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Abstract  
Large-scale omics experiments have become standard in biological studies, leading to a deluge 

of data. However, researchers still face the challenge of connecting changes in the omics data 

to changes in cell functions, due to the complex interdependencies between genes, proteins and 

metabolites. Here we present a novel framework that begins to overcome this problem by 

allowing users to infer how metabolic functions change, based on omics data. To enable this, 

we curated and standardized lists of metabolic tasks that mammalian cells can accomplish. We 

then used genome-scale metabolic networks to define gene modules responsible for each 

specific metabolic task. We further developed a framework to overlay omics data on these 

modules to predict pathway usage for each metabolic task. The proposed approach allows one 

to directly predict how changes in omics experiments change cell or tissue function. We further 

demonstrated how this new approach can be used to leverage the metabolic functions of 

biological entities from the single cell to their organization in tissues and organs using multiple 

transcriptomic datasets (human and mouse). Finally, we created a web-based CellFie module 

that has been integrated into the list of tools available in GenePattern (www.genepattern.org) 

to enable adoption of the approach. 

 

Introduction  
High-throughput omics technologies allow researchers to comprehensively monitor cells and 

tissues at the molecular level, and record subtle molecular changes that may contribute to the 

acquisition of a specific phenotype. However, the complex interdependencies between the gene, 

protein, and metabolite components limit our capacity to identify the molecular basis of specific 

phenotypic changes. Therefore, it remains challenging to extract tangible biological meaning 

from omics data. 

 

Many approaches exist to systematically interpret gene expression changes, ranging from 

simple enrichment analyses to detailed mechanistic systems biology modeling. Several user-

friendly approaches have been developed that allow any researcher to test for enrichment in 

groups of genes, e.g., pathways, biological processes, or ontology terms1, 2. Such approaches 

are invaluable for identifying groups of genes that are more frequently differentially expressed, 

but the methods are limited in their capacity to describe how the differential changes impact 

cellular metabolic functions. To interpret the impact on function, mathematical models of 

pathways can be used. For example, genome-scale metabolic network reconstructions are 

knowledgebases of all metabolic pathways in an organism3-5. These networks directly link 

genotype to phenotype, since they mathematically describe the mechanisms by which all cell 

parts (e.g., membranes, proteins, etc.) are concurrently made. Thus, approaches have emerged 

to analyze omics data in the context of these models6, 7, yielding a wealth of detailed insights 

into the mechanisms underlying complex biological processes8. However, these approaches are 

not widely used since they are quite complex, requiring months of analysis by experts with 

years of specialized training.   

 

Here, we propose an alternative approach for the interpretation of omics data (e.g., differentially 

expressed genes) that captures the simplicity of enrichment analyses, while providing 
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mechanistic insights into how differential expression impacts specific cellular functions, based 

on pre-computed model simulations. To this end, genome-scale metabolic networks were 

decomposed into many smaller metabolic tasks9, 10. We curated and standardized these tasks, 

resulting in a collection of hundreds of tasks covering 7 major metabolic activities of a cell 

(energy generation, nucleotide, carbohydrate, amino acid, lipid, vitamin & cofactor and glycan 

metabolism). We further developed a framework to directly predict the activity of these 

metabolic functions from transcriptomic data. To this end, we used genome-scale models of 

mammalian metabolism to define gene modules responsible for the activation of pathways 

required for each specific metabolic task. Through this platform, users can overlay their data 

and comprehensively quantify the propensity of a cell line or tissue to be responsible for a 

metabolic function. Finally, we demonstrate the capacity of this approach to leverage metabolic 

functions of human cells and tissues using transcriptomic data from the Human Protein Atlas11 

and show how the identification of metabolic tasks can be used to understand the organization 

of these biological entities into broader functional organ systems. Furthermore, using data from 

the Single-Cell Atlas of Adult Mouse Brain12, we show cell type specificity of several metabolic 

functions. Finally, we highlight the potential applications of this method to drive the discovery 

of new drug targets by identifying the main metabolic dysregulations associated with Alzheimer 

disease using single-cell transcriptomic data from the ROSMAP project13 (Religious Orders 

Study and Memory Aging Project). 
 

Results 

A framework to quantify a cell’s metabolic functions  

Cells deploy diverse molecular functions to interface with their microenvironment, and adapt 

these as needed to cope with environmental changes. In metabolism, small modules of reactions 

can be defined as metabolic tasks (i.e., the generation of specific product metabolites given a 

defined set of substrate metabolites). The library of metabolic tasks a cell can sustain is 

encrypted in its genome and the capacity to modulate the activity of these tasks enable the cell’s 

adaptation to changing environment.  

 

This concept of “metabolic tasks” has been previously used to evaluate the quality and 

capabilities of genome-scale metabolic models9-11, 14-18. However, these studies used various 

frameworks to define the cell’s capacity to sustain a metabolic task. Furthermore, the library of 

metabolic tasks used differed across studies in content and form. Thus, we first manually 

collated, curated and standardized existing metabolic task lists9, 10, resulting in a documented 

collection of 195 tasks covering 7 major metabolic activities of a cell (energy generation, 

nucleotide, carbohydrates, amino acid, lipid, vitamin & cofactor and glycan metabolism) 

(Figure 1, Supplementary Table 1). We further unified the formalism of the metabolic tasks and 

the associated computational framework for their use in the modelling context (details are 

presented in our earlier study19). 

 

Here, we extend this concept beyond model benchmarking by developing a platform that 

quantifies a cell’s metabolic functions directly from transcriptomic data. To do this, genome-

scale metabolic models are used to identify the list of reactions required to accomplish each 

metabolic task and, doing so, to identify the list of genes that may contribute to the acquisition 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 28, 2020. ; https://doi.org/10.1101/2020.04.26.057943doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.26.057943
http://creativecommons.org/licenses/by-nd/4.0/


4 
 

of this metabolic function based on GPR rules (i.e., Gene Protein Reaction rules). The proposed 

computation of the metabolic score (i.e., relative activity of a metabolic task) relies first on the 

preprocessing of the available transcriptomic data and the attribution of a gene activity score 

for each gene20. We further select the genes responsible for the activation of each reaction 

required for a task using the GPR rules and average their activity to compute the metabolic task 

score (see Methods section for more details). Doing so, transcriptomic data can be directly used 

to quantify the relative activity of each metabolic function in a specific condition. Importantly, 

since gene lists are precomputed, no modeling background is required for the user. 

 
Figure 1 – Genome scale metabolic models can be used to infer the activity of a defined list of metabolic functions.  (A) 

Metabolic tasks are a modeling concept that we extend here to infer metabolic functions from transcriptomic data. (B) We 

curated and reconciled a collection of 195 tasks, derived in large part from earlier modeling studies (i.e., Recon 2 and iHsa). 

(C) The list of curated tasks covers seven main metabolic systems. 

 

 

Metabolic tasks can leverage metabolic functions of human tissues 

Each organ, tissue, and cell type in the human body carries out a distinct set of specific functions. 

The functions of each cell type are integrated to achieve the functions of each tissue, organ and 

organ system. Since there is no central database comprehensively describing the unique 

metabolic functions of different tissues, we used transcriptomic data from the Human Protein 

Atlas11 to quantify the metabolic functions of 32 tissues by using Recon 2.221 as reference 

genome-scale model (Figure 2A, Supplementary Tables 2-3). We observed that >40% of the 

tasks are shared by all tissues (i.e., 79 tasks, Figure 2B), and within organ systems, even more 

tasks were shared (Figure 2C, Supplementary Table 4). To assess the significance to this 

common set of tasks, we collected a list of known housekeeping genes22-25. This list included 

411 metabolic genes from Recon 2.2 (24.5% of all metabolic genes in Recon 2.2). Interestingly, 

we found that 97.5% of tasks shared by all the tissues are associated with at least one 

housekeeping gene. This included 277 housekeeping genes covered by metabolic tasks, which 

represent 67.4 % of all the Recon 2.2 housekeeping genes. 
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Figure 2 – Metabolic tasks capture functional similarities between human tissues. (A) The proportion of tasks identified 

as active in the 7 major metabolic activities for each of the 32 tissues present in the Human Protein Atlas (Uhlen et al., 2015). 

(B) The percentage of active tasks that are shared by all tissues and (C) those shared within the same organ-systems 

(Supplementary Table 4). The background shaded color distribution represents the assignment of the 195 curated tasks to seven 

main metabolic systems. 

 

Metabolic tasks better capture within-tissue similarities than enrichment 

analysis 

We further analyzed the similarities of metabolic tasks of tissues within the same organ systems. 

Specifically, we compared the similarities of tissues belonging to three different organ systems 

(i.e., female reproductive, gastrointestinal tract and lymphatic system) using either pathway 

enrichment analysis or the metabolic tasks (Supplementary Table 5, see Methods for more 

details). We found that the metabolic task approach significantly improves the grouping of 

tissues by organ system (Figure 3 A-B, Supplementary Figure 1). 

 

The gastrointestinal system presents the lowest grouping significance for both approaches. 

Moreover, two tissues (i.e., esophagus and salivary gland) seem to be group outliers when the 

tissue similarity is assessed using the metabolic approach. Interestingly, these two tissues are 

histologically substantially different from the rest of the gastrointestinal system. Specifically, 

they are the only tissues without columnar epithelium. The salivary gland is the only tissue in 

this group having cuboidal cells in its epithelium, while the esophagus contains squamous 

epithelium (Figure 3C). The metabolic task approach better captures the histological distance 

between tissues belonging to the gastrointestinal system than enrichment analysis (Figure 3D-
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E). 

 

 

 
Figure 3 – Metabolic tasks better capture the histological similarities of tissues (A&B) Visual representation of the 

similarity between tissues computed based on (A) enrichment analysis and (B) the metabolic task approach using a principal 

coordinates analysis. Metabolic tasks cluster tissues into organ systems better than enriched pathways, as compared to the mean 

Euclidean distance for 100000 randomly selected groups with the same number of tissues (figure insets). The vertical lines are 

the mean Euclidean distance between tissues belonging to the same organ system and their empirical p-value (see Methods for 

more details). (C) Heatmap and hierarchical clustering of histological similarities between tissues of the gastrointestinal group. 

(D&E) Hierarchical clustering of similarities between tissues of the gastrointestinal group computed based on functional 

pathway enrichment (D) and the metabolic task approach (E) 

 

Metabolic task analysis captures tissue and cell specific functions 

Some metabolic functions only occur in specific organs, tissues or cells. For example, taurine 

is the major constituent of bile secreted by the liver, and its biosynthesis also occurs in the 

kidney and brain26. Furthermore, taurine has been shown to play an important role in 

maintaining normal reproductive functions of mammals27, 28. Metabolic task analysis shows 

taurine synthesis in those known tissues and reproductive tissues (Figure 4A). Similarly, 

metabolic task analysis predicts that starch degradation occurs in the digestive tissues, 

consistent with the reported localization29. Thus, the analysis can capture tissue-specific 

metabolism.  

 

Serotonin biosynthesis is similarly accurately predicted to be synthesized in the gastro-
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intestinal tract. However, the method does not predict its known synthesis by the brain30. This 

can be expected as serotonergic neurons are localized to the raphe nuclei, whereas the bulk 

brain transcriptomic data in the HPA RNA-Seq were sampled from cerebral cortex11. Thus, we 

used the metabolic task approach on single-cell RNA-Seq data of the adult mouse brain12 

(Supplementary Tables 6- 7), and found that serotonergic neurons can be successfully identified 

(Figure 4B). 

 

 
Figure 4 – Metabolic specificities of tissues and brain cells. (A) Metabolic task scores associated with the synthesis of taurine 

and serotonin and the degradation of starch. Note, the figure only presents the 16 tissues where these tasks have been predicted. 

(B) Score associated with the synthesis of serotonin for 12 different brain cell types. 

 

Metabolic task analysis captures the differences between brain cell types 

The human brain is a metabolically demanding organ consisting of diverse cell types, each one 

with unique metabolic capabilities. While some metabolic interchanges between brain cell 
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types are well-known (e.g., glutamate-glutamine shuttle between neurons and astrocytes), it 

remains many open questions concerning the specific contribution of each cell-type in brain 

function. In this context, we used single cell RNA-Seq data from adult mouse brain12 to assess 

the main metabolic features that differentiate astrocytes, neurons and oligodendrocytes (Figure 

5A, see Methods for more details). The metabolic task approach clearly differentiates the three 

cell-types and details their metabolic specialization (Figure 5B-C). Our analysis confirms 

previously known specific metabolic features such the evidence that astrocytes fuel the 

glutamate-glutamine shuttle31 (Figure 5B) and that oligodendrocytes are likely the primary 

source of creatine in the brain32 (Figure 5C). Interestingly, there has been a debate as to if 

oligodendrocytes serve as sources of glutamine synthesis33 in the glutamate-glutamine shuttle. 

Our analysis of single cell RNA-Seq clearly supports the hypothesis (Figure 5B, Supplementary 

Figure 3D). 

 

To analyze the capacity of this method to be used to resolve open questions, we also created a 

new set of tasks specific to neurotransmitters synthesis (Supplementary Table 8). We compared 

the expression of these tasks with respect to the type of gene markers used to differentiate the 

single cells. We can observe that each set of gene markers used to identify the different clusters 

of neurons in the single-cell atlas of adult mouse brain12 are associated with specific 

neurotransmitter patterns. Specifically, the Slc17 gene family is associated with the non-

expression of GABA neurotransmitter presumably corresponding to glutamatergic neurons. 

Contrarily, all the neurons identified using Gad family genes markers are associated with a high 

GABA synthesis presumably corresponding to GABAergic neurons12. Interestingly, tyrosine 

hydroxylase (Th) is often used as a marker of dopaminergic neurons34. We can observe that the 

neurons identified with this gene are the only ones presenting the synthesis of dopamine.  
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Figure 5 – Metabolic differences between astrocytes, neurons and oligodendrocytes. (A) Schematic representation of 

spatial connection between astrocytes, neurons and oligodendrocytes. (B) PCA component scores for the 3 different cell types 

(astrocytes, neurons, oligodendrocytes) and the 5 dominant tasks in the second principal component. (C) PCA component 

scores for only 2 cell types (astrocytes, oligodendrocytes) and the 5 dominant tasks in the second principal component. (D) 

Heatmap of metabolic tasks score mean values associated with the synthesis of main neurotransmitters in the context of the 

gene markers for different neuron types. 

 

Metabolic task analysis highlights the main metabolic 

dysregulations in Alzheimer’s disease 
 

Alzheimer’s disease is a neurodegenerative disorder affecting millions of people, but to date 

we lack a true cure. Despite decades of research into the disease, many questions remain 

regarding the molecular basis of its progression. However, increasing evidence suggests 

metabolic dysfunction may contribute to nervous system degeneration35-37. Whether metabolic 

alterations are the cause or the consequence of the pathogenesis remains unclear, but it stands 

to reason that metabolic pathways may themselves contain potential targets for future 

therapies38. In this context, we used single-cell RNA-Seq data from the ROSMAP project13 to 

elucidate the main metabolic dysregulations associated with Alzheimer’s disease. To this end, 

we clustered the excitatory neuron samples and identified the tasks that were active in more 

than 50% of the dataset. Only three metabolic tasks correspond to this criterion: the conversion 

of phosphatidyl-1D-myo-inositol to 1D-myo-inositol 1-phosphate, the synthesis of 

tetrahydrofolate and the synthesis of “Tn_antigen” (i.e., Glycoprotein N-acetyl-D-

galactosamine). We further used them to divide the samples into 8 metabolic clusters depending 

on the combination of their activity in each sample (Figure 6A-B, see Methods for more details). 
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For each metabolic cluster, we tested their associations with pathological traits using a one-

tailed Fisher test (Figure 6C) and observed that specific metabolic clusters were enriched in 

samples associated with either Alzheimer’s pathology (clusters M3 and M4) or no pathology 

(cluster M6). Interestingly, we were able to group the 48 patients from the dataset depending 

on their disease prognostic with 75% accuracy by sorting them with respect to the proportion 

of their samples in M3 and M4 (Figure 6D). Note that we applied the clustering approach and 

subsequent trait enrichment analysis to the 6 major cell types identified in the original study 

presenting this dataset39 and we did not find such strong correlation for the other brain cell types 

(Supplementary Table 9).  

 

To better understand, the metabolic functions differentiating the 8 clusters, we computed the 

median of the combined metabolic task score (i.e., score in its binary version multiplied with 

the continuous one) and observed that only 13 tasks presented a median score different than 

zero in a metabolic cluster. We further used these identified tasks to investigate their expression 

patterns (i.e., percentage of patient samples associated with an active task and related median 

score) across the groups of patients presenting or not a positive diagnosis for Alzheimer’s 

disease. Very distinctive median score distribution depending on the Alzheimer’s diagnosis are 

observed for 4 tasks previously highlighted in the literature as being implicated in the 

Alzheimer’s disease (Figure 6E-G): the synthesis of Tn antigen40, 41 (glycoprotein N-acetyl-

galactosamine), the synthesis of tetrahydrofolate42 and the salvage of IMP and GMP43. While 

the other metabolic tasks identified do not present distinctive patterns at the level of the median 

score distribution, we can observe that healthy subjects often present a higher percentage of 

samples for which these tasks are active (Supplementary Figure 5). The results imply that an 

overall deficiency of these metabolic activities is observed in Alzheimer’s disease patients. 

Interestingly, some of these dysregulated metabolic tasks have been observed in previous 

studies, such as the pyridoxal phosphate synthesis44, the presence of the thioredoxin synthesis45, 

the fructose degradation46 and the conversion of myo-inositol47, while the others have not been 

specifically investigated. In this context, the metabolic dysregulations identified with our 

approach might be of interest to drive the discovery of new potential drug targets. 
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Figure 6 – Metabolic subpopulations of excitatory neurons and their link with Alzheimer’s disease. (A) The single-cell 

transcriptomic dataset was clustered into 8 metabolic subpopulations with distinct patterns of activity for 3 metabolic tasks. 

(B) Percentage of the representation of each metabolic cluster within the dataset. (C) Enrichment analysis (one-tailed Fisher’s 

exact test) within each metabolic cluster of clinic-pathological variables39. (D) Percentage of samples of each metabolic cluster 

from each patient and their associated Alzheimer’s diagnosis. (E-G) Expression patterns of the metabolic tasks (left - 

percentage of patient samples associated with an active task and right - related median score) presenting a dysregulated activity 

across groups of patients with different diagnosis for Alzheimer’s disease (blue – patient without Alzheimer and red – patients 

with Alzheimer). The horizontal lines represent the median of the distribution. 

 

Discussion 
Here, we present an approach to predict the activity of hundreds of metabolic functions from 

transcriptomic data. This framework enables the comprehensive quantification of the 
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propensity of a cell line or tissue to express a metabolic function, thereby facilitating phenotype-

relevant interpretation of these complex data types. We used multiple omics datasets to 

highlight the power of our approach to quantify metabolic functions from organ systems to 

single cells and demonstrated its advantages compared to functional enrichment analysis 

approaches that are widely used to connect measured gene expression changes to phenotypes1, 

2.  

 

Enrichment analyses provide invaluable insights but they have a limited capacity to describe 

how the changes in gene expression impact pathway functions. Indeed, enrichment approaches 

only take in gene categories based on known associations but usually do not leverage the 

biological mechanisms. This can be exemplified in that a group of genes might be in the same 

pathway gene set without contributing, to the same extent, to the metabolic pathway’s specific 

function. Thus, while enrichment analyses provide the molecular context to facilitate 

interpretation, it remains challenging to mechanistically link changes in the enriched pathways 

to the regulation of the biological processes and their implications in a specific disease. 

 

Our framework helps address these limitations by analyzing gene expression with a network-

based approach and therefore accounts for gene dependencies in pathway functions. This 

approach integrates omics datasets into pathways from computational models to quantitatively 

describe the genotype-phenotype relationship. The analysis of gene expression data with 

genome-scale systems biology models is well established and can provide deep mechanistic 

insights into the metabolic capabilities of a cell and/or a tissue. Indeed, Uhlen et al.11 used a 

network-based approach and the concept of metabolic tasks to construct tissue-specific 

metabolic networks. The approach enforced the activity of tissue-specific metabolic tasks into 

each model to capture cellular functionalities known to occur in all cell types. Doing so, they 

also found metabolic housekeeping functions shared across all tissues and showed similarities 

between metabolic activities across tissues in the same organ systems. Unfortunately, the 

construction and analysis of such computational models is a complex and difficult task 

requiring expert knowledge of the tissues and modeling framework19, 20, 48. To overcome this 

problem, our framework successfully combines the capacity to provide mechanistic insights of 

network based approaches and the simplicity of enrichment analyses. To further facilitate 

adoption of the approach, we created a web-based CellFie module that has been integrated into 

the list of tools available in GenePattern49 (www.genepattern.org, see Methods for more details). 

 

Our tasks cover hundreds of mammalian metabolic functions, but can be easily extended to 

diverse organisms and more cellular functions captured in systems biology models of 

metabolism, transcription, translation, signaling, etc. For example, genome-scale metabolic 

networks exist for hundreds of organisms. A community standard for metabolic tasks will 

facilitate efforts to build an extensive resource of metabolic and cellular functions. Furthermore, 

while the inclusion of other biological processes (e.g., transcription, translation) may require 

different types of models50, 51, our approach only requires gene information and therefore can 

easily be formulated into our framework. Finally, future work will investigate contributions 

from different isoenzymes within each metabolic task, since different cells and tissues can 

present the same metabolic reactions, but using different isoenzymes with different activities11. 
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This variation in enzyme usage may underlie adaptations of metabolism to biological 

perturbation such as a disease.  

 

In conclusion, this framework provides a new analysis approach combining the best of existing 

methodologies (i.e., network- and knowledge- based functional analysis). This might, one day, 

enable the complete deconstruction of the molecular basis of any biological system based on a 

simple omics data analysis.  

 

 

Methods 

 

Gene expression data and models 

RNA-Seq data for the 32 human tissues were downloaded from the Human Protein Atlas11.   

The brain single-cell transcriptomic datasets come from Cell Atlas of Adult Mouse Brain12 and 

the ROSMAP project13 (Religious Orders Study and Memory Aging Project). The ROSMAP 

data can be requested at www.radc.rush.edu. The models used to assess the metabolic task is 

iMM141552 for the single cells from adult mouse brain and Recon2.221 for human tissues and 

the human brain cell types of Alzheimer patients.  

 

Preprocessing of gene expression data  

We processed the gene expression data to attribute a gene activity score for each gene and 

define which genes are active in each cell or tissue. A gene is defined as active in a sample if 

its expression value is above a threshold defined for this gene within the dataset considered. 

The threshold of a gene is defined by the mean value of its expression over all the samples 

coming from the same dataset with exceptions that the threshold need to be higher or equal the 

25th percentile of the overall gene expression value distribution and lower or equal to the 75th 

percentile. The gene score is computed as follow: 

𝐺𝑒𝑛𝑒 𝑆𝑐𝑜𝑟𝑒 = 5 ∙ log (1 +
𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
) 

 

These gene scores are mapped to the models by parsing the GPR rules associated with each 

reaction. The gene score for each reaction is selected by taking the minimum expression value 

amongst all the genes associated to an enzyme complex (AND rule) and the maximum 

expression value amongst all the genes associated to an isozyme (OR rule)53. Note that we have 

recently benchmarked the influence of preprocessing methods on the definition of the set of 

active genes and observed that this parameter combination presented the best performance20.  

 

 

Curation of metabolic tasks 

The curation was done by first taking the union of previously published lists of metabolic tasks9, 

10. We removed duplicated tasks and lumped tasks that rely on the description of similar 

metabolic functions. Each remaining task without strong biological evidence was removed. We 

also created 9 new tasks that were essential for the acquisition of already described metabolic 
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functions (i.e., intermediate biosynthetic steps for the acquisition of other tasks). Doing so, we 

obtained a collection of 195 tasks associated with 7 systems (energy, nucleotide, carbohydrates, 

amino acid, lipid, vitamin & cofactor and glycan metabolism). For each task, we provided its 

original source (Recon and/or iHsa) and comments on the biological evidence of this metabolic 

function (Supplementary Table 1). 

 

Inference of metabolic tasks from transcriptomic data 

We developed a computational framework for attributing a score to each metabolic task in order 

to extend the application of the concept beyond the model benchmarking scope. If a task 

successfully passes in a model, one can compute the list of reactions associated with the task 

and, doing so, access to the list of genes that may contribute to the acquisition of this metabolic 

function based on the GPR rules. To this end, we used the parsimonious Flux Balance Analysis 

(pFBA) algorithm to define the set of reactions and associated genes required to pass a task 

within a specified model54. Thanks to the availability of this information, metabolic functions 

can now be directly assessed from transcriptomic data. The proposed computation of a 

metabolic score relies first on the preprocessing of the available transcriptomic data and the 

attribution of a gene activity score for each gene (see associated Methods section). We further 

used the GPR rules associated with each reaction required for a task to decide which gene will 

be the main determinant of the enzyme abundance associated with this reaction and attribute 

the corresponding gene activity level. Therefore, each reaction involved in a task is associated 

with a reaction activity level (RAL) that corresponds to the preprocessed gene expression value 

of the gene selected as the main determinant for this reaction. We also computed the 

significance of each gene selected with regard to its overall use in the observed condition. 

Actually, some genes will be mapped to multiple reactions (e.g. promiscuous enzyme). 

Therefore, we assume that there may exist some competition between the reactions using this 

gene.  We define the significance of a gene (S) by its specificity for a reaction by the inverse of 

the number reactions in which this gene is used as the main determinant. Finally, the metabolic 

score can be computed as the mean of the product of the activity level of each reaction with the 

significance of its associated gene: 

 

MT score= sum(RAL*S)/number of reactions involved in the task 

 

MT score provides a relative quantification of the activity of a metabolic task in a specific 

condition based on the availability of data for multiple conditions. Indeed, it has been shown 

that some important housekeeping genes always present very low expression value. Therefore, 

a metabolic function that will completely rely on this set of genes will always result in a low 

MT score. Contrarily, some tasks can be associated with gene presenting very high expression 

levels. Therefore, MT scores cannot be compared across tasks but only across samples. To 

partly overcome this problem, we also propose this scoring approach in its binary version to 

determine whether a metabolic task is active or not based on a gene expression profile. To this 

end, the MT score no longer takes into account the significance of gene determinant for each 

reaction but is just computed as the mean of the reaction activity levels. Doing so, a metabolic 

task will be considered as active if its MT score in its binary version has a value superior to 

5log(2).  
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Assessment of tissue similarities 

We computed the scores of the 195 metabolic tasks in their continuous version based on the 

transcriptomic data available for 32 different tissues in the Human Protein Atlas11 dataset using 

Recon2.2 as reference genome-scale metabolic model21. These scores were used to compute 

the Euclidean distance between each tissue. We associated each tissue to an organ system 

(Supplementary Table 4) and computed the average Euclidean distance between tissues 

belonging to the same organ system. Note that, we only considered organ systems presenting 

more than two tissues within the same group (i.e. Female Reproductive, Lymphatic and 

Gastrointestinal). To compute the significance of our results, we generated the mean Euclidean 

distance for 10000 randomly selected groups with the same number of tissues and computed 

the exact p value (i.e. proportion of random distance lower than the observed distance) 

associated to each organ system. We performed the same type of analysis based on the results 

of functional pathways enrichment obtained using Enrichr55 (Supplementary Table 5) and 

presented a comparison in Figure 4. Note that we also performed this analysis using the 

metabolic scores when computed in their binary version (Supplementary Table 3 and 

Supplementary Figure 1). The histological information used in the assessment of tissue 

similarities has been collected from the microscopy images and associated description available 

in the Human Protein Atlas11. 

 

Principal component analysis for differentiating brain cell-types 

A matrix representing the metabolic function scores for 3 brain cell types (i.e., astrocytes, 

neurons and oligodendrocytes) was constructed by multiplying the metabolic task scores 

computed in their continuous version (Supplementary Table 6) with the ones in their binary 

version (Supplementary Table 7). A PCA analysis on this matrix was conducted. As this 

analysis did not enable the differentiation between astrocytes and oligodendrocytes, we 

performed a subsequent similar PCA analysis by only using the samples related to these specific 

cell-types. 

 

Clustering of excitatory neurons samples from the ROSMAP project  

We clustered the samples identified as excitatory neurons by identifying the tasks that were 

actives in more than 50% of the dataset. This threshold has been set with respect to the 

percentage of excitatory neurons samples associated with a positive diagnosis of Alzheimer’s 

disease (i.e., 51,2%). Only three metabolic tasks correspond to this criterion: the conversion of 

phosphatidyl-1D-myo-inositol to 1D-myo-inositol 1-phosphate, the synthesis of 

tetrahydrofolate synthesis and the synthesis of Tn_antigen (Glycoprotein N-acetyl-D-

galactosamine. We further used them to divide the samples into 8 metabolic clusters depending 

on the combination of their activity in each sample (Figure 6A-B). Note that prior to this choice, 

other clustering methods have been investigated. Our first approach was using a k-means 

clustering method. To this end, we used the percentage of coordinates that differ (hamming 

distance) in the binary matrix of the metabolic task score (active vs non-active) and the matlab 

function k-means with 10 replicates. To identify the appropriate number of clusters to separate 

the data, we computed the within-cluster sum of square distance (wws) and the average 

silhouette value by iteratively increasing the number of clusters from 1 to 15. This approach 
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also led to the identification of 8 metabolic clusters that were displaying the same metabolic 

dysregulations. In order to ensure the reproducibility of the results presented, we preferred to 

use a more straightforward clustering method. 

 

We compared the metabolic clusters obtained with our approach to the clusters identified in a 

publication39 using the ROSMAP data (Supplementary Figure 4). We can observe that the 

metabolic clusters M3 and M4 are only enriched in clusters Ex2 and Ex4 who were identified 

as highly correlated with Alzheimer’s pathological traits in the reference publication. The same 

observation can be done with M6 metabolic cluster and Ex6, the cell type cluster identified as 

highly correlated with patients without Alzheimer’s disease. 

 

Web-based CellFie module to perform analysis 

We created a web-based CellFie module that has been integrated into the list of tools available 

in GenePattern49 (www.genepattern.org).  A tutorial explaining how to run CellFie as a 

GenePattern module is available on the wiki section of the github repository: 

https://github.com/LewisLabUCSD/CellFie. This repository includes the source code of the 

computation framework that are running on Matlab and require the installation of the Cobra 

Toolbox56. It also includes a tutorial to visualize the output results of CellFie on metabolic maps 

using Escher57. 
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