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Abstract  

A  key  goal  in  neuroscience  is  to  understand  brain  mechanisms  of  cognitive  functions.  An                            

emerging  approach  is  “brain  decoding”,  which  consists  of  inferring  a  set  of  experimental                          

conditions  performed  by  a  participant,  using  pattern  classification  of  brain  activity.  Few  works  so                            

far  have  attempted  to  train  a  brain  decoding  model  that  would  generalize  across  many  different                              

cognitive  tasks  drawn  from  multiple  cognitive  domains.  To  tackle  this  problem,  we  proposed  a                            

domain-general  brain  decoder  that  automatically  learns  the  spatiotemporal  dynamics  of  brain                      

response  within  a  short  time  window using  a  deep  learning  approach.  By leveraging  our  prior                              

knowledge  on  network  organization  of  human  brain  cognition,  we  constructed  deep  graph                        

convolutional  neural  networks  to  annotate  cognitive  states  by  first  mapping  the  task-evoked  fMRI                          

response  onto  a  brain  graph,  propagating  brain  dynamics  among  interconnected  brain  regions                        

and  functional  networks,  and  generating  state-specific  representations  of  recorded  brain  activity.                      

We  evaluated  the  decoding  model  on  a  large  population  of  1200  participants,  under  21  different                              

experimental  conditions  spanning  6  different  cognitive  domains,  acquired  from  the  Human                      

Connectome  Project  task-fMRI  database.  Using  a  10s  window  of  fMRI  response,  the  21  cognitive                            

states  were  identified  with  a  test  accuracy  of  89%  (chance  level  4.8%).  Performance  remained                            

good  when  using  a  6s  window  (82%).  It  was  even  feasible  to  decode  cognitive  states  from  a                                  

single  fMRI  volume  (720ms),  with  the  performance  following  the  shape  of  the  hemodynamic                          

response.  Moreover,  a  saliency  map  analysis  demonstrated  that  the  high  decoding  performance                        

was  driven  by  the  response  of  biologically  meaningful  brain  regions.  Together,  we  provide  an                            

automated  tool  to  annotate  human  brain  activity  with  fine  temporal  resolution  and  fine  cognitive                            

granularity.  Our  model  shows  potential  applications  as  a  reference  model  for  domain  adaptation,                          

possibly  making  contributions  in  a  variety  of  domains,  including  neurological  and  psychiatric                        

disorders.  

Keywords:    fMRI,   brain   decoding,   brain   dynamics,   graph   convolutional   network,   deep   learning.    
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Introduction  

Identifying  brain  regions  and  networks  involved  in  specific  cognitive  functions  has  been  one  of                            

the  main  goals  of  neuroscience  research.  Modern  imaging  techniques,  such  as  functional                        

magnetic  resonance  imaging  (fMRI),  provide  an  opportunity  to  map  cognitive  function  in-vivo,  and                          

even  to  decode  the  dynamics  of  cognitive  processes.  Brain  decoding  has  been  an  active  topic  in                                

neuroscience  literature  ever  since  Haxby  and  colleagues  first  proposed  the  idea  of  using  fMRI                            

brain  responses  to  predict  which  visual  stimuli  were  presented  to  a  subject (Haxby,  2001) .  Since                              

then,  researchers  have  extended  this  line  of  work  by  greatly  expanding  on  the  type  of  stimuli                                

used  for  brain  decoding.  For  instance,  researchers  have  successfully  attempted  to  use  brain                          

activity  to  reconstruct  the  frames  of  movies (Nishimoto et  al. ,  2011) ,  or  to  decode  the  semantic                                

context  from  words (Mitchell et  al. ,  2008)  and  visual  scenes (Huth et  al. ,  2012) .  Other  works  have                                  

moved  away  from  well-controlled  experimental  conditions,  to  investigate  fluid  mental  processes                      

such  as  dreams (Horikawa et  al. ,  2013)  and  intentions (Haynes et  al. ,  2007) .  However,  the  vast                                

majority  of  existing  decoding  studies,  including  the  ones  referenced  in  this  paragraph,  only                          

probed  a  single  cognitive  domain  at  a  time,  and  explored  a  population  of  less  than  ten  subjects.                                  

The  generalizability  of  these  decoding  models  has  not  yet  been  thoroughly  investigated  in  a  large                              

population,   or   across   a   variety   of   cognitive   domains.   

To  train  such  a  domain-general  brain  decoder  requires  a  large  collection  of  brain  imaging  data.                              

One  way  to  achieve  such  a  large  collection  is  to  combine  the  results  from  a  series  of  published                                    

studies,  either  using  meta-analytic  approaches (Rubin et  al. ,  2017;  Bartley et  al. ,  2018) ,  or  by                              

building  linear  classifiers  based  on  the  contrast  maps (Poldrack,  Halchenko  and  Hanson,  2009;                          

Varoquaux et  al. ,  2018) .  However,  these  approaches  neglect  the  temporal  dynamics  of  cognitive                          

processes,  for  which  task-evoked  brain  responses  are  usually  averaged  across  trials,  functional                        

scans  or  even  subjects.  Such  brain  dynamics  may  contain  discriminative  patterns  of  brain                          

responses  across  different  cognitive  tasks  that  are  shared  among  brain  regions,  or  large-scale                          
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functional  networks (Gonzalez-Castillo et  al. ,  2012,  2015;  Orban et  al. ,  2015) .  An  alternative  way                            

is  to  train  classifiers  directly  from  a  large  set  of  fMRI  data  of  a  large  population,  for  example  the                                      

Human  Connectome  Project  (HCP),  that  provides  a  detailed  mapping  of  cognitive  functions                        

consisting  of  experimental  conditions  spanning  seven  cognitive  domains  (1  hour  per  subject)                        

(Barch et  al. ,  2013;  Van  Essen et  al. ,  2013) .  Based  on  this  powerful  resource,  several  deep                                

artificial  neural  networks  (DNNs)  have  been  recently  proposed  to  map  human  cognition  from                          

recorded  brain  activity,  for  instance  using  the  well-known  convolutional (Wang et  al. ,  2019)  and                            

recurrent  neural  network  architectures (Li  and  Fan,  2019) .  But  these  studies  simplified  the                          

decoding  task  by  either  distinguishing  the  seven  cognitive  domains,  or  only  focusing  on                          

experimental   conditions   from   a   single   cognitive   domain   at   a   time.   

Training  a  brain  decoder  that  distinguishes  task  conditions  across  several  cognitive  domains  may                          

require  the  introduction  of  new  machine  learning  tools,  that  can  handle  high-dimensional  neural                          

activities  distributed  across  multiple  brain  systems,  and  that  can  at  the  same  time  accommodate                            

inter-subject  variations  in  brain  organization.  One  promising  approach  is  to  model  the  variety  of                            

brain  dynamics  on  a  brain  graph,  which  provides  a  network  representation  of  brain  organization                            

by  associating  nodes  to  brain  regions  and  defining  edges  via  anatomical  or  functional                          

connections (Bullmore  and  Sporns,  2009) .  Based  on  this  architecture,  graph  signal  processing                        

provides  a  non-linear  embedding  tool  to  project  brain  activities  onto  Laplacian  eigenspaces  that                          

integrate  spatiotemporal  neural  dynamics  among  connected  brain  regions  and  networks (Ortega                      

et  al. ,  2018) .  This  approach  has  been  previously  used  in  the  neuroscience  literature  to  study  the                                

intrinsic  organization  of  brain  anatomy  and  functions.  For  instance, (Johansen-Berg et  al. ,  2004)                          

separated  the  human  supplementary  motor  area  (SMA)  and  pre-SMA  by  mapping  the  second                          

Laplacian  eigenvector  of  the  connectivity  matrix  derived  from  diffusion  tractography. (Fan et  al. ,                          

2016)  employed  a  set  of  Laplacian  eigenvectors  from  the  diffusion  connectivity  profiles  and                          

generated  the  "Brainnectome"  whole-brain  parcellation  Atlas,  which  consist  of  210  cortical  and  36                          

subcortical  subregions.  Recently, (Margulies et  al. ,  2016)  used  the  graph  Laplacian  to  reveal  the                            
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gradients  of  functional  organization  in  the  human  brain  connectome,  spanning  from  primary                        

cortex  to  the  default  mode  network.  In  terms  of  clinical  applications,  Raj  and  colleagues  found  a                                

close  correspondence  between  the  Laplacian  eigenvectors  of  whole-brain  diffusion  tractography                    

profiles  generated  from  healthy  subjects  and  the  atrophy  patterns  measured  from  Alzheimer's                        

patients (Raj,  Kuceyeski  and  Weiner,  2012) .  These  Laplacian  eigenvectors  can  also  be  used  to                            

build  a  predictive  model  of  future  progression  to  dementia (Raj et  al. ,  2015) .  Taken  together,                              

these   studies   suggest   great   potential   of   using   graph   Laplacian   in   neuroscience   research.   

 

In  this  study,  we  proposed  a  domain-general  decoding  model  by  embedding  the  graph  Laplacian                            

with  the  DNN  architecture,  called  brain  graph  convolutional  networks  (GCN).  The  proposed                        

approach  leverages  our  prior  knowledge  on  brain  network  organization  using  graphs,  and                        

automatically  learns  the  spatiotemporal  dynamics  of  cognitive  processes  during  model  training.                      

Our  decoding  pipeline  (as  shown  in  Fig  1)  takes  a  short  series  of  fMRI  volumes  as  input,  maps                                    

the  fMRI  signals  onto  a  predefined  brain  graph,  propagates  information  of  brain  dynamics  among                            

inter-connected  brain  regions  and  networks,  generates  task-specific  representations  of  recorded                    

brain  activities,  and  then  predicts  the  corresponding  task  states.  We  tested  the  decoding  pipeline                            

on  the  Human  Connectome  Project  (HCP)  database  by  evaluating  the  performance  across  1200                          

participants  and  21  different  cognitive  tasks  at  the  same  time.  The  performance  was  compared                            

with  a  classical  brain  decoding  model,  which  applies  multi-class  linear  support  vector  machines                          

on  trial-averaged  brain  activity.  Moreover,  a  valid  brain  decoding  model  requires  not  only  a  high                              

prediction  accuracy  but  also  good  interpretability  and  generalizability.  To  evaluate  whether  the                        

decoding  inference  was  based  on  biologically  meaningful  features,  we  generated  saliency  maps                        

for  the  input  brain  response  and  compared  these  saliency  maps  with  prior  results  from  the                              

literature  on  brain  anatomy  and  function.  To  investigate  the  temporal  sensitivity  of  the  proposed                            

model,  we  evaluated  the  performance  with  time  windows  of  variable  length,  ranging  from  a  single                              

fMRI  volume  to  the  entire  block  of  task  trials,  and  we  explored  to  which  extent  the  performance  of                                    
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the  decoding  model  was  constrained  by  the  shape  of  the  hemodynamic  response.  The  stability  of                              

the  decoding  model  was  finally  evaluated  by  changing  the  number  of  subjects  used  for  model                              

training.   
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Results  

State   annotation   using   Brain   Graph   Convolutional   Networks   (GCN)  

Cognitive   states   can   be   decoded   with   high   accuracy   from   10s   of   fMRI   activity  

The  GCN  state  annotation  model  (Fig  1)  was  evaluated  using  the  cognitive  battery  of  HCP                              

task-fMRI  dataset  acquired  from  1200  healthy  subjects.  The  entire  dataset  was  split  into  training                            

(70%),  validation  (10%)  and  test  (20%)  sets  at  the  subject  level.  During  model  training  and                              

evaluation,  fMRI  response  to  different  cognitive  tasks  acquired  in  HCP  was  collected  and  input  to                              

the  decoding  model  at  the  same  time.  In  our  study  we  focused  on  21  task  conditions  spanning  six                                    

cognitive  domains,  namely:  emotion,  language,  motor,  relational,  social,  and  working  memory.                      

The  detailed  description  of  these  cognitive  tasks  can  be  found  in (Barch et  al. ,  2013)  and  is  also                                    

summarized  in  Table  2.  Using  a  10-second  window  of  fMRI  time  series,  the  21  conditions  can  be                                  

identified  with  an  average  test  accuracy  of  89.8%,  significantly  different  from  the  chance  level  of                              

4.8%.  The  confusion  matrix  (see  Fig  2),  which  indicates  the  proportion  of  true  and  false                              

predictions  given  a  cognitive  task  state,  showed  a  nice  block  diagonal  architecture  which  means                            

the  majority  of  the  cognitive  tasks  were  accurately  identified.  After  summarizing  the  confusion                          

matrix  according  to  the  six  cognitive  domains  (see  Fig  2-Supplement  1),  each  cognitive  domain                            

could  be  identified  with  an  accuracy  greater  than  91%.  Among  the  six  cognitive  domains,  the                              

language  tasks  (story  vs  math)  and  motor  tasks  (left/right  hand,  left/right  foot  and  tongue)  were                              

the  most  recognizable  conditions,  and  they  showed  the  highest  precision  and  recall  scores                          

(average   f1-score   =   95%   and   94%,   respectively   for   language   and   motor   conditions).  

 

7  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 25, 2020. ; https://doi.org/10.1101/2020.04.24.060657doi: bioRxiv preprint 

https://paperpile.com/c/PbpuE5/QtfS3
https://paperpile.com/c/PbpuE5/QtfS3
https://paperpile.com/c/PbpuE5/QtfS3
https://doi.org/10.1101/2020.04.24.060657
http://creativecommons.org/licenses/by-nc-nd/4.0/


155

156
157

158

159

160

161

162

163

164

165

166

167

168

 
 

Fig   1.   Pipeline   of   brain   state   annotation   using   deep   graph   convolution   network.  

The  proposed  state  annotation  model  consists  of  6  graph  convolutional  layers  with  32  graph                            

filters  at  each  layer,  followed  by  a  global  average  pooling  layer  and  2  fully  connected  layers.  The                                  

brain  graph  is  constructed  by  using  multimodal  cortical  parcellation (Glasser et  al. ,  2016)  to                            

define  the  nodes  and  resting-state  functional  connectivity  to  indicate  the  weights  on  the  edges,                            

both  of  which  were  defined  based  on  HCP  subjects.  A  k-nearest-neighbour  (k-NN)  graph  is  then                              

built  by  connecting  each  brain  region  only  to  its  8  neighbors  with  the  highest  connectivity.  The                                

annotation  model  takes  a  short  time  window  of  fMRI  time  series  as  input,  maps  the                              

high-dimensional  fMRI  data  onto  the  brain  graph,  propagates  temporal  dynamics  of  brain                        

response  among  connected  brain  regions  and  networks,  generates  a  high-order  graph                      

representation   and   finally   predicts   the   corresponding   cognitive   task   labels.  
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Fig   2.   Confusion   matrix   of   decoding   21   cognitive   states.   

The  confusion  matrix  was  normalized  by  each  cognitive  state  (row)  such  that  each  element  in  the                                

matrix  shows  the  recall  score  that  among  all  predictions  (column)  how  many  of  them  are  positive                                

predictions.  The  confusion  matrix  showed  a  nice  block  diagonal  architecture  which  means  the                          

majority  of  the  cognitive  tasks  were  accurately  identified.  Among  the  six  cognitive  domains,  the                            

language  and  motor  tasks  achieved  the  highest  sensitivity,  with  the  relational  processing  and                          

working  memory  tasks  as  the  lowest.  Gambling  task  was  excluded  from  this  analysis  due  to  the                                

short   events   of   the   experimental   design.  
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Classification   errors   are   due   to   high   similarity   in   task   stimuli  

Misclassifications  of  cognitive  states  not  only  existed  within  a  cognitive  domain  but  also  across                            

multiple  cognitive  domains.  First  of  all,  task  trials  within  the  same  cognitive  domain  were                            

relatively  easy  to  be  misclassified.  For  instance,  most  misclassifications  of  relational  processing                        

task  trials  were  found  between  relational  processing  and  pattern  matching  conditions.  Similar                        

misclassifications  were  noted  between  the  0-back  and  2-back  conditions  for  the  working  memory                          

task  (see  Fig  2-Supplement  2A  and  B).  Similar  levels  of  false  classification  rates  were  observed                              

when  the  decoding  model  was  trained  by  exclusively  using  fMRI  data  from  a  single  cognitive                              

domain  (misclassification  rates  as  high  as  13%  for  relational  processing  vs  pattern-matching                        

conditions,  10%  for  0-back  vs  2-back  conditions).  By  contrast,  for  face  and  place  working                            

memory  stimuli,  brain  decoding  reached  high  accuracy,  regardless  of  using  a  domain-general  or                          

single-domain  classifier  (misclassification  rates  less  than  0.2%).  This  high  accuracy  is  possibly                        

driven  by  the  known,  strong  spatial  segregation  of  the  neural  representation  for  face  vs  place                              

image,  in  the  fusiform  face  area  and  parahippocampal  place  area  respectively (Golarai et  al. ,                            

2007) .  Secondly,  task  trials  can  also  be  misclassified  across  different  cognitive  domains,  probably                          

due  to similar  cognitive  demands  of  the  underlying  cognitive  processes.  For  instance,  we  found                            

some  of  the  emotion  and  relational  processing  conditions  were  misclassified  as  working  memory                          

tasks.  One  of  the  reasons  could  be  that  the  experimental  design  of  the  emotion  task  involves  the                                  

matching  of  faces,  overlapping  with  face  encoding  and  retrieval  in  working  memory  tasks.                          

Similarly,  the  relational  processing  task  requires  matching  of  drawn  objects  based  on  specific                          

physical  characteristics  of  target  images,  for  instance,  shape  or  texture,  somewhat  resembling                        

the  encoding  and  retrieval  of  bodies  and  tools  in  working  memory  tasks.  These  results  suggest                              

that  the  brain  decoding  model  is  mainly  driven  by  the  cognitive  demands  of  the  tasks  and  may                                  

not   follow   the   original   design   of   hierarchical   organization   among   cognitive   domains.  
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Decoding   accuracy   associated   with   in-scanner   performance  

We  found  a  strong  association  between  the  prediction  accuracy  of  GCN  state  annotation  and                            

participant’s  in-scanner  performance,  measured  using  the  median  reaction  time  (RT)  and                      

average  accuracy  (ACC)  of  repeated  task  trials  (Fig  3).  For  instance,  during  relational  processing                            

task  which  consists  of  two  conditions,  i.e.  relational  processing  and  pattern  matching,  participants                          

reacted  faster  to  the  matching  condition  than  relational  processing  (mean  RT=1.48s  vs  2.02s,                          

T-val= 14.88,  pval=3.9e-40 )  with  higher  accuracy  (mean  ACC=86%  vs  65%,  T-val= 13.18,                    

pval=3.4e-33 ).  Similarly,  GCN  also  achieved  higher  prediction  for  pattern  matching  than  relational                        

processing  (mean  F1-score=0.96  vs  0.91,  T-val= 4.24,  pval=2.7e-5 ).  Moreover,  within  each                    

condition,  GCN  achieved  higher  accuracy  on  trials  when  participants  were  more  engaged  which                          

was  indicated  as  shorter  reaction  time  (Spearman  rank  correlation  rho= -0.21,  pval=  0.002)  and                            

higher   accuracy   (rho=0.18,   pval=0.012).   
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Fig  3.  Association  between  prediction  accuracy  of  GCN  state  annotation  and  participants’                        

in-scanner   performance   for   all   trials   of   the   relational   processing   task.   

The  relational  processing  task  consists  of  two  conditions,  i.e.  relational  processing  and  pattern                          

matching  with  each  task  block  lasting  for  16s.  Two  types  of  performance  were  measured  for  each                                

task  block,  including  median  reaction  time  (A)  and  average  accuracy  (B)  across  repeated                          

mini-trials.  Comparing  the  two  task  conditions,  participants  reacted  faster  with  higher  accuracy  for                          

the  pattern  matching  task  than  relational  processing.  Similarly,  GCN  also  achieved  higher                        

prediction  for  matching  (F1-score  =  0.96)  than  relational  processing  (F1-score  =  0.91).  Within                          

each  task  condition,  GCN  achieved  higher  accuracy  on  trials  when  participants  responded  faster                          

(A)  or  achieved  higher  accuracy  (B).  The  analysis  was  performed  on  200  subjects  from  the  test                                

set.   
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Visualization   of   learned   neural   representations  

To  visualize  the  learned  representations  of  cognitive  functions,  we  projected  the  high-dimensional                        

graph  representations,  i.e.  the  output  of  the  last  graph  convolutional  layer,  onto  a  2-dimensional                            

space  using  t-SNE (Maaten  and  Hinton,  2008) .  We  observed  a  high  clustering  effect  in  the                              

learned  representations  (see  Fig  4C).  Specifically,  the  samples  of  different  movement  types  were                          

highly  separated  from  each  other,  with  the  largest  distance  existing  between  tongue  and  foot                            

movements.  Meanwhile,  the  samples  of  the  same  type  of  movements  were  located  closest  to                            

each  other.  Moderate  distance  was  found  between  left  and  right  for  both  hand  and  foot                              

movements.  A  similar  pattern  was  also  observed  by  calculating  the  correlations  of  the  learned                            

representations  across  all  trials  (see  Fig  4A  and  Fig  4B).  But,  this  effect  was  not  observed  by                                  

directly  projecting  the  input  fMRI  time-series  or  during  the  early  stages  of  training  process,  for                              

which   the   samples   from   all   categories   collapsed   into   a   ball   (Fig   4-Supplement   1).  

 

 

 

13  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 25, 2020. ; https://doi.org/10.1101/2020.04.24.060657doi: bioRxiv preprint 

https://paperpile.com/c/PbpuE5/TrspN
https://doi.org/10.1101/2020.04.24.060657
http://creativecommons.org/licenses/by-nc-nd/4.0/


243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

Fig   4.    Similarity   analysis   of   learned   representations   from   the   Motor   task-fMRI   data.  

A  pre-trained  single-domain  GCN  annotation  model  was  used  for  this  analysis,  which  meant  the                            

training  set  only  included  fMRI  signals  from  the  corresponding  cognitive  domain.  Then,  the  fMRI                            

time  series  from  the  test  set  was  passed  through  the  model  as  input  and  the  layer  activations  of                                    

the  last  graph  convolutional  layer  were  extracted  as  the  graph  representations  of  brain  dynamics.                            

The  similarity  of  graph  representations  was  evaluated  by  calculating  Pearson  correlation  between                        

each  pair  of  brain  states  (A)  and  experimental  trials  (B).  Moreover,  the  learned  representations                            

were   projected   to   2-dimensional   space   by   using   t-SNE   (C).  

 

GCN   outperformed   linear   and   nonlinear   decoding   models  

To  establish  whether  the  usage  of  deep  GCN  brings  a  substantial  improvement  over  more                            

traditional  machine  learning  tools,  we  evaluated  the  same  brain  decoding  tasks  using  a                          

multi-class  support  vector  machine  classification  (SVC)  with  a  linear  kernel,  as  our  baseline                          

model.  The  results  showed  that  using  10s  of  fMRI  data  as  the  input  features,  SVC-linear                              

achieved  much  lower  prediction  accuracy  in  classifying  the  21  states  (89%  vs  63%  respectively                            

for  GCN  and  SVC-linear)  and  took  longer  time  for  training  (560s  vs  9518s).  Even  when  only                                

focusing  on  a  single  cognitive  domain,  SVC-linear  still  showed  much  lower  performance  (96%  vs                            

87%  for  the  motor  task;  86%  vs  70%  for  working  memory  conditions).  We  also  evaluated  a                                

simple  multilayer  perceptron  ( MLP )  consisting  of  two  hidden  layers  to  decode  brain  activity  over                            

21  states.  MLP  showed  some  improvements  over  the  linear  model,  but  not  as  high  as  GCN  (89%                                  

vs   74%   respectively   for   GCN   and   MLP).  

Saliency   maps   demonstrate   biologically   meaningful   features   learned   by   GCN  

We  investigated  whether  GCN  learns  a  set  of  biologically  meaningful  features  during  model                          

training.  For  this  purpose,  we  generated  the  saliency  maps  on  the  trained  model  by  propagating                              

the  non-negative  gradients  backwards  to  the  input  layer (Springenberg et  al. ,  2014) .  An  input                            
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feature  is salient  or  important only  if  its  little  variation  causes  big  changes  in  the  decoding  output.                                  

Thus,  high  values  in  the  saliency  map  indicate  large  contributions  during  the  prediction  of                            

cognitive  states.  To  note  that  the  model  used  in  this  analysis  was  trained  by  exclusively  using                                

fMRI   data   from   a   single   cognitive   domain.    

The  two  language  conditions,  story  and  mathematics,  shared  a  number  of  salient  features,  likely                            

related  to  shared  cognitive  processes.  First,  both  conditions  involve  the  processing  of  auditory                          

statements,  which  may  explain  high  salience  in  the  primary  auditory  cortex  and  perisylvian                          

language-related  brain  regions,  consisting  of  inferior  frontal  gyrus  (IFG),  supramarginal                    

gyrus/angular  gyrus,  and  superior  temporal  gyrus  (STG)  (see  Fig  5A).  Second,  the  block  design                            

of  both  story  and  math  conditions  included  a  presentation  and  a  response  phase,  and  thus                              

potentially  imposed  a  high  memory  load  on  participants,  and  may  explain  the  salience  in  the                              

inferior  parietal  sulcus.  There  were  also  some  salient  features  found  only  for  either  mathematics                            

or  story.  For  instance,  the  story  condition  involved  salient  features  in  more  anterior  part  of  left                                

IFG,  including  pars  triangularis  and  orbitalis.  By  contrast,  mathematical  statements  involved  more                        

posterior  parts,  including  pars  opercularis  of  IFG  and  precentral  sulcus.  Additional  inferior                        

temporal  regions  were  salient  for  mathematics  only,  which  have  been  shown  to  be  more  involved                              

in  mathematical  than  non-mathematical  judgment  tasks (Amalric  and  Dehaene,  2016) .  Finally,                      

left-lateralized  salient  features  in  IFG  and  STG  were  only  revealed  for  the  story  condition,                            

coinciding  with  the  study  showing  strong  lateralization  for  listening  comprehension (Berl et  al. ,                          

2010) .   

As  expected,  no  salient  features  in  the  perisylvian  language-related  brain  regions  were  found  for                            

the  motor  task.  Different  types  of  movements  were  associated  with  high  salience  in  the  primary                              

motor  and  somatosensory  cortices  (see  Fig  5B),  which  have  long  been  shown  to  be  the  main                                

territories  engaged  during  movements  of  the  human  body (Penfield  and  Boldrey,  1937) .  No  clear                            

somatotopic  organization  among  different  types  of  movements  were  identified  here,  which  was                        

somewhat  expected  because  the  primary  motor  and  somatosensory  cortex  were  parcellated  into                        
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single  strips  in  the  Glasser’s  atlas (Glasser et  al. ,  2016) .  Some  category-specific  salient  features                            

were  still  identified,  for  instance  in  medial  primary  motor  cortex  for  foot  movement  and  in  lateral                                

orbitofrontal  cortex  for  tongue  movement.  Unexpectedly,  salient  features  in  the  left  temporal  pole                          

were  found  for  all  movements.  This  area  has  been  shown  to  support  language  comprehension                            

and  production (Ardila,  Bernal  and  Rosselli,  2014) ,  which  may  be  related  to  the  word  cues  used                                

to   initiate   different   types   of   movements.   

Moreover,  salient  features  in  the  ventral  visual  stream  were  identified  for  image  recognition  in  the                              

working  memory  task  (see  Fig  5C).  Specifically,  the  place  stimuli  activated  more  medial  areas  in                              

the  ventral  temporal  cortex  including  parahippocampal  gyrus;  while  the  face  stimuli  activated                        

more  lateral  ventral  temporal  regions  including  fusiform  gyrus.  This  observation  is  consistent  with                          

the  well-known  segregation  of  the  neural  substrates  for  encoding  faces  vs  places,  in  the  fusiform                              

face   area   and   parahippocampal   place   area   respectively    (Golarai    et   al. ,   2007) .  

We  also  found  some  overlap  in  brain  regions  between  our  saliency  maps  and  meta-analysis                            

activation  maps  from  neuroquery  (Fig  5-Supplement  1),  as  well  as  contrast  maps  from  HCP                            

dataset  (Fig  5-Supplement  2).  For  instance,  the  inferior  frontal  gyrus  and  superior  temporal  gyrus                            

were  identified  for  the  story  condition  in  all  three  maps,  while  the  inferior  frontal  sulcus  and  the                                  

adjacent  middle  frontal  gyrus  were  identified  for  the  mathematics  condition,  probably  counting  for                          

the  requirement  of  working  memory  for  a  sequence  of  mathematical  operations.  Although  some                          

consistent  patterns  of  activations  were  observed  for  the  motor  tasks  (Fig  5-Supplement  3),  we                            

found  a  large  degree  of  divergence  after  mapping  them  onto  the  Glasser’s  atlas (Glasser et  al. ,                                

2016) ,  probably  due  to  the  primary  motor  and  somatosensory  cortex  being  parcellated  into  single                            

strips  in  the  atlas  and  not  differentiating  the  somatotopic  areas  in  the  feature  space.  For  image                                

recognition,  the  ventral  visual  stream  was  identified  in  all  three  maps,  but  with  different  specific                              

spatial  locations.  Overall,  although  some  overlap  existed  between  saliency  maps  and                      

meta-analysis  maps,  there  was  no  systematic  correspondence.  This  likely  reflects  the  fact  that                          

features  identified  through  traditional  statistical  tests  and  predictive  models  are  to  some  extent                          
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divergent (Bzdok  and  Ioannidis,  2019) .  Similar  observations  were  made  with  contrast  maps  from                          

the   HCP   dataset.  

In  summary,  the  regions  highlighted  by  the  saliency  maps  are  consistent  with  prior  knowledge                            

from  the  neuroscience  literature,  and  suggest  that  the  GCN  model  has  learned  biologically                          

meaningful   features,   rather   than   relying   on   confounding   effects,   for   example   motion   artifacts.  

 

 
 

Fig   5.   Saliency   maps   of   language,   motor   and   working   memory   tasks.  

(A)  The  story  and  math  conditions  showed  high  salience  in  the  primary  auditory  cortex  and                              

perisylvian  language-related  brain  regions.  (B)  Different  types  of  movements  were  associated                      

with  salient  features  in  the  motor  and  somatosensory  cortex.  (C)  The  0-back  working  memory                            

task  mostly  engaged  the  ventral  visual  stream  for  encoding  different  types  of  images.  The                            

saliency  maps  were  estimated  by  using  the  guided  backpropagation  based  on  the  pre-trained                          

single-domain  GCN  annotation  models  that  only  used  fMRI  signals  from  the  corresponding                        
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cognitive  domain  during  model  training.  A  high  saliency  value  indicates  that  little  variation  of  the                              

input  features  causes  big  changes  in  the  decoding  output.  The  saliency  value  was  normalized  to                              

the  range  [0,1],  with  its  highest  value  at  1  (a  dominant  effect  for  task  prediction)  and  lowest  at  0                                      

(no  contribution  to  task  prediction).  Only  values  above  0.1  were  shown  here  to  indicate  a  strong                                

impact   on   the   prediction.  

 

Impact   of   the   duration   of   fMRI   time   windows   on   cognitive   annotations  

Cognitive   tasks   showed   different   sensitivity   levels   to   the   duration   of   time   windows  

The  temporal  sensitivity  of  GCN  was  first  evaluated  by  progressively  increasing  the  duration  of                            

the  fMRI  time  windows  (Fig  6).  At  a  temporal  resolution  of  one  fMRI  volume  (720ms),  GCN  could                                  

predict  the  21  task  conditions  with  an  average  accuracy  of  56%,  markedly  lower  than  using  10                                

sec  time  windows,  yet  still  significantly  higher  than  chance  level  (4.8%).  As  the  duration  of  fMRI                                

time  windows  became  larger,  the  prediction  accuracy  gradually  increased  and  converged  to  a                          

plateau  of  89%  at  10s  of  fMRI  time  series.  Using  6s  of  fMRI  data,  GCN  already  showed  good                                    

performance  with  an  average  prediction  accuracy  of  82%.  The  cognitive  tasks  showed  different                          

levels  of  sensitivity  to  the duration  of  time  windows. Among  the  cognitive  domains,  the  decoding                              

accuracy  of relational  processing  and  working  memory  conditions  were  highly  dependent  on  the                          

duration  of  time  windows  and required  more  than  10s  to  reach  stable  performance  (Fig                            

6-Supplement  1). These  domains  also  showed  the  lowest  prediction  accuracy  for  all  durations  of                            

time  windows.  By  contrast,  predictions  on  language  and  social  tasks  reached  high  accuracy  for                            

durations  as  small  as one  fMRI  volume  ( 70%  and  66%  for  conditions  of  language  and  social                                

tasks,  respectively ).  This  divergence  on  the  temporal  sensitivity  might  be  driven  by  the  form  of                              

stimuli  that  success ive  trials  were  used  for  the  relational  processing  and  working  memory  tasks                            

while  an  auditory/video  stream  with  continuous  stimulation  was  presented  for  the  language  and                          

social   tasks.    
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Fig   6.   Temporal   sensitivity   of   GCN   on   the   fMRI   time   window.  

The  temporal  sensitivity  of  GCN  was  investigated  with  variable  lengths  of  time  windows,  ranging                            

from  a  single  fMRI  volume  (0.7s)  to  10s  with  a  step  of  2  TRs  (i.e.  1.4s).  (A)  The  performance  of                                        

GCN  annotation  gradually  increased  as  prolonging  the  time  window  of  fMRI  time  series.  It  started                              

with  56%  of  test  accuracy  on  a  single  fMRI  volume  (cyan),  quickly  increased  to  82%  with  6s  of                                    

fMRI  data  (green),  and  reached  a  plateau  of  89%  at  10s  (purple). (B) The  cognitive  tasks  showed                                  
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high  diversity  in  the  sensitivity  to  the duration  of  time  windows. Among  the  cognitive  domains,  the                                

relational  processing  and  working  memory  tasks  were  most  sensitive  to  the  time  window  and                            

achieved   the   lowest   decoding   accuracy   at   all   temporal   scales.  

 

The   performance   of   GCN   annotation   is   constrained   by   the   hemodynamic   response  

The  low  performance  at  shorter  fMRI  time  windows  could  be  caused  by  two  factors:  1)  fewer                                

parameters  in  decoding  model  especially  in  the  first  GCN  layer  (i.e.  time  window  *  graph  filters);                                

2)  a  delay  effect  of  the  task-evoked  hemodynamic  response  (HRF)  of  BOLD  signals,  that  typically                              

includes  a  dominant  peak  at  4-6s,  and  washes  out  around  8-12s  after  the  end  of  the  stimulus.  To                                    

evaluate  the  impact  of  the  hemodynamic  response  in  GCN  performance,  we  reformulated  the                          

prediction  accuracy  of  GCN  annotation  on  a  single  fMRI  volume  as  a  function  of                            

time-elapsed-from-onset.  As  shown  in  Fig  7,  the  GCN  state  annotation  had  an  initial  low                            

performance  at  the  cue  phase,  which  gradually  increased  to  reach  a  plateau  at  6-8s  after  task                                

onset.  This  effect  was  observed  for  all  states  of  the  motor  and  working  memory  tasks.  For                                

instance,  the  predictions  on  hand,  foot  and  tongue  movements  reached  an  asymptotic                        

performance  of  95%  for  a  single  fMRI  volume  acquired  6s  after  task  onset  (Fig  7A).  For  the                                  

working  memory  task,  the  performance  was  more  variable  depending  on  the  task  conditions.                          

Specifically,  for  the  0-back  working  memory  task  (Fig  7B),  performance  reached  a  plateau  at                            

around  8s  and  fluctuated  around  this  asymptotic  level.  By  contrast,  for  the  2-back  working                            

memory  task  (Fig  7C),  the  plateau  was  only  reached  at  10s  after  onset,  and  some  conditions                                

even  showed  a  decreased  performance  after  20s,  for  example,  the  2-back  recognition  of  body                            

and   tool   images.    

These  results  suggest  that  for  event-related  designs  (i.e.  with  short  time  duration  of  each  trial),                              

fMRI  signals  recorded  at  least  4s  after  the  onset  of  the  task  will  be  required  to  achieve  a  stable                                      

GCN  performance.  This  observation  may  also  explain  the  low  performance  of  GCN  on  the                            

gambling  task,  where  each  trial  only  lasted  3.5s  (1.5s  for  button  press,  1s  for  feedback  and  1s  for                                    
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ITI).  To  verify  whether  this  rule  applies  to  longer  event  trials,  each  task  trial  was  split  into  multiple                                    

bins  of  6s-time  window  before  and  after  the  peak  of  HRF.  The  results  in  Table  1  and  Fig                                    

7-Supplement  1  indicated  that,  with  the  same  length  of  time  window,  GCN  achieved  higher                            

performance  when  the  BOLD  signals  already  reached  the  peak  of  HRF,  but  before  reaching  the                              

post-stimulus   undershoot.    

 

 

Fig   7.   Performance   of   the   GCN   annotation   as   a   function   of   time   following   onset.  

The  pre-trained  single-domain  GCN  annotation  models  were  used  for  this  analysis  by  exclusively                          

using  fMRI  signals  from  a  single  cognitive  domain  during  model  training.  The  time  window  was                              

set  to  0.7s  such  that  each  single  fMRI  volume  was  treated  as  an  independent  sample.  The                                

trained  model  was  then  used  to  predict  the  cognitive  state  of  all  fMRI  volumes  from  the  test  set                                    

as  a  function  of  time  following  onset.  The  state  annotation  of  the  motor  (A)  and  working  memory                                  

(B  and  C)  tasks  indicated  an  initial  low  performance  at  the  cue  phase,  gradually  converging  to  the                                  

plateau  at  6-8s  after  the  onset  of  a  task,  and  then  a  variable  post-stimulus  undershoot.  This                                
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resembles  the  effect  of  the  task-evoked  hemodynamic  response  of  fMRI  signals.  Notably,  GCN                          

annotation  on  the  motor  task  even  achieved  over  90%  of  test  accuracy  by  decoding  on  a  single                                  

fMRI  volume  acquired  6s  after  the  task  onset.  The  performance  was  more  variable  for  the                              

working  memory  task,  e.g.  lower  accuracy  for  the  2-back  conditions  compared  to  the  0-back,  but                              

with  a  reverse  observation  for  the  face  recognition  conditions  (i.e.  peak  performance  of  75%  vs                              

81%   respectively   for   the   0-back   and   2-back   face   recognition   conditions   ).   

 

 

Table  1.  Performance  of  GCN  annotation  using  mini-blocks  of  a  6s-time  window  before                          

and   after   the   peak   of   HRF.   

Task  trials  were  split  into  mini-blocks  with  a  temporal  duration  of  6s.  Event  blocks  from  the  motor                                  

task  last  for  12s  and  thus  were  split  into  2  mini-blocks  of  6s  time  window.  Event  blocks  from  the                                      

working  memory  task  last  for  25s  and  thus  were  split  into  4  mini-blocks  of  6s  time  windows.                                  

These  mini-blocks  were  treated  as  independent  samples  during  model  training.  We  also  trained                          

and  evaluated  separate  decoding  models  for  each  of  the  time  windows,  by  exclusively  using  the                              

fMRI  time  series  from  the  corresponding  time  bins.  The  last  column  indicates  the  average                            

decoding  performance  on  a  mixture  of  6s  mini-blocks  by  including  fMRI  signals  at  all  different                              

phases.  

 

 
Task   domain  

Decoding   Performance   on   Time   windows  

0-6s   6-12s   12-18s   18-24s   Mixed   (6s   time  
window)  

Motor   85.51   %   94.58   %   N/A   N/A   88.60   %  

Working  
memory  

75.54   %     85.72   %   82.59   %   81.89   %   80.37   %  

ALL   tasks   79.43   %   88.38   %   N/A   N/A   81.51   %  
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Impact   of   population   sample   size   on   cognitive   annotations  

GCN   annotation   reached   a   performance   plateau   with   around   280   subjects  

The  sensitivity  of  GCN  on  sample  size  was  investigated  by  changing  the  number  of  independent                              

subjects  selected  from  HCP  task-fMRI  dataset,  ranging  from  14  to  1060  subjects  who  have                            

collected  2  sessions  of  all  cognitive  tasks.  These  subjects  were  again  split  into  training  (70%),                              

validation  (10%)  and  test  (20%)  sets.  Generally,  with  more  subjects,  GCN  achieved  higher                          

accuracy  in  decoding  the  21  cognitive  states  (Fig  8).  GCN  annotation  already  achieved  decent                            

performance  with  a  handful  of  subjects  (average  f1-score=46%  using  14  subjects).  Performance                        

quickly  increased  to  77%  by  using  71  subjects  and  reached  a  plateau  of  85%  with  around  280                                  

subjects.   After   that,   performance   only   showed   slight   improvement   by   using   larger   data   samples.   

Different  cognitive  tasks  showed  different  highly  variable  sensitivity  to  sample  size,  and  also                          

varied  in  the  asymptotic  performance  of  the  model.  Specifically,  the relational  processing  and                          

working  memory  required  the  largest  sample  size:  284  subjects  and  213  subjects,  respectively,  to                            

reach  85%  of  the  asymptotic  performance.  By  contrast,  the  language  and  motor  tasks  only                            

required  35  and  57  individuals,  respectively,  to  reach  85%  of  the  asymptotic  performance.  This                            

variation  on  the  sensitivity  of  sample  size  might  be  caused  by  different  levels  of  inter-subject                              

variability  in  the  cognitive  demands  of  the  underlying  cognitive  processes.  For  instance,  large                          

individual  variability  has  been  reported  in  working  memory  tasks (Osaka et  al. ,  2003;  Fougnie,                            

Suchow  and  Alvarez,  2012) ,  while  the  language  network  was  consistently  activated  during  the                          

auditory  language  comprehension  across  different  populations  and  languages (Friederici,  2011;                    

Zhang    et   al. ,   2017;   Wu,   Zaccarella   and   Friederici,   2019) .   
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Fig   8.   Sensitivity   of   GCN   on   sample   size   of   independent   subjects.  

The  sensitivity  of  GCN  on  sample  size  (A)  was  investigated  by  changing  the  number  of                              

independent  subjects  selected  from  HCP  task-fMRI  dataset,  ranging  from  14  to  1060  with  a                            

smaller  step  before  the  plateau  and  a  larger  step  after.  GCN  annotation  starts  with  46%  of  test                                  

accuracy  in  decoding  the  21  cognitive  states  by  using  only  14  subjects  (cyan).  Then,  the                              

performance  quickly  increased  to  77%  by  using  71  subjects  (yellow)  and  reached  a  plateau  of                              
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85%  with  around  280  subjects  (green).  Among  the  cognitive  domains  (B),  the relational                          

processing  and  working  memory  were  the  most demanding  tasks  on  the  sample  size,  while  the                              

language   and   motor   tasks   were   more   robust   to   the   size   of   the   dataset.  
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Discussion  

The  present  study  proposed  a  generalized  brain  decoding  model  which  annotates  brain                        

dynamics  of  21  cognitive  functions  using  a  short  series  of  fMRI  volumes.  This  approach  relies  on                                

convolutional  operations  on  a  brain  graph,  which  leverages  our  prior  knowledge  on  network                          

organization  of  human  brain  cognition.  Graph  convolution  integrates  information  of  brain                      

dynamics  among  distributed  brain  networks  and  generates  robust  neural  representations  that                      

could  be  generalizable  across  a  large  group  of  population  and  multiple  cognitive  domains.                          

Specifically,  our  model  identified  21  experimental  conditions  across  6  cognitive  domains                      

simultaneously  with  an  accuracy  of  89%  on  unseen  subjects,  by  only  using  10s  window  of  fMRI                                

signals.  This  high  performance  on  brain  annotation  was  mainly  contributed  by  brain  response  of                            

biologically  meaningful  brain  areas,  in  line  with  the  literature  on  functional  localizers  for  each                            

cognitive  domain,  as  revealed  by  the  saliency  maps.  By  examining  variable  time  windows,  we                            

found  that  our  decoding  model  achieved  above-chance  annotation  with  a  fine  temporal                        

resolution,  as  short  as  a  single  fMRI  volume.  Volume-to-volume  performance  followed  the  shape                          

of  a  hemodynamic  response,  with  a  high  accuracy  achieved  after  at  least  6  seconds  following                              

stimulus  onset.  Besides,  the  model  converged  to  its  stable  performance  by  using  a  subset  of  280                                

subjects.  Together,  our  results  provide  an  automated  tool  to  annotate  brain  activity  with  fine                            

temporal   resolution   and   fine   cognitive   granularity,   as   well   as   high   generalizability   to   new   subjects.   

 

Domain-general   brain   decoding   

Brain  decoding  has  been  a  popular  topic  in  neuroscience  literature  for  decades.  The  majority  of                              

studies  still  focused  on  the  recognition  of  visual  stimuli (Haxby,  2001;  Huth et  al. ,  2012;  Haxby,                                

Connolly  and  Guntupalli,  2014) .  To  build  a  decoding  model  that  could  generalize  beyond  visual                            

stimuli  and  incorporate  multiple  cognitive  domains  is  still  a  challenging  topic.  Researchers  have                          

attempted  to  tackle  the  issue  of  domain-general  brain  decoding  by  using  meta-analytic                        
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approaches  based  on  thousands  of  reported  brain  coordinates (Bartley et  al. ,  2018)  and  a  set  of                                

statistical  contrast  maps (Rubin et  al. ,  no  date)  from  a  series  of  published  studies.  But                              

meta-analyses  bring  other  types  of  limitations,  such  as  unbalanced  samples  across  different                        

cognitive  domains (Alamolhoda,  Ayatollahi  and  Bagheri,  2017) ,  publication  bias  towards  positive                      

effects (Dubben  and  Beck-Bornholdt,  2005) ,  as  well  as  over-estimated  effect  sizes  from  small                          

studies (Lin,  2018) .  These  factors  may  bias  the  decoding  analysis  by  falsely  inferring  the  mental                              

states  given  limited  available  studies  (see  discussion  in (Lieberman  and  Eisenberger,  2015;                        

Lieberman    et   al. ,   2016;   Wager    et   al. ,   2016) ).   

To  avoid  these  biases,  an  alternative  approach  has  also  been  proposed  by  training  linear                            

classifiers  on  the  activation  maps  collected  from  a  group  of  individuals  that  have  been  scanned                              

over  a  variety  of  cognitive  tasks (Poldrack,  Halchenko  and  Hanson,  2009;  Bzdok et  al. ,  2016;                              

Varoquaux et  al. ,  2018) .  It  is  worth  noting  that,  by  using parametric  modelling  and  averaging  brain                                

response  across  multiple  trials  and  even  multiple  runs,  it  is  possible  to  achieve  high  accuracy  on                                

the  task  of  distinguishing  different  experimental  conditions,  for  instance  classifying  a  subset  of                          

HCP  tasks (Bzdok et  al. ,  2016) .  The  challenge  here  is  to  achieve  such  high  accuracy  using  a  fully                                    

data-driven  approach  to  infer  cognitive  states  directly  from  a  short  time  series.  This  requires  the                              

decoding  model  to  take  into  account  not  only  the  overall discriminative  patterns  of  brain  response                              

under  different  cognitive  tasks,  but  also  their  temporal  dynamics,  i.e.  changes  of  brain  activations                            

over  time.  Such  brain  dynamics  are  usually  revealed  by  electro-  or  magnetoencephalography                        

(Kietzmann et  al. ,  2019) ,  but  has  also  recently  been  investigated  in  fMRI  studies.  For  instance,                              

Gonzalez-Castillo  and  his  collegues  reported  distinct  shapes  of  task-evoked  hemodynamic                    

responses  among  distributed  brain  networks  during  a  discrimination  task  of  letters  and  numbers                          

(Gonzalez-Castillo et  al. ,  2012) .  Similar  findings  were  also  revealed  in  our  previous  study  that                            

premotor  and  sensorimotor  cortex  showed  different  time  courses  during  the  preparation  and                        

execution  stage  of  a  motor  sequential  task (Orban et  al. ,  2015) .  These  studies  suggest  that  the                                

differences  in  the  shapes  of  hemodynamic  response  can  help  to  distinguish  different  conditions                          
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or  stages  of  cognitive  process.  Accumulated  evidence  suggests  that  it  is  feasible  to  infer                            

cognitive  states  directly  from  a  short  time  window  of  hemodynamic  response.  Early  attempts  in                            

the  field  include  the  reconstruction  of  visual  scenes  and  prediction  of  semantic  context  from                            

natural  movies  by  fitting  a  linear  regression  model  for  fMRI  signals  for  each  individual  voxel                              

(Nishimoto et  al. ,  2011;  Huth et  al. ,  2012) .  These  studies  neglected  the  modular,  and  hierarchical                              

nature   of   brain   organization   by   treating   each   brain   voxel   independently.   

More  complex  and  nonlinear  decoding  models  are  required  in  order  to  incorporate  the                          

high-dimensional  spatiotemporal  dynamics  of  brain  response  that  are  shared  among  distributed                      

brain  networks.  Recently,  promising  results  on  brain  decoding  have  been  shown  by  using  deep                            

artificial  neural  networks  (DNNs).  For  instance,  multiple  cognitive  domains  can  be  distinguished                        

by  applying  convolutional  neural  networks  on  the  whole-brain  hemodynamic  response (Wang et                        

al. ,  2019) .  But  the  temporal  dependence  of  hemodynamic  response  was  interrupted  by  choosing                          

random  time  points  from  the  entire  fMRI  scan.  This  effect  can  be  corrected  by  applying  a                                

recurrent  neural  network  to  brain  activity  instead.  Li  and  Fan  proposed  a  long  short-term  memory                              

(LSTM)  architecture  to  predict  the  cognitive  states  from  fMRI  time-series  of  a  set  of  functional                              

networks (Li  and  Fan,  2019) .  But  this  decoding  model  only  worked  for  a  single  cognitive  domain                                

with  a  fixed  experimental  design  across  all  subjects.  How  to  generalize  it  onto  multiple  cognitive                              

domains  consisting  of  variable  duration  of  task  events  is  unclear.  In  this  study,  we  extend  this  line                                  

of  work  by  combining  the  graph  Laplacian  with  the  DNN  architecture  and  proposed  a  generalized                              

brain  decoding  model  that  takes  into  account  both  the  network  architecture  of  the  human  brain  (in                                

space)   and   the   fluctuations   in   the   task-evoked   BOLD   signals   (in   time).   

 

Brain   decoding   using   graph   convolution   network  

Graph  Laplacian  provides  a  powerful  tool  to  map  the  intrinsic  organization  of  the  human  brain,                              

including  parcellating  brain  areas (Johansen-Berg et  al. ,  2004;  Fan et  al. ,  2016) ,  identifying                          

functional  areas  and  networks (Craddock et  al. ,  2012;  Atasoy,  Donnelly  and  Pearson,  2016) ,  and                            
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generating  connectivity  gradients (Margulies et  al. ,  2016) .  This  approach  works  not  only  on  static                            

brain  connectome  but  also  on  dynamic  brain  signals  that  fluctuate  over  time.  Recently,  studies                            

have  shown  that  graph  Laplacian  captured  different  modes  of  brain  dynamics  by  decomposing                          

the  task-evoked  BOLD  signals  into  different  frequencies (Ortega et  al. ,  2018) .  Convergent                        

evidence  suggests  that  the  low  frequency  modes,  which  have  similar  brain  signals  within  a  local                              

community,  corresponded  to  the  low-level  functions  that  localized  within  certain  brain  regions,                        

such  as  motor  learning (Huang et  al. ,  2016) .  On  the  other  hand,  the  high  frequency  modes,  which                                  

indicate  high  variational  signals  across  brain  networks,  were  associated  with  high-level  cognitions                        

that  distributed  among  multiple  brain  systems,  such  as  cognitive  switch (Medaglia et  al. ,  2018) .                            

We  generalized  this  approach  by  automatically  learning  a  linear  combination  of  the  graph  modes                            

across  multiple  frequencies  through  graph  convolutions,  i.e.  convolving  the  input  fMRI  signals                        

with  a  graph  filter.  The  resultant  decoding  model  not  only  represented  low-level  functions  like                            

movements  of  body  parts,  but  also  embedded  the  high-level  cognitions  such  as  N-back  working                            

memory  and  language  comprehension.  The  results  showed  that  the  decoding  model  achieved                        

high  classification  accuracies  on  these  cognitive  tasks  (Fig  2  and  Fig  2-Supplement  1).  Moreover,                            

the  saliency  maps  indicated  that  the  task  inference  was  drawn  from  brain  response  of  biological                              

meaningful  brain  regions,  for  instance,  the  motor  and  somatosensory  cortex  for  the  motor  task,                            

and  the  perisylvian  language  network  for  the  story  and  math  auditory  statements  (Fig  5),                            

consistent   with   known   brain   anatomy   and   function    (Penfield   and   Boldrey,   1937;   Friederici,   2011) .   

Graph  convolutions  generated  a  new  representation  of  brain  activity  by  integrating  neural                        

dynamics  from  interconnected  brain  regions.  A  variety  of  neural  representations  were  generated                        

by  training  multiple  graph  filters  at  each  GCN  layer.  Specifically,  at  the  first  GCN  layer,  various                                

shapes  of  hemodynamic  responses  were  captured  by  fitting  different  weights  for  each  time  point                            

after  task  onset.  By  stacking  several  GCN  layers,  high-level  graph  representations  were                        

generated  that  integrated  neural  dynamics  not  only  within  specific  brain  networks  but  also  across                            

multiple  networks,  and  even  distributed  across  the  whole  brain.  Our  results  demonstrated  that  the                            
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generated  graph  representations  already  include  task-specific  information  that  discriminates                  

different  experimental  conditions,  for  instance,  showing  the  largest  distances  among  different                      

types  of  movements,  moderate  distance  between  left  and  right  movements,  and  a  small  distance                            

between  the  same  type  of  movements  (Fig  4).  Moreover,  a  strong  association  was  found                            

between  the  model  performance  on  classification  of  graph  representations  and  human                      

performance  on  recognition  of  visual  patterns,  e.g.  reaction  time  of  relational  processing  and                          

pattern  matching  trials  in  scanner  (Fig  3).  A  similar  finding  has  been  reported  previously  that  the                                

high-frequency  graph  mode  was  strongly  associated  with  the  response  time  of  trials  in  a  cognitive                              

switch   task    (Medaglia    et   al. ,   2018) .  

Token  together,  using  brain  graph  convolutional  networks,  our  decoding  model  generates                      

high-level  neural  representations  from  brain  dynamics  and  provides  a  possible  solution  towards                        

domain-general  brain  decoding  by  learning  various  shapes  of  hemodynamic  response  and                      

integrating   such   neural   dynamics   among   multiple   brain   systems.  

 

Temporal   resolution   of   brain   decoding  

The  temporal  resolution  of  brain  decoding  has  been  mostly  ignored  in  previous  studies,  by  either                              

using  meta-analytic  approaches (Rubin et  al. ,  no  date;  Bartley et  al. ,  2018) ,  or  training  classifiers                              

on  activation  maps (Poldrack,  Halchenko  and  Hanson,  2009;  Varoquaux et  al. ,  2018) .  The  recent                            

work  of  Loula  and  colleagues  (2018)  demonstrated  the  feasibility  of  decoding  stimuli  with  short                            

inter-stimuli  intervals.  Temporal  resolution  is  thus  becoming  an  important  factor  for  brain                        

annotation,  especially  when  we  tried  to  infer  cognitive  functions  directly  from  brain  response.  A                            

series  of  impressive  work  has  been  done  in  Gallant's  group,  in  which  the  authors  used  brain                                

response  to  reconstruct  the  visual  frames  of  natural  movies (Nishimoto et  al. ,  2011)  or  to  map                                

more  abstract  concepts  of  visual  objects,  e.g.  semantic  context (Huth et  al. ,  2012) .  But  these                              

studies  did  not  directly  attempt  to  characterize  what  amount  of  temporal  data  is  required  to                              

perform  meaningful  brain  decoding.  The  temporal  resolution  of  fMRI  decoding  is  intrinsically                        
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constrained  by  two  factors,  including  the  acquisition  time  for  a  whole-brain  fMRI  scan  (i.e.  TR)                              

and  the  delay  effect  of  hemodynamic  response.  With  a  common  setting  as  2  second,  the                              

acquisition  time  was  pushed  down  to  a  third  (TR  =  720ms)  in  HCP  database  by  using                                

simultaneous  multislice  acquisitions (Uğurbil et  al. ,  2013) ,  which  brings  opportunities  to                      

investigate   fine-grained   temporal   dynamics   of   brain   activity.  

Using  this  dataset,  Li  and  Fan  successfully  predicted  the  entire  experimental  design  of  the                            

working  memory  task  by  using  a  sliding  window  approach (Li  and  Fan,  2019) .  But  each  time                                

window  still  took  around  30s  of  fMRI  signals  as  input  for  task  inference.  To  which  extent  of  a                                    

shorter  time  window  the  decoding  model  can  work  with  is  still  unexplored.  In  this  study,  we                                

applied  graph  convolutions  on  a  short  series  of  fMRI  signals  and  investigated  the  temporal                            

resolution  of  brain  decoding  by  using  variable  time  windows  of  fMRI  scans,  ranging  from  a  single                                

fMRI  volume  to  the  entire  event  trial.  Leveraging  the  fast  fMRI  acquisition  of  HCP  database,  our                                

model  can  annotate  21  cognitive  conditions  with  a  sub-second  temporal  resolution.  In  the                          

meantime,  the  decoding  performance  was  still  impacted  by  the  task-evoked  hemodynamic                      

response,  for  instance,  higher  decoding  accuracy  by  using  fMRI  signals  after  the  peak  of  HRF                              

than  before  the  peak.  This  phenomenon  was  observed  not  only  for  low-level  functions  like  body                              

movements,  but  also  high-level  cognitions  such  as  working  memory  tasks,  or  even  missing  all                            

experimental   conditions   together   (Table   1   and   Fig   6).   

There  are  still  a  lot  of  challenges  before  achieving  real-time  brain  decoding,  for  instance,  to                              

decode   fast   events   with   a   short   duration   or   even   overlapping   hemodynamic   response.   

 

Limitations   and   future   applications  

In  the  current  project,  we  only  explore  the  block  design  of  task-fMRI  dataset,  i.e.  consisting  of                                

long  events  with  repeated  trials  that  in  total  last  for  more  than  10s.  However,  it  is  still  unclear  how                                      

to  generalize  the  decoding  pipeline  to  naturalistic  stimuli,  for  instance  visual  scenes  from  movies,                            

which  consists  of  short  and  fast-switching  events.  The  measured  BOLD  signals  might  be  a                            
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mixture  of  hemodynamic  responses  evoked  by  different  task  events.  Early  attempts  have  been                          

made  by  adding  independent  regressors  with  delayed  onsets (Nishimoto et  al. ,  2011) .  But  the                            

simple  linear  model  only  generates  a  blurred  image  from  the  average  prediction  of  each  category.                              

One  possible  solution  to  this  problem  is  to  use  a  multi-label  decoding  model  based  on  GCN.                                

Specifically,  given  a  short-series  of  fMRI  signals,  the  model  predicts  a  set  of  cognitive  states                              

instead  of  one  single  task  condition.  Due  to  the  delay  effect  of  hemodynamic  response  that                              

reaches  plateau  around  6s  past  stimulus,  we  can  modify  the  label  matrix  by  prolonging  each                              

event  duration  until  8s  after  the  task  onset  and  allow  multiple  labels  assigned  to  the  same  time                                  

point.   

An  interesting  potential  application  of  our  work  would  be  transfer  learning.  In  natural  image                            

processing,  it  is  common  practice  to  take  a  model  already  trained  on  a  large  dataset,  such  as                                  

AlexNet  trained  on  ImageNet (Krizhevsky,  Sutskever  and  Hinton,  2012) ,  and  fine-tune  the                        

parameters  of  the  trained  model  to  accomplish  a  new  task (Tajbakhsh et  al. ,  2016) .  This  allows                                

training  complex  models  even  in  the  absence  of  extensive  training  data.  This  problem  of  lacking                              

a  sufficiently  large  dataset  for  specific  experimental  questions  is  pervasive  in  medical  imaging.                          

Our  model  was  made  publicly  available  (https://github.com/zhangyu2ustc/GCN_fmri_decoding)              

and  can  be  used  as  a  reference  model  for  domain  adaptation,  possibly  making  contributions  in  a                                

variety  of  domains,  including  neurological  and  psychiatric  disorders.  It  could  also  be  applied  in                            

samples  where  extensive  data  is  acquired  on  a  few  subjects,  such  as  the  individual  brain  charting                                

(IBC)  project (Pinho et  al. ,  2018)  or  the  Courtois  project  on  neuronal  modelling  (neuromod,                            

https://docs.cneuromod.ca).  
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Materials   and   Methods  

fMRI   Datasets   and   Preprocessing  

In  this  project,  we  are  using  the  block-design  task-fMRI  dataset  from  the  Human  Connectome                            

Project  S1200  release.  The  minimal  preprocessed  fMRI  data  of  the  CIFTI  format  were  used,                            

which  maps  individual  fMRI  time-series  onto  the  standard  surface  template  with  32k  vertices  per                            

hemisphere.  The  preprocessing  pipelines  includes  two  steps (Glasser et  al. ,  2013) :  1)                        

fMRIVolume  pipeline  generates  “minimally  preprocessed”  4D  time-series  that  includes  gradient                    

unwarping,  motion  correction,  fieldmap-based  EPI  distortion  correction,  brain-boundary-based                

registration  of  EPI  to  structural  T1-weighted  scan,  non-linear  (FNIRT)  registration  into  MNI152                        

space,  and  grand-mean  intensity  normalization.  2)  fMRISurface  pipeline  projects  fMRI  data  from                        

the  cortical  gray  matter  ribbon  onto  the  individual  brain  surface  and  then  onto  template  surface                              

meshes,  followed  by  surface-based  smoothing  using  a  geodesic  Gaussian  algorithm.  Further                      

details  on  fMRI  data  acquisition,  task  design  and  preprocessing  can  be  found  in (Barch et  al. ,                                

2013;   Glasser    et   al. ,   2013) .  

 

The  task  fMRI  data  includes  seven  cognitive  tasks,  which  are  emotion,  gambling,  language,                          

motor,  relational,  social,  and  working  memory.  In  total,  there  are  23  different  experimental                          

conditions.  Considering  the  short  event  design  nature  of  the  gambling  trials  (1.5s  for  button                            

press,  1s  for  feedback  and  1s  for  ITI),  we  evaluated  the  decoding  models  (see  the  pipeline                                

section  below)  with  and  without  the  two  gambling  conditions  and  found  a  much  lower  precision                              

and  recall  scores  for  gambling  task  (average  f1-score  =  61%)  than  other  cognitive  domains                            

(average  f1-score  91%).  In  the  following  experiments,  we  excluded  the  two  gambling                          

conditions  and  only  reported  results  on  the  remaining  21  cognitive  states.  The  detailed                          

description  of  the  tasks  can  be  found  in (Barch et  al. ,  2013) .  A  summary  table  is  also  shown  in                                      

Table   2.   
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Table   2.   Scanning   parameters   and   experimental   designs   of   HCP   task-fMRI   dataset.  
  

Task  
Domains  

#Subjects   #Runs   #Volumes  
per   run  

#Trials  
per   run  

#Conditions   Minimal  
duration   per  
block   (sec)  

Working  
memory  

1085   2   405   8   8   25  

Motor   1083   2   284   10   5   12  

Language   1051   2   316   8   2   10  

Social  
Cognition  

1051   2   274   5   2   23  

Relational  
processing  

1043   2   232   6   2   16  

Emotion   1047   2   176   6   2   18  

 

Motor   task  

Participants  are  presented  with  visual  cues  that  ask  them  to  either  tap  their  fingers,  or  squeeze                                

toes,  or  move  the  tongue.  Each  block  of  a  movement  type  (hand,  foot  or  tongue)  is  preceded  by                                    

a  3s  cue  and  lasts  for  12s.  In  each  of  the  two  runs,  there  are  13  blocks  in  total,  including  2  blocks                                            

of  tongue  movements,  4  of  hand  movements  and  4  of  foot  movements,  as  well  as  3  additional                                  

fixation   blocks   (15s)   in   the   middle   of   each   run.   

Language   task  

The  language  task  consists  of  two  conditions,  i.e.  story  or  mathematics,  with  variable  duration  of                              

auditory  statements.  During  the  story  trials,  participants  listen  to  brief  auditory  stories  (5-9                          

sentences)  adapted  from  Aesop’s  fables,  followed  by  a  two-alternative-choice  question  and                      

response  on  the  topic  of  the  story.  In  the  math  trials,  participants  are  presented  with  a  series  of                                    
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arithmetic  operations,  e.g.  addition  and  subtraction,  followed  by  a  two-alternative-choice  question                      

and  response  about  the  result  of  the  operations.  The  math  task  is  adaptive  to  maintain  a  similar                                  

level  of  difficulty  across  participants.  Overall,  the  mathematical  trials  lasts  around  12-15  seconds                          

while   the   story   trials   lasts   25-30   seconds.  

Working   memory   task  

The  working  memory  task  involves  two-levels  of  cognitive  functions,  with  a  combination  of  the                            

category  recognition  task  and  N-Back  memory  task.  Specifically,  participants  are  presented  with                        

pictures  of  places,  tools,  faces  and  body  parts.  These  4  different  stimulus  types  are  presented  in                                

separate  blocks,  with  half  of  the  blocks  using  a  2-back  working  memory  task  (showing  the  same                                

image  after  two  image  blocks)  and  the  other  half  using  a  0-back  working  memory  task  (showing                                

the  same  image  in  the  next  block).  Each  of  the  two  runs  contains  8  task  blocks  and  4  fixation                                      

blocks  (15s).  Each  task  block  consists  of  a  2.5s  cue  indicating  the  task  type,  followed  by  10  task                                    

trials  (2.5s  each).  For  each  task  trial,  the  stimulus  is  presented  for  2  seconds,  followed  by  a  500                                    

ms   inter-task   interval   (ITI)   when   participants   need   to   respond   as   target   or   not.   

Social   Cognition   task  

Participants  are  presented  with  short  video  clips  of  objects  (squares,  circles,  triangles)  that  either                            

interacted  in  some  way,  or  moved  randomly  on  the  screen.  After  each  video  clip,  participants                              

need  to  judge  whether  the  objects  had  a  mental  interaction  ,  Not  Sure,  or  No  interaction.  Each  of                                    

the  two  runs  contains  5  video  blocks  (20s)  and  5  fixation  blocks  (15s).  There  are  equal  length  of                                    

video  blocks  between  the  types  of  conditions  among  the  2  task  runs  (2  Mental  and  3  Random  in                                    

run   1,   3   Mental   and   2   Random   in   run   2)   

Relational   Processing   task  

The  task  consists  of  two  conditions,  i.e.  relational  processing  and  matching.  In  the  relational                            

processing  condition,  participants  are  presented  with  2  pairs  of  objects,  which  are  shown  in  6                              

different  shapes  and  filled  with  6  different  textures.  Participants  need  to  first  decide  whether  the                              
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top  pair  of  objects  differ  in  shape  or  texture  and  then  make  the  final  decision  whether  the  bottom                                    

pair  differ  along  that  same  dimension.  Each  relational  block  consists  of  4  task  trials,  where  the                                

stimuli  are  presented  for  3500  ms  followed  by  a  500  ms  ITI.  In  the  control  matching  condition,                                  

only  one  top  pair  of  objects  and  one  bottom  object  are  presented.  Additionally,  the  matching                              

dimension  is  specified  by  a  cue  word  presented  in  the  middle  of  the  screen  (either  “shape”  or                                  

“texture”).  Participants  need  to  decide  whether  the  bottom  object  matches  either  of  the  top                            

objects  on  that  dimension.  Each  matching  block  consists  of  5  task  trials,  where  the  stimuli  are                                

presented  for  2800  ms  followed  by  a  400  ms  ITI.  In  each  of  the  two  runs,  there  are  3  relational                                        

blocks,   3   matching   blocks   and   3   fixation   blocks   (16s).   Each   task   block   lasts   16   seconds.    

Emotion   Processing  

The  task  consists  of  two  conditions,  i.e.  face  or  shape  images.  Participants  need  to  match  the                                

two  images  presented  on  the  bottom  of  the  screen  to  the  target  image  whether  the  image  shown                                  

at  the  top  of  the  screen.  The  face  images  can  have  either  an  angry  or  fearful  expression.  In  each                                      

of  the  two  runs,  there  are  3  face  blocks,  3  shape  blocks  and  1  fixation  block  (8s)  at  the  end  of                                          

each  run.  Each  task  block  is  preceded  by  a  3s  task  cue  indicating  the  task  type  (“shape”  or                                    

“face”),  followed  by  6  task  trials  (3s  each).  For  each  task  trial,  the  stimulus  is  presented  for  2                                    

seconds,  followed  by  a  1  second  ITI  when  participants  need  to  respond  to  which  of  the  bottom                                  

images   matches   the   target.   

 

Convolutional   Neural   Networks   on   Brain   Graphs  

Graph  Laplacian  and  graph  signal  processing  (GSP)  provides  a  generalized  framework  to                        

analyze  data  defined  on  irregular  domains,  for  instance  social  networks,  biological  interactions                        

and  brain  graphs.  A  brain  graph  captures  a  network  representation  of  brain  organization  by                            

associating  nodes  with  brain  regions  and  defining  edges  via  anatomical  or  functional  connections                          

(Bullmore  and  Sporns,  2009) .  Based  on  this  representation,  a  non-linear  embedding  tool  can  be                            
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used  to  project  brain  activity  from  large-scale  noisy  measures  in  the  spatial  domain  to                            

low-dimensional  representations  in  the  spectrum  domain (Ortega et  al. ,  2018) .  This  method  has                          

gained  more  and  more  attention  in  neuroscience  studies,  for  instance  parcellating  brain  areas                          

(Johansen-Berg et  al. ,  2004;  Fan et  al. ,  2016) ,  identifying  functional  areas  and  networks                          

(Craddock et  al. ,  2012;  Atasoy,  Donnelly  and  Pearson,  2016) ,  and  generating  connectivity                        

gradients (Margulies et  al. ,  2016) .  Recently,  studies  have  found  that,  by  decomposing  the                          

task-evoked  fMRI  signals  using  GSP,  the  resultant  graph  representations  strongly  associated  with                        

cognitive  performance  and  learning (Huang et  al. ,  2016;  Medaglia et  al. ,  2018) .  These  findings                            

brought   new   opportunities   for   the   application   of   GSP   on   neuroimaging   analysis.   

Definition   of   Brain   graph  

Starting  with  assigning  a  brain  signal ,  i.e.  a  short  time-series  with  duration  of ,  to                                

each  of  brain  regions,  GSP  maps  the  recorded  brain  activity  onto  a  weighted  graph                              

 that  defines  the  network  architecture  among  a  set  of  brain  regions.  The  set  is                                

a  parcellation  of  cerebral  cortex  into  regions,  and  is  a  set  of  connections  between  each  pair                                    

of  brain  regions,  with  its  weights  defined  as .  Many  alternative  approaches  can  be  used  to                                

build  such  brain  graph ,  for  instance  using  different  brain  parcellation  schemes  and  constructing                            

various  types  of  brain  connectomes  (for  a  review,  see (Bullmore  and  Sporns,  2009) ).  Here  we                              

used  the  multimodal  cortical  parcellation  defined  based  on  210  subjects  from  Human                        

Connectome  Project  (HCP) (Glasser et  al. ,  2016) ,  which  delineates  180  areas  per  hemisphere,                          

bounded  by  sharp  changes  in  cortical  architecture,  function,  connectivity,  and  topography.  The                        

edges  between  brain  areas  were  estimated  by  calculating  the  group  averaged  resting-state                        

functional  connectivity  (RSFC)  based  on  minimal  preprocessed  resting-state  fMRI  data  from                      

 HCP  subjects (Glasser et  al. ,  2013) .  Additional  preprocessing  steps  were  applied                        

before  the  calculation  of  RSFC,  including  regressing  out  the  signals  from  white  matter  and  csf,                              

and  bandpass  temporal  filtering  on  frequencies  between  0.01  to  0.1  HZ.  Functional  connectivity                          
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was  first  calculated  on  individual  brains  using  Pearson  correlation  and  then  normalized  using                          

Fisher  z-transform  before  averaging  among  the  entire  group  of  subjects.  After  that,  a                          

k-nearest-neighbour  (k-NN)  graph  was  built  by  only  connecting  each  brain  region  to  its  8                            

neighbours   with   highest   connectivity.  

 

Graph   Laplacian   and   Graph   Fourier   transform  

The  spectral  analysis  of  the  graph  signals  relies  on  the  graph  Laplacian,  which  maps  the  signal                                

distributions  from  the  spatial  domain  to  the  graph  spectral  domain  and  decomposes  the  signals                            

into  a  series  of  graph  modes  with  different  frequencies.  Specifically,  the  normalized  graph                          

Laplacian   matrix   is   defined   as:  

(Eq.   1)  

where  is  a  diagonal  matrix  of  node  degrees  and  is  the  identity  matrix.  As  we  assume  the                                      

weights  to  be  undirected  and  symmetric,  the  matrix  can  be  factored  as ,  where                              

 is  the  matrix  of  Laplacian  eigenvectors  and  is  also  called  graph  Fourier                          

modes,  and  is  a  diagonal  matrix  of  the  corresponding  eigenvalues,                      

specifying  the  frequency  of  the  graph  modes.  In  other  words,  the  eigenvalues  quantify  the                            

smoothness  of  signal  changes  on  the  graph,  while  the  eigenvectors  indicate  the  patterns  of                            

signal  distribution  on  the  graph.  This  eigendecomposition  can  be  interpreted  as  a  generalization                          

of  the  standard  Fourier  basis  onto  a  non-Euclidean  domain (Shuman et  al. ,  2013;  Bronstein et                              

al. ,  2017) .  Based  on  the  eigendecomposition,  the  graph  Fourier  transform  is  defined  as                          

 and  its  inverse  as ,  where  is  the  graph  signal  and                          

 is  the  transformed  signal  with  selected  eigenvectors  or  graph  modes.  The                          

Laplacian  matrix  and  these  transformations  are  the  fundamental  basis  of  graph  signal  processing                          

and   graph   convolutional   networks.  
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Graph   Convolutional   Networks:   spectral  

Recently,  graph  convolutional  neural  networks  (GCN)  was  proposed  to  merge  graph  signal                        

processing  with  the  deep  neural  network  architecture (Bruna et  al. ,  2013) .  The  key  step  is  to                                

generalize  the  convolution  operations  onto  the  graph  domain.  Instead  of  calculating  a  weighted                          

sum  among  the  spatial  neighbours  in  the  Euclidean  space  as  in  a  classical  convolutional  neural                              

network (Krizhevsky,  Sutskever  and  Hinton,  2012) ,  GCN  generates  a  linear  combination  of  graph                          

Fourier  modes  across  different  frequencies  by  using  graph  filters.  Specifically,  the  convolution                        

between  the  graph  signal  and  a  graph  filter  (independent  weight  matrix                          

for  each  temporal  channel)  based  on  graph ,  is  defined  as  their  element-wise  Hadamard                            

product   in   the   spectral   domain,   i.e.:  

(Eq.   2)  

where  and  indicates  a  parametric  model  for ,  and  is  actually                            

projecting  the  graph  signal  onto  the  full  spectrum  of  graph  modes.  With  different  choices  of                                

GCN  learns  different  types  of  graph  filters  and  finds  the  optimal  graph  representations  of  the                              

input   signals   for   a   given   task.  

 

Graph   Convolutional   Networks:   ChebNet  

To  avoid  calculating  the  spectral  decomposition  of  the  graph  Laplacian,  especially  for  large-scale                          

graphs,  ChebNet  convolution (Defferrard,  Bresson  and  Vandergheynst,  2016)  uses  a  truncated                      

expansion   of   the   Chebychev   polynomials,   which   are   defined   recursively   by:   

       (Eq.   3)  

Consequently,   the   graph   convolution   is   defined   as:   

(Eq.   4)  
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where  is  a  normalized  version  of  graph  Laplacian,  equals  to ,  with  being  the                                

largest  eigenvalue,  is  the  parameter  to  be  learned  for  each  order  of  the  Chebychev                              

polynomials,  

 

Graph   Convolutional   Networks:   1st-order  

Kipf  and  colleagues (Kipf  and  Welling,  2016)  introduced  a  simplified  version  of  GCN  by  taking  a                                

first-order   approximation   of   the   above   Chebychev   polynomial   expansion   and   :  

    (Eq.   5)  

where     is   a   single   parameter   to   be   learned   and     is   the   weight   matrix   for   brain   connectome.   

 

Graph   Convolutional   Networks:   multi-layer  

Complex   signal   representations   can   be   learned   by   stacking   multiple   layers   of   graph   convolutions.  

The   output   of   a   graph   convolution   layer   is   defined   as:  

  (Eq.   6)  

where  denotes  the  matrix  of  input  graph  signals  on  layer ,  with  brain  regions                                

and  graph  filters.  To  be  noted  that  in  the  first  graph  convolution  layer,  is  equal  to  the                                      

number  of  temporal  channels  of  the  input  graph  signal .  is  the  parameters  to                              

be  learned  on  layer  with  income  filters  (equals  to  the  input  temporal  channels  for  the  first                                    

graph  convolution  layer)  and  outcome  filters.  These  parameters  are  shared  among  all                          

nodes  on  layer .  denotes  an  activation  function,  such  as  the .  It's                            

worth  noting  that  the  first-order  GCN  only  takes  into  account  the  direct  neighbours  for  each  brain                                

region  which  are  indicated  by  the  adjacency  matrix  of  the  graph.  By  stacking  multiple  GCN                              

layers,  we  could  propagate  brain  activity  among  the -order  neighbourhood,  i.e.  connecting  two                          

nodes  by  passing  other  neighbours  in  between,  with  is  the  number  of  convolution  layers.                                
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In  the  following  analysis,  we  are  using  the  multi-layer  architecture  of  1st-order  GCN  for  brain                              

decoding.  

Brain   State   Annotation   pipeline  

We  propose  a  brain  state  annotation  model  consisting  of  6  graph  convolutional  layers  with  32                              

graph  filters  at  each  layer,  followed  by  a  global  average  pooling  layer  and  2  fully  connected                                

layers.  Specifically,  in  the  first  GCN  layer,  we  treat  the  short  series  of  fMRI  volumes  as  multiple                                  

input  channels,  with  being  a  2D  matrix  consisting  of  brain  regions  and  time                                

steps.  During  model  training,  the  first  GCN  layer  learns  various  versions  of  the  spatiotemporal                            

convolution  kernel  (integrating  information  from  graph  neighbors  in  space,  and  training  separate                        

kernels  for  each  time  step)  for  fMRI  time-series,  as  a  replacement  of  the  canonical  hemodynamic                              

response  function  (HRF).  The  model  takes  a  short  series  of  fMRI  data  as  input,  propagates                              

information  among  inter-connected  brain  regions  and  networks,  generates  a  high-order  graph                      

representation  and  finally  predicts  the  corresponding  cognitive  labels  as  a  multi-class                      

classification   problem.   An   overview   of   the   fMRI   decoding   model   was   illustrated   in   Fig   1.   

The  entire  dataset  was  split  into  training  (70%),  validation  (10%),  test  (20%)  sets  using  a                              

subject-specific  split  scheme,  which  ensures  that  all  fMRI  data  from  the  same  subject  was                            

assigned  to  one  of  the  three  sets.  Specifically,  for  each  subject  and  each  cognitive  domain,                              

individual  fMRI  time-series  on  the  64k  surface  template  (including  both  hemispheres)  was  first                          

mapped  onto  the  360  areas  of  Glasser  atlas (Glasser et  al. ,  2016) ,  by  averaging  the  BOLD                                

signals  within  each  parcel.  The  time-series  of  each  task  trial  was  extracted  and  saved  into  a  2D                                  

matrix,  by  first  realigning  fMRI  signals  with  experimental  designs  of  event  tasks  using  task  onsets                              

and  durations  and  then  cutting  the  time-series  into  bins  of  selected  time  window  (see Time                              

window section  below).  Next,  the  time-series  matrices  from  all  training  subjects  were  collected                          

into  a  pool  of  data  samples.  At  each  step  of  model  training,  a  set  of  data  samples  (e.g.  128                                      

time-series  matrices)  was  input  to  the  decoding  model  and  the  parameter  matrix  of  each  layer                                
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were  optimized  through  gradient  descent.  After  all  data  samples  have  been  trained  (i.e.  finishing                            

one  epoch),  the  model  was  then  evaluated  on  the  samples  from  the  validation  set  before  the  next                                  

epoch  started.  The  best  model  with  the  highest  prediction  score  on  the  validation  set  was  saved                                

and  then  evaluated  separately  on  the  test  set.  There  are  mainly  two  types  of  decoding  models                                

used  in  this  study,  either  training  by  exclusively  using  fMRI  data  from  a  single  cognitive  domain  or                                  

combining  fMRI  data  from  multiple  cognitive  domains.  The  rectified  linear  unit  (ReLU)  function                          

(Maas,  Hannun  and  Ng,  2013)  was  used  as  the  activation  function  for  all  layers  except  the  last                                  

layer  where  the  softmax  function  was  used  to  predict  the  cognitive  labels.  The  network  was                              

trained  for  100  epochs  with  the  batch  size  set  to  128.  We  used  Adam  as  the  optimizer  with  the                                      

initial  learning  rate  as  0.001.  Additional  l2  regularization  of  0.0005  on  weights  was  used  to  control                                

model  overfitting  and  the  noise  effect  of  fMRI  signals.  Dropout  of  0.5  was  additionally  applied  to                                

the  neurons  in  the  last  two  fully  connected  layers.  The  implementation  of  the  GCN  model  was                                

based  on  Tensorflow  1.12.0,  and  was  made  publicly  available  in  the  following  repository:                          

https://github.com/zhangyu2ustc/GCN_fmri_decoding.git    .  

 

Time   window   of   fMRI   data  

As  mentioned  above,  we  treated  the  fMRI  time  windows  as  multiple  input  channels  in  the  first                                

layer  of  GCN  model.  There  are  several  benefits  of  using  multiple  input  channels.  First,  the                              

network  is  enriched  with  more  low-level  graph  filters,  which  provides  more  diverse  features  for                            

the  high-level  graph  convolutions.  Second,  with  long  enough  fMRI  time  series,  the  network  trains                            

its  own  versions  of  the  convolution  kernel  based  on  the  fluctuation  of  task-evoked  BOLD  signals,                              

as  a  replacement  of  the  canonical  HRF,  that  typically  includes  a  small  initial  dip,  followed  by  a                                  

dominant  peak  at  4-6s  after  the  onset  of  neural  activity,  and  then  a  variable  post-stimulus                              

undershoot  around  8-12s  after  onset (Buxton,  Wong  and  Frank,  1998) .  In  the  meantime,  the                            

different  shapes  of  fluctuations  are  also  informative  regarding  the  cognitive  states  and  could  help                            

the   GCN   model   in   state   annotation.   
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To  test  this  effect,  we  first  trained  a  GCN  model  with  only  one  input  channel,  i.e.  using  a  single                                      

fMRI  volume  as  input  and  predicting  the  cognitive  label  associated  with  that  fMRI  volume.  It’s                              

worth  noting  that,  according  to  this  design,  each  fMRI  volume  during  the  task  event  (from  task                                

onset  to  the  end  of  each  task  trial)  was  treated  as  an  independent  data  sample.  As  a  result,  brain                                      

response  at  different  stages  of  task-evoked  hemodynamic  response  was  embedded  by  learning                        

multiple  graph  filters  during  model  training.  Thus,  we  could  evaluate  the  performance  of  GCN                            

annotation  as  a  function  of  time-elapsed-from-onset,  ranging  from  0  to  the  length  of  the  entire                              

task  trial.  F1-score (Powers,  2011)  was  used  as  a  measure  of  the  prediction  accuracy,  which  is                                

the  harmonic  average  of  the  precision  and  recall,  with  its  best  value  at  1  (perfect  precision  and                                  

recall)   and   worst   at   0.   

Considering  the  low  temporal  signal-to-noise  ratio  of  fMRI  acquisition,  especially  for  a  single  fMRI                            

volume,  we  tested  the  same  procedure  with  6s  of  fMRI  time  series  which  includes  8  input                                

channels  at  the  first  convolution  layer.  Specifically,  the  fMRI  time-series  of  all  task  trials  were  first                                

cut  into  non-overlapping  mini-blocks  of  6s  time  window.  For  instance,  as  for  the  12s  movement                              

trials  from  the  motor  task,  we  compared  the  GCN  performance  in  predicting  different  types  of                              

movements  at  time  bins  of  0-6s  vs  6-12s  after  task  onset.  These  short  bins  of  time-series  were                                  

treated  as  independent  data  samples  during  model  training.  For  those  task  trials  shorter  than                            

12s,  we  applied  a  neighborhood  wrapping  method  by  using  numpy.take.  For  instance,  some  of                            

the  mathematical  task  trials  only  last  for  10s.  In  order  to  match  the  time  window  of  the  input  fMRI                                      

data,   we   repeated   the   fMRI   scan   at   the   end   of   the   task   trial   several   times   matching   for   12s.  

Other  time  windows  were  also  evaluated,  ranging  from  a  single  fMRI  volume  (0.72s)  to  the                              

minimal  duration  of  all  task  trials  (10s)  at  a  step  of  two  TRs  (1.4s).  The  decoding  accuracies  on                                    

the  test  set  were  fitted  with  an  exponential  function  and  summarized  by  averaging  the                            

performance   within   each   cognitive   domain.  
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Size   of   the   dataset  

The  Human  Connectome  Project  recruits  1200  healthy  participants.  It  also  provides  us  an                          

opportunity  to  evaluate  the  sample  size  effect,  i.e.  how  many  independent  subjects  were                          

sufficient  to  reach  the  stable  performance  of  GCN.  To  test  that,  we  scanned  over  the  entire                                

task-fMRI  dataset  and  selected  the  first  N  complete  subjects,  who  had  completed  the  7  cognitive                              

tasks  with  2  runs.  The  tested  sample  size  ranges  from  14  to  1060  subjects.  The  time  window  was                                    

fixed   as   10s   for   this   test.   

Saliency   map   of   graph   convolutions  

In  addition  to  high  classification  accuracy,  good  interpretability  is  also  very  important  for  brain                            

decoding.  In  our  case,  we  need  to  map  which  discriminative  features  in  the  brain  help  to                                

differentiate  different  cognitive  task  conditions.  There  are  several  ways  to  visualize  a  deep  neural                            

network,  including  visualizing  layer  activation (Springenberg et  al. ,  2014)  and  filters (Olah,                        

Mordvintsev  and  Schubert,  2017) ,  and  heatmaps  of  class  activation (Selvaraju et  al. ,  2017) .                          

Here,  we  chose  the  first  method  due  to  its  easy  implementation  and  generalization  to  graph                              

convolutions.  The  basic  idea  is  that  if  an  input  is  relevant,  a  little  variation  on  it  will  cause  high                                      

change  in  the  layer  activation.  This  can  be  characterized  by  the  gradient  of  the  output  given  the                                  

input,  with  the  positive  gradients  indicating  that  a  small  change  to  the  input  signals  increases  the                                

output  value.  To  visualize  the  gradients,  we  could  simply  use  a  backward  pass  of  the  activation  of                                  

a  single  unit  through  the  network.  However,  this  type  of  map  is  usually  very  noisy,  and                                

uninversible  pooling  operations  and  nonlinear  activation  functions  can  bias  the  gradient.  To                        

alleviate  these  problems,  Springenberg  and  his  colleagues  proposed  to  suppress  the  flow  of                          

gradients  through  neurons  wherein  either  of  input  or  incoming  gradients  were  negative                        

(Springenberg et  al. ,  2014) .  Specifically,  for  the  graph  signal  of  layer  and  its  gradient ,                                  

the   overwritten   gradient     can   be   calculated   as   follows:  

       (Eq.   7)  
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In  order  to  generate  the  saliency  map,  we  started  from  the  output  layer  of  a  pre-trained  model                                  

and  used  the  above  chain  rule  to  propagate  the  gradients  at  each  layer  until  reaching  the  input                                  

layer.  This  guided-backpropagation  approach  can  provide  a  high-resolution  saliency  map  which                      

has  the  same  dimension  as  the  input  data.  Since  we  have  used  multiple  time  channels  in  the  first                                    

layer  of  the  GCN  model,  the  approach  also  provides  one  saliency  map  per  time  step.  We  further                                  

calculated  a  heatmap  of  saliency  maps  by  taking  the  variance  across  the  time  steps  for  each                                

parcel.  Since  each  task  condition  can  evoke  different  shapes  of  hemodynamic  response,  the                          

variance  of  the  saliency  curve  provides  a  simplified  way  to  evaluate  the  contribution  of                            

task-evoked  hemodynamic  response.  This  saliency  value  was  additionally  normalized  to  the                      

range  [0,1],  with  its  highest  value  at  1  (a  dominant  effect  for  task  prediction)  and  lowest  at  0  (no                                      

contribution  to  task  prediction).  Note  that  the  saliency  maps  were  generated  by  using  the                            

decoding  model  trained  from  a  single  cognitive  domain  with  a  time  window  as  long  as  the  event                                  

trials.    
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Fig   2-Supplement   1.    Confusion   matrix   and   F1-scores   of   the   six   cognitive   domains.   

The  normalized  confusion  matrix  (A)  indicates  the  sensitivity  of  each  cognitive  domain  by                          

averaging  the  recall  score  within  each  of  the  six  domains.  Relational  processing  and  working                            

memory  showed  the  lowest  sensitivity,  with  some  misclassifications  between  emotion/relational                    

processing  and  working  memory  tasks.  A  similar  trend  was  shown  in  the  F1-scores  of  GCN                              

annotation  using  the  decoding  model  either  trained  on  multiple  domains  simultaneously  (B)  or                          

exclusively  using  a  single  domain  (C).  Both  of  them  showed  the  highest  decoding  accuracy  for                              

language  and  motor  tasks  and  the  lowest  for  relational  processing  and  working  memory  tasks.                            

Comparing  the  two  models,  a  significant  improvement  of  prediction  accuracy  was  also  shown  for                            

all   cognitive   domains.  
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Fig  2-Supplement  2.  Misclassification  table  for  the  relational  processing  (A)  and  working                        

memory   tasks   (B).   

The  confusion  matrix  was  either  extracted  from  the  domain-general  decoding  model  which                        

encodes  21  cognitive  conditions  simultaneously  (left  panel)  or  calculated  using  a  separate                        

decoding  model  for  every  single  cognitive  domain  (right  panel).  ALL  decoding  models  were                          

trained  using  10s  of  fMRI  time  series.  A  similar  level  of  misclassification  rates  was  found  for  the                                  

two  types  of  decoding  models,  with  a  slight  improvement  of  prediction  accuracy  for  the  model                              

trained   exclusively   from   a   single   domain.  
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Fig   5-Supplement   1.   Meta-analysis   of   language,   motor,   and   working   memory   tasks.   

Meta-analysis  was  conducted  by  searching  for  keywords  in  neuroquery (Dockès et  al. ,  2020) .  For                            

language  task  (A),  we  used  the  keyword  “story”  for  language  condition  and  “addition+subtraction”                          

for  the  mathematical  condition.  For  motor  task  (B),  we  used  the  keyword  “hand  movement”  for                              

hand  condition,  “foot+motor”  for  foot  condition,  “tongue+motor”  for  tongue  condition.  For  the                        

0-back  working  memory  task  (C),  we  used  the  keyword  “face  recognition”  for  face  condition,                            

“body  image”  for  body  condition,  “place+image”  for  place  condition,  “tool+image”  for  tool                        

condition.  The  downloaded  brain  maps  were  first  projected  to  the  template  surface                        

“HCP_S1200_GroupAvg_v1  ''  using  the  ciftify  tool  ( https://github.com/edickie/ciftify )  and  then                  

mapped  onto  Glasser’s  atlas (Glasser et  al. ,  2016)  for  visualization.  Only  brain  parcels  with                            

z-score  above  3.0  were  shown  here  to  represent  significant  involvement  of  brain  regions  under                            

the  corresponding  condition.  Note  that  the  activation  maps  of  the  three  conditions  of  the  motor                              
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task  were  not  easily  differentiated  here  mainly  due  to  the  primary  motor  and  somatosensory                            

cortex   being   parcellated   into   single   strips   in   the   Glasser’s   atlas    (Glasser    et   al. ,   2016) .  

 

 

 

 

Fig  5-Supplement  2.  Activation  maps  of  language,  motor  and  working  memory  tasks  from                          

HCP.  

The  contrast  maps  of  HCP  tasks (Barch et  al. ,  2013)  were  downloaded  from  neurovault                            

( https://neurovault.org/collections/457/ ),  which  contained  a  list  of  group-level  z-stat  maps  for  the                      

task  conditions.  For  language  task  (A),  we  showed  the  contrast  of  “Story  vs  Baseline”  and  “Math                                

vs  Baseline”.  For  motor  task  (B),  we  showed  the  contrast  of  “Right  Hand  vs  Baseline”,  “Right  foot                                  

vs  Baseline”  and  “Tongue  vs  Baseline”.  For  the  0-back  working  memory  task  (C),  we  showed  the                                
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contrast  of  “0back  Place  vs  Baseline”,  “0back  Face  vs  Baseline”,  “0back  Body  vs  Baseline”  and                              

“0back  Tool  vs  Baseline”.  The  downloaded  contrast  maps  were  first  projected  to  the  template                            

surface  “HCP_S1200_GroupAvg_v1  ''  using  the  ciftify  tool  ( https://github.com/edickie/ciftify )  and                  

then  mapped  onto  Glasser’s  atlas (Glasser et  al. ,  2016)  for  visualization.  Only  brain  parcels  with                              

z-score  above  5.0  were  shown  here  to  represent  strong  brain  activations  under  the                          

corresponding   condition.   

 

 

 

 

Fig   5-Supplement   3.   Meta-analysis   and   contrast   maps   for   the   motor   task  

Meta-analysis  (A)  was  conducted  by  searching  for  the  keywords  in  neuroquery (Dockès et  al. ,                            

2020) .  We  used  the  keyword  “hand  movement”  for  hand  condition,  “foot+motor”  for  foot  condition,                            

“tongue+motor”  for  tongue  condition.  The  contrast  maps  of  HCP  tasks  (B)  were  downloaded  from                            

neurovault  ( https://neurovault.org/collections/457/ ).  We  only  showed  the  contrast  of  “Right  Hand                    

vs  Baseline”,  “Right  foot  vs  Baseline”  and  “Tongue  vs  Baseline”  here.  Both  activation  maps  from                              

meta-analysis  and  contrast  maps  from  the  HCP  database  were  projected  to  the  template  surface                            

“HCP_S1200_GroupAvg_v1   ''   for   visualization.  
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Fig  6-Supplement  1.  State  annotation  of  relational  processing  and  working  memory                      

conditions   requires   more   than   10s   to   reach   a   plateau.   

The  GCN  model  was  trained  based  on  the  combination  of  all  conditions  from  the  relational                              

processing  and  working  memory  tasks.  With  the  minimal  duration  of  working  memory  task  trials                            

lasting  for  25s  and  relational  reprocessing  trials  lasting  for  16s,  we  evaluated  the  model  with                              

variable  time  windows,  including  a  single  fMRI  volume  (cyan:  0.7s),  9  TRs  (yellow:  6.3s),  15  TRs                                

(green:  10.5s)  and  22  TRs  (purple:  16s).  Among  all  the  experimental  conditions, relational                          

processing  and  recognition  of  tool  images  showed  the  lowest  prediction  scores  at  all  levels  of                              

time   windows.  
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Fig   7-Supplement   1.   Performance   of   GCN   annotation   using   a   6s   window   of   fMRI   signals.   

Task  trials  were  split  into  mini-blocks  with  a  temporal  duration  of  6s.  Event  blocks  from  the  motor                                  

task  last  for  12s  and  thus  were  split  into  2  mini-blocks  of  6s  time  window.  Event  blocks  from  the                                      

working  memory  task  last  for  25s  and  thus  were  split  into  4  mini-blocks  of  6s  time  windows.                                  

These  mini-blocks  were  treated  as  independent  samples  during  model  training.  We  also  trained                          

and  evaluated  separate  decoding  models  for  each  of  the  time  windows,  by  exclusively  using  the                              

fMRI   time   series   from   the   corresponding   time   bins.  
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