeks on a single core without any possibility of

parallelization, compared to a runtime of only a few days on a cluster for all the other tools.

Jointly calling single cell variants with a bulk background sample also enables a biologically relevant

imputation of genotypes at sites where single cells lack coverage. If genotype profiles without missing

values are for example required by downstream tools, ProSolo can provide a cell-population-specific

imputation instead of resorting to a majority assignment (limited by the number of single cells sequenced)

or even imputation based on external databases (e.g. dbsnp). As our results further demonstrate, ProSolo’s

empirical model of amplification bias is robust also for whole exome sequencing data. In contrast,

SCcaller—that estimates local amplification bias based on minor allele frequencies at known germline

genotypes in the vicinity of an examined site—suffers from a scarcity of neighbouring sites in whole

exome data.

Finally, ProSolo is the only method that provides a clearly interpretable false discovery rate parameter

that can actually control the trade-off between precision and recall. This can be used on alternative allele

calls (Figure 3, Supplement Section S 2.4), the main focus of our benchmarking, but also on any of the

events pertinent to single cell analysis (such as allele dropout or amplification errors) or combinations

thereof (see Figure 1D for all events). Thereby, beyond just calling alternative allele presence in a

statistically reliable way, ProSolo can, for example, also compute the expected allele dropout rate across

the entire genome of a particular cell in a robust manner (Equation S 31, Figure 4).

In addition to such global rates, ProSolo determines reliable site-specific posterior probabilities

for all single cell events that might be of interest, including allele-resolved genotypes, allele dropout

or amplification errors. We anticipate that such fine-grained probabilities—and the uncertainties they

capture—will be informative for improving probabilistic modelling in downstream analyses. They could

e.g. prove useful in models for phylogenetic reconstruction of the lineage relationship of sequenced single

cells29, 48, 49, while keeping them computationally tractable13.

An in-depth look at one of the above-mentioned fine-grained events, allele dropout, showed that

ProSolo’s allele dropout rate estimates were within the range of published estimates. This confirms

that our modeling of allele dropout events is realistic and can be useful in alternative allele calling and
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genotyping. However, the allele dropout rate estimations were slightly off in different directions for

the different benchmarking datasets, suggesting that the empirical distributions we currently make use

of (based on Lodato et al.22) may not suit all datasets. For example, whole genome amplification may

introduce further variability so far not captured by our model. This conclusion is further supported by the

naively calculated allele dropout rate, which is much lower in the high coverage cells of the two datasets

(IL-11 for the Dong et al. data28, PAG1 and PAG10 in our granulocytes; see Figure S 3). Interestingly,

the sample IL-11 from Dong et al.28 has been suggested to be a doublet30, which might explain the

higher overall coverage and points to a possible source for the discrepancy between the naively calculated

and the estimated allele dropout rates. If samples PAG1 and PAG10 were doublets as well, this would

indicate that our use of empirical distributions in ProSolo provides for more robust event probabilities

in the presence of doublets, while heuristic thresholding (as in our naive allele dropout estimate) is very

sensitive to such perturbations. In general, the use of a fixed empirical model for MDA allelic bias does

not seem to impede ProSolo’s performance in alternative allele calling compared to the other tools, but

has a noticeable effect on genotyping (Supplement, Section S 2.6) and might be responsible for slight

imprecisions when controlling for very small false discovery rates (Supplement Section S 2.4). When

future datasets are generated based on improved MDA protocols13, these effects might be exacerbated.

We therefore consider it important future work to improve on the fitting of the empirical read count

distributions observed when applying MDA to single cells (Supplement, Section S 1.2.2). For example,

the parameters of the mechanistically motivated combination of beta-binomial distributions for modelling

heterozygous genotypes could be learned per single cell sample at germline heterozygous sites—similar

to the approaches of SCcaller and SCAN-SNV, but globally per cell with their local variation modelled by

their dependence on a site’s coverage. Further room for improvement also remains for the modeling of the

homozygous genotypes: while the current distributions account for both amplification and sequencing

errors, sequencing errors are already safely accounted for elsewhere in our latent variable model. An

amplification error profile that is not compounded with sequencing errors, would need to be based on

the Φ29 polymerase error rate and a better understanding of the statistical distribution that these errors

generate (Supplement, Section S 1.2.2). Studying and implementing the corresponding changes in the

future has the potential to further improve the accurate site-specific event probabilities that ProSolo already
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provides through the joint modelling with a bulk background sample.

Finally, the modular implementation of ProSolo within the context of the Varlociraptor library31 facili-

tates the implementation of further features, such as the ones mentioned above, read-backed phasing50, 51

or even more variable models of amplification bias30 that could be integrated to exhaustively leverage

MDA data information content. Since the Varlociraptor library also provides advanced functionality for

the calling of insertions, deletions and multiple nucleotide variants (MNVs), one of the immediately

following next steps will be to adapt ProSolo to calling those in single cells.

Overall, ProSolo provides an accurate and easy-to-use variant caller for single cell MDA sequencing

data, which will empower more research using single cell sequencing data.
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