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ABSTRACT	

Scoring	 is	 a	 challenging	 step	 in	 protein-protein	 docking,	where	 typically	 thousands	 of	

solutions	 are	 generated.	 Successful	 scoring	 is	 more	 often	 based	 on	 physicochemical	

evaluation	 of	 the	 generated	 interfaces	 and/or	 statistical	 potentials	 that	 reproduce	

known	 interface	 properties.	 Another	 route	 is	 offered	 by	 consensus-based	 rescoring,	

where	 the	 set	 of	 solutions	 is	 used	 to	 build	 statistics	 in	 order	 to	 identify	 recurrent	

solutions.	We	explore	several	ways	to	perform	consensus-based	rescoring	on	the	ZDOCK	

decoy	set	for	Benchmark	4.	We	show	that	the	information	of	the	interface	size	is	critical	

for	successful	rescoring.	We	combine	consensus-based	rescoring	with	the	ZDOCK	native	

scoring	function	and	show	that	this	improves	the	initial	results.	
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INTRODUCTION		
	
Protein-protein	docking	aims	at	predicting	the	structure	of	a	complex	starting	from	the	

structures	 of	 isolated	 components	1,	 2.	 The	 CAPRI	 community-wide	 initiative	 allows	 a	

blind	 assessment	 of	 the	 participant	 methods	 on	 common	 data	 sets	 and	 evaluation	

criteria,	offering	an	updated	view	of	progress	in	the	field	since	2001	3–5.	Protein-protein	

docking	 methods	 typically	 generate	 thousands	 of	 potential	 solutions	 for	 a	 particular	

complex.	Scoring	the	models	to	discriminate	near-native	solutions	is	a	known	bottleneck	

of	docking	methods	6–8.	Most	scoring	functions	are	physics-based,	attempting	to	capture	

the	 determinants	 underlying	 the	 stability	 of	 protein-protein	 complexes,	 e.g.,	 shape	

complementary,	 electrostatics	 and	 desolvation	 potential	9–15.	 Knowledge-based	

functions,	on	the	other	hand,	aim	at	taking	advantage	of	the	information	from	available	

structures,	 via	 pair	 potentials	16–18,	 or	multibody	 potentials	19.	 Docking	methods	 often	

use	 scoring	 functions	 that	 combine	 physical	 terms	 with	 knowledge-based	 terms	20–23.	

More	recently,	evolutionary	information	has	been	successfully	used	for	scoring	24,	25.		

Another	 approach	 consists	 in	 relying	on	 the	 recurrences	observed	 in	 the	 set	 of	

solutions,	 i.e.,	 consensus-based	 scoring.	 Consensus-based	 scoring	 functions	 seek	 to	

identify	 solutions	 with	 features	 that	 are	 the	 most	 frequent	 in	 the	 solution	 set,	

independently	of	any	physics-based	or	evolutionary	evaluation.	The	CONSRANK	scoring	

function,	 proposed	 by	 Oliva	 et	 al	26–29	 has	 shown	 very	 good	 results,	 based	 on	 the	

conservation	of	interface	contacts.	

	 In	 this	 study,	 we	 compare	 several	 consensus-based	 scoring	 functions	 on	 large	

sets	 of	 docking	 poses	 generated	 by	 ZDOCK,	 including	 CONSRANK.	We	 then	 propose	 a	

way	to	combine	consensus-based	rescoring	with	the	native	scoring	function	of	ZDOCK,	

showing	that	it	is	possible	to	improve	initial	results.	

METHODS	

Docking	decoy	set	
The	 ZDOCK3.0.2	 decoy	 set	30	 (6	 degree	 sampling,	 fixed	 receptor	 format)	 for	

Benchmark4	31	 was	 retrieved	 from	 https://zlab.umassmed.edu/zdock/decoys.shtml.	

This	data	 set	encompasses	176	protein-protein	complexes,	with	54,000	docking	poses	

for	 each	 complex.	 	 For	 each	 pose,	 the	 interface	 Cα	 RMSD,	 with	 respect	 to	 the	 bound	

structure,	is	given.	A	near-native	docking	hit	is	defined	as	a	prediction	with	interface	Cα	

RMSD	<	2.5	Å.	
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Consensus-based	rescoring	schemes	
Following	 the	 CONSRANK	 method	26,	 27,	 docking	 poses	 are	 rescored	 using	 the	

frequencies	 of	 interface	 contacts	 in	 the	 set	 of	 docking	 poses.	 Interface	 contacts	 are	

defined	using	a	distance	cut-off	of	5	Å	between	the	heavy	atoms	of	receptor	and	ligand	

proteins.		

For	 each	 contact	 Cij	 between	 residue	 i	 from	 receptor	 and	 residue	 j	 from	 ligand	 the			

relative	frequency	in	the	decoy	set	is	defined	by:		

𝑆 𝐶!" = ! !!"
!

∈ 0,1  (1)	

where	𝐹(𝐶!")	denotes	the	frequency	of	𝐶!" 	at	the	protein-protein	interface	in	the	set	of	N	

decoys.	 These	 relative	 frequencies	 are	 averaged	 to	 compute	 the	 CONSRANK	 score	 of	

each	pose	P:	

𝐶𝑂𝑁𝑆𝑅𝐴𝑁𝐾_𝑠𝑐𝑜𝑟𝑒 𝑃 =
!(!!") !!"∈!

!!"#$(!)
		(2),	

where	𝑁!"#$ 𝑃 	denotes	the	number	of	interface	contacts	in	docking	pose	P.		

Variations	of	CONSRANK	scores		

In	 addition	 to	 CONSRANK,	 we	 implemented	 alternative	 consensus-based	 scoring	

functions.		

First,	we	considered	an	un-normalized	version	of	CONSRANK	scores,	where	the	sum	of	

contact	contributions	is	not	averaged	by	the	interface	size:	

𝑐𝑜𝑛𝑡𝑎𝑐𝑡_𝑠𝑢𝑚 𝑃 = 𝑆(𝐶!") !!"∈! 	(3).	

Then,	we	implemented	two	other	variations,	by	replacing	contact	frequencies	S(Cij)	by	

interface	residue	frequencies:	

S(Ri)= = ! !"
!

∈ 0,1 	(4)	

where	F(Ri)	denotes	the	frequency	of	residue	i	at	the	protein-protein	interface	(distance	

between	heavy	atoms	lower	than	5	Å)	in	the	set	of	N	decoys.	The	two	related	scores	are	

respectively	defined	by:	

𝑟𝑒𝑠𝑖𝑑𝑢𝑒_𝑠𝑢𝑚 𝑃 = 𝑆(𝑅!)!!∈! 	(5),	

𝑟𝑒𝑠𝑖𝑑𝑢𝑒_𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑃 = !"#$%&"_!"#(!)
!!"#(!)

	(6),	

where	 S(Ri)	 is	 the	 relative	 frequency	 of	 interface	 residue	 Ri	 in	 the	 docking	 set	 of	 N	

decoys	𝑆 𝑅! = ! !!
!

∈ [0,1]	and	 Nres(P)	 denotes	 the	 number	 of	 interface	 residues	 in	

pose	P.	Here,	interface	residues	are	simply	those	involved	in	contacts	at	the	interface.	
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Note	that	is	it	possible	to	compute	the	contact	and	residue	frequencies	(equations	1	and	

4)	 on	 a	 given	 set	 of	 docking	 poses	 and	 then	 to	 evaluate	 another	 set	 of	 docking	 poses	

(with	equations	2,	3,	5	and	6).		

	

Clustering		

We	 implemented	 the	 BSAS	 clustering	 procedure	 (Basic	 Sequential	 Algorithmic	

Scheme)	32	to	reduce	the	structural	redundancy	of	docking	poses.	The	principle	of	BSAS	

is	the	following.	Docking	poses	are	ranked	according	to	a	score	in	decreasing	order.	The	

pose	with	the	highest	score	initiates	the	first	clusters.	The	other	poses	are	sequentially	

compared	to	already	clustered	poses:	they	are	included	in	a	cluster	if	they	are	within	a	

given	cut-off	of	cluster	members,	otherwise	they	initiate	a	new	cluster.	At	the	end	of	the	

process,	 the	 pose	with	 the	 highest	 score	 in	 each	 cluster	 is	 the	 representative	 of	 each	

cluster.	 In	 order	 to	 allow	 a	 fast	 clustering	 process,	 we	 do	 not	 compute	 the	 RMSD	

between	ligand	atoms.	Instead	we	use	a	distance	cut-off	between	the	centers	of	mass	of	

the	ligands,	here	set	to	8	Å.	

Evaluation	

The	top	2,000	solutions	according	to	the	ZDOCK	native	scoring	function	were	rescored	

using	the	rescoring	schemes	detailed	below.	We	monitored	the	presence	of	near-native	

docking	hits	(interface	Cα	RMSD	<	2.5	Å)	 in	the	top	10	solutions	after	re-ranking.	Each	

protein-protein	 complex	 with	 a	 near-native	 docking	 hit	 in	 the	 top	 10	 solutions	 is	

counted	as	a	success.		

	

Implementation	

The	consensus-based	rescoring	functions	are	implemented	in	python	code	accessible	on	

GitHub.	 All	 the	 scripts	 necessary	 to	 reproduce	 the	 results	 shown	 in	 this	 article	 are	

available	at:	https://github.com/MMSB-MOBI/CHOKO.	

RESULTS	

Quality	of	Decoys	

In	the	initial	data	set	of	176	protein-protein	complexes,	ZDOCK	was	able	to	generate	at	

least	 one	 near-native	 docking	 hit	 (interface	 Cα	 RMSD	 <	 2.5	Å)	 in	 the	 first	 top	 2,000	

solutions	 for	 90	 protein-protein	 complexes.	 These	 90	 protein-protein	 complexes	 thus	

constitute	 our	 reference	 data	 set	 for	 the	 rest	 of	 the	 study.	 We	 explore	 if	 and	 how	
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consensus-based	rescoring	is	efficient	at	scoring	the	decoys	of	these	90	protein-protein	

complexes.	

Evaluation	of	Different	Consensus-Based	Rescoring	Functions	

First,	 we	 compare	 the	 four	 versions	 of	 consensus-based	 rescoring	 functions:	 either	

contact-based	or	residue-based,	with	or	without	 interface	size	normalization.	Here,	we	

remind	the	reader	that	the	score	based	on	contact	frequencies	with	size	normalization	is	

the	 scheme	 proposed	 in	 CONSRANK	26.	We	 estimate	 the	 performance	 by	 counting	 the	

number	 of	 successes,	 i.e.,	 number	 of	 complexes	 with	 at	 least	 one	 near-native	 hit	

(interface	Cα	RMSD	<	2.5	Å)	in	the	first	10	solutions	after	rescoring.		We	also	tested	the	

effect	of	varying	 the	subset	of	docking	poses	used	 to	compute	 the	contact	and	residue	

frequencies	 (equations	1	and	4):	we	used	either	 the	 first	50,	100,	1,000	or	2,000	 first	

poses	provided	by	ZDOCK,	 referred	as	 the	 frequency	set.	 In	any	case,	we	rescored	 the	

first	2,000	poses	provided	by	ZDOCK.		

The	results	of	this	evaluation	are	shown	in	Figure	1.	We	can	see	that	rescoring	functions	

that	 take	 into	 account	 the	 interface	 size	 (Contact_Sum	 and	 Residue_Sum)	 constantly	

outperform	 the	 rescoring	 functions	 that	 disregard	 the	 interface	 size	 (CONSRANK,	

Residue_Average).	 The	 size	 of	 the	 subset	 used	 to	 compute	 contact	 and	 residue	

frequencies	 (equations	 1	 and	 4)	 has	 a	 major	 influence	 on	 the	 number	 of	 successes.	

Indeed,	ZDOCK	solutions	are	ordered	by	the	ZDOCK	native	scoring	function;	hence	the	

top	of	the	list	is,	in	many	cases,	enriched	in	near-native	docking	hits.	Estimating	contact	

and	residue	scores	on	a	reduced	subset	of	poses	at	 the	top	of	 the	 list	 is	 logically	more	

efficient.	On	the	contrary,	estimating	contact	and	residue	scores	from	the	full	list	leads	to	

a	 loss	 of	 information,	 and	 worsens	 the	 prediction.	 In	 the	 best	 settings	 tested	 here,	

estimating	the	scores	on	the	first	50	solutions	to	rescore	the	first	2,000	solutions	allows	

to	 reach	 a	 number	 of	 successes	 equal	 to	 27	with	 the	 Residue_Sum,	 versus	 21	 for	 the	

CONSRANK	 scheme.	 It	 is	 thus	 possible	 to	 rescore	 large	 sets	 of	 docking	 poses	 using	

consensus-based	 scoring	 functions,	with	 better	 performance	 than	 the	 commonly	 used	

CONSRANK	scheme.	
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Figure	1.	Number	of	successes	after	rescoring	the	first	2,000	solutions	of	ZDOCK.		The	size	of	the	frequency	set	

refers	to	the	set	of	poses	used	to	compute	the	residue	and	contact	scores	from	equations	1	and	4.		

	

Combination	With	ZDOCK	Native	Scoring	Function	

In	this	section,	we	explore	how	to	combine	rescoring	functions	with	the	native	scoring	

function	 of	 ZDOCK.	 Out	 of	 the	 90	 protein-protein	 complexes	 with	 at	 least	 one	 near-

native	 docking	 hit	 in	 the	 top	 2,000	 solutions,	 the	 ZDOCK	 native	 scoring	 function	

identifies	29	successes,	i.e.,	29	complexes	with	at	least	one	near-native	docking	hit	in	the	

top	10.	This	 is	 indeed	better	 than	the	 four	consensus-based	rescoring	 functions	 tested	

here.	One	could	wonder	if	it	is	then	possible	to	improve	the	initial	prediction	of	ZDOCK	

using	rescoring.	

We	tested	a	combination	of	ZDOCK	poses	and	rescored	poses	by	combining	the	first	N1	

poses	 of	 ZDOCK	 with	 the	 first	 N2	 poses	 after	 rescoring,	 with	 N1+N2=10,	 and	 no	

redundancy.	 Again,	we	 vary	 the	 subset	 of	 docking	 poses	 used	 to	 compute	 the	 contact	

and	residue	frequencies	with	equations	1	and	4	(frequency	set	=	top	50,	100,	1,000	or	

2,000	poses)	and	 in	any	case,	we	rescore	 the	 first	2,000	solutions	provided	by	ZDOCK	

using	equations	2,	3,	5	and	6.	We	estimate	the	performance	by	counting	the	number	of	
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successes,	i.e.,	number	of	complexes	with	at	least	one	near-native	hit	(interface	Cα	RMSD	

<	2.5	Å)	in	the	first	10	solutions.		

The	 results	 of	 this	 evaluation	 are	 shown	 in	 Figure	 2.	 Regardless	 of	 the	 size	 of	 the	

frequency	 set,	 the	 best	 combination	 is	 always	 obtained	with	 the	Residue_Sum	 scoring	

function.	 Combining	 the	 first	 6	 ZDOCK	 poses	 with	 the	 first	 4	 Residue_Sum	 rescored	

poses,	and	estimating	the	frequencies	on	the	full	set	of	2,000	poses	(bottom	right	panel	

in	 Figure	 2)	 allows	 to	 reach	 a	 number	 of	 successes	 equal	 to	 32,	 which	 is	 more	 than	

Residue_Sum	 alone	 (18	 successes)	 and	 better	 than	 ZDOCK	 alone	 (29	 successes).	 It	 is	

thus	possible	to	improve	the	native	results	of	ZDOCK	by	a	simple	combination	of	poses.	

It	 is	 interesting	 to	 note	 that,	 in	 this	 situation,	 the	 information	 about	 residues	 is	more	

efficient	in	rescoring	than	the	information	about	pairwise	contacts.	

	

	

	

	
Figure	 2.	 Number	 of	 successes	 after	 combination	 with	 the	 ZDOCK	 native	 scoring	 function.	 Each	 panel	

corresponds	 to	 different	 frequency	 sets,	 i.e.,	 sets	 of	 poses	 used	 to	 compute	 the	 residue	 and	 contact	 scores	
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from	equations	1	and	4.	 In	any	cases,	 the	 first	2,000	solutions	of	ZDOCK	are	rescored.	Grey	 lines	represent	

data	from	other	panels	for	comparison.	

Combining	Clusters	

Clustering	 is	 classically	 used	 to	 improve	 the	 performance,	 by	 reducing	 the	 structural	

redundancy	 of	 docking	 solutions	33–35.	 In	 this	 section,	 we	 explore	 how	 to	 combine	

rescoring	 functions	 with	 the	 native	 scoring	 function	 of	 ZDOCK,	 in	 conjunction	 with	

structural	clustering.	We	used	the	BSAS	clustering	algorithm,	which	takes	 into	account	

the	different	scores,	since	clusters	are	initiated	according	to	the	scores.		

We	have	tested	a	combination	of	clusters.	On	the	one	hand,	we	computed	clusters	from	

the	poses	ranked	by	their	initial	ZDOCK	scores.	On	the	other	hand,	we	computed	clusters	

from	poses	 reordered	 after	 consensus	 rescoring.	We	 then	 combine	 the	 representative	

poses	of	the	first	N1	ZDOCK	clusters,	with	the	representative	poses	of	the	first	N2	poses	

after	rescoring,	with	N1+N2=10.	We	estimate	the	performance	by	counting	the	number	

of	 successes,	 i.e.,	 number	 of	 complexes	with	 at	 least	 one	 near-native	 hit	 (interface	 Cα	

RMSD	<	2.5	Å)	in	the	first	10	solutions.		

The	results	of	this	evaluation	are	shown	in	Figure	3.	The	best	combination	is	obtained	

using	 the	Contact_Sum	 score,	which	 constantly	 outperforms	CONSRANK,	 regardless	 of	

the	frequency	set.	When	using	the	first	1,000	poses	to	estimate	the	frequencies	(bottom	

left	 panel	 in	 Figure	 3),	 the	 combination	 of	 five	 ZDOCK	 clusters	 and	 five	 Contact_Sum	

clusters	achieves	a	number	of	successes	equal	to	39,	which	is	better	than	ZDOCK	alone	

(34	successes)	and	Contact_Sum	alone	(36	successes).	Contrary	to	what	was	observed	in	

simple	pose	combination	(Figure	2),	 the	most	efficient	rescoring	scheme	when	dealing	

with	 clusters	 is	 based	 on	 contact	 frequencies,	 not	 residue	 frequencies.	 It	 seems	 that,	

after	 structural	 clustering,	 the	 information	 carried	 out	 by	 contacts,	 which	 is	 more	

precise	than	residues,	becomes	more	useful	in	discrimination.		
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Figure	 3.	 Number	 of	 successes	 after	 combination	 of	 clusters	with	 the	 ZDOCK	 native	 scoring	 function.	 Each	

panel	 corresponds	 to	 different	 frequency	 sets,	 i.e.,	 sets	 of	 poses	 used	 to	 compute	 the	 residue	 and	 contact	

scores	from	equations	1	and	4.	In	any	cases,	the	first	2,000	solutions	of	ZDOCK	are	rescored.	

	

Illustrative	Examples	

To	 complete	 this	 study,	 in	 this	 section,	we	 present	 examples	 to	 illustrate	 the	 asset	 of	

consensus	rescoring	when	used	in	combination	with	the	native	ZDOCK	scoring	function.	

We	 used	 the	 results	 generated	 using	 the	 Contact_Sum	 function,	 with	 frequencies	

estimated	 on	 the	 first	 1,000	 poses,	 and	 combined	 five	 ZDOCK	 clusters	 and	 five	

consensus	clusters.	As	explained	in	the	previous	section,	this	setting	allows	to	reach	39	

successes.	 We	 present	 four	 examples	 from	 the	 ZDOCK	 decoy	 set	 where	 the	 use	 of	

consensus	 rescoring	 is	 critical	 in	Figure	4.	For	all	 these	protein-protein	complexes,	no	

near-native	docking	hit	is	observed	in	the	first	ten	clusters	of	ZDOCK	(or	in	the	first	ten	

poses).	 The	 use	 of	 Contact_Sum	 rescoring	 in	 conjunction	 with	 clustering	 allows	 the	

identification	of	near-native	docking	in	the	top	10.	In	every	case,	these	near-native	poses	

do	not	belong	to	the	top	of	the	ZDOCK	initial	list:	they	are	ranked	355	for	1AVX,	1568	for	
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1EAW,	 250	 for	 1XQS	 and	 388	 for	 1E6E.	 These	 examples	 highlight	 the	 usefulness	 of	

consensus-based	rescoring	to	rescue	poses	with	poor	initial	ranks.		

	

	
Figure	 4.	 Examples	 of	 successful	 combination	 of	 ZDOCK	 clusters	 and	 consensus-based	 clusters.	 For	 each	

protein-protein	complex,	the	receptor	protein	is	represented	as	a	gray	surface	and	the	ligand	as	a	red	ribbon.	

Left	 column:	 representative	 poses	 of	 the	 first	 five	 clusters	 generated	with	 ZDOCK	 native	 scoring	 function,	

middle	 column:	 representative	 poses	 of	 the	 first	 five	 clusters	 generated	 with	 the	 Contact_Sum	 rescoring	

function,	 right	 column:	 superimposition	 between	 near-native	 docking	 hit	 and	 native	 structure.	 For	 each	

representative	 pose,	 initial	 ZDOCK	 rank	 is	 indicateed	 next	 to	 the	 color	 legend.	 Near-native	 poses	 are	

underlined.	 1AVX	36:complex	 between	 the	 porcine	 trypsin	 (gray)	 and	 soybean	 inhibitor	 (red),	 1EAW	37:	

complex	between	the	catalytic	domain	of	serine	proteinase	MT-SP1	(gray)	and	bovine	inhibitor	(red),	1XQS	38	

:	 complex	between	 the	human	Hsp70	binding	protein	1	 (gray)	 and	Hsp70	 (red),	 1E6E	39:	 complex	between	

NADPH:adrenodoxin	oxidoreductase	(gray)	and	adrenoxin	(red).	
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CONCLUSION	

We	have	 implemented	 four	variants	of	 consensus-based	 rescoring	 functions,	 including	

the	CONSRANK	method,	and	tested	them	on	the	rescoring	of	large	sets	of	docking	poses	

of	the	ZDOCK	benchmark.	In	this	context,	consensus	scores	that	do	take	into	account	the	

size	of	the	interfaces	are	in	general	more	efficient	than	those	that	normalize	by	the	size	

interface.	 The	 initial	 performances	 of	 ZDOCK	 are	 improved	 by	 combining	 the	 native	

scoring	function	with	consensus-based	rescoring.	
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