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Abstract  

The adverse effects of certain environmental chemicals have been recently associated with 
epigenome´s modulation. Although the changes in the epigenetic signature are still not 
integrated into hazard and risk assessment, they are interesting candidates for linking 
environmental exposures to altered phenotypes given that these changes may be passed across 
multiple non-exposed generations. Here, we addressed the effects of simvastatin (SIM), one of 
the most prescribed human pharmaceuticals, in epigenetic regulators of the amphipod 
Gammarus locusta, as a proxy to support its integration in hazard and environmental risk 
assessment. SIM is a known modulator of epigenome in mammalian cell lines, and has been 
reported to impact G. locusta ecological endpoints at environmentally relevant levels. G. locusta 
juveniles were exposed to three SIM concentrations (0.32, 1.6 and 8 µg.L-1), for 15 days. The 
basal expression of selected epigenetic regulators was determined, along with the quantification 
of DNA methylation levels and the assessment of key ecological endpoints. Exposure to 0.32 and 
8 µg.L-1 SIM induced significant downregulation of DNA methyltransferase1 (dnmt1), 
concomitantly with Global DNA hypomethylation and impact on growth. Overall, this work is the 
first to validate the basal expression of key epigenetic regulators in a keystone marine 
crustacean, supporting the integration of epigenetic biomarkers into hazard assessment 
frameworks.  
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1. Introduction 

Alterations in environmental conditions can trigger selection pressures in natural populations 

that experience conditions outside their physiological tolerances [1-3] and, therefore, influence 

the ability of species to survive and evolve [4]. Epigenetic variation is environmentally sensitive 

and can explain part of the organism’s responses, working as an adaptive response to the 

environmental changes [5,6,]7,9]. However, the disruption of epigenetic machinery may lead to 

harmful effects in the organisms, which are potentially transmitted to the next generations [10-

12]. Epigenetic inheritance has emerged as a rapidly growing field in the environmental sciences. 

It is well established that epigenetic mechanisms are highly responsive to external stimuli [6] 

and a wide range of environmental chemicals has been shown to generate specific epigenetic 

patterns in several organisms [13-16], highlighting its underlying role in the regulation of gene 

transcription [17,18].The modulation of these processes and its perpetuation can significantly 

impact the genetic and structural shape of population [19]. Therefore, epigenetic signatures are 

interesting candidates to link environmental exposures to altered phenotypes, providing new 

insights into the heritability of multigenerational exposure history [12,20-22]. Despite the fact 

that biomarkers of epigenetic modifications are still not integrated into hazard and risk 

assessment frameworks [12,23], a number of recent studies has suggested that risk assessment 

can benefit from the integration of chemical-induced epigenetic effects into toxicity testing 

strategies and hazard assessment [24-27]. 

Statins, such as simvastatin (SIM), are among the most prescribed human pharmaceuticals, 
known to reach the aquatic environments in increasing concentrations [28-31]. It is well 
established that, in vertebrates and arthropods, SIM disrupts the mevalonate pathway (MP) by 
inhibiting the enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) [32,33]. 
However, whereas vertebrates obtain cholesterol from MP, cholesterol is not synthesized de 
novo in crustaceans; yet, they synthesize methylfarnesoate (MF) in the MP that has a central 
role in crustacean reproduction [34]. We have recently evaluated the chronic effects of SIM in 
the amphipod Gammarus locusta and our findings showed a significant impact on reproduction 
and growth at environmentally relevant concentrations [35]. Several recent studies have also 
reported growth, reproductive and embryonic development alterations in different metazoans 
under SIM exposure [35-41]. Although the underlying mechanism(s) of the observed SIM effects 
are poorly understood, previous studies with mammalian cell lines suggested that this 
pharmaceutical is able to modulate the regulation of the epigenome (e.g. DNA Methylation, 
histone acetylation and ncRNAs)[42-46]. Alterations in DNA methylation have previously been 
associated with downregulation or inhibition of DNA methyltransferase 1 (DNMT1), a critical 
protein responsible for maintenance of DNA methylation patterns [47,48]. Methylation of CpG 
islands, dense regions of CpG sites often located in gene promoters [49,50], is associated with 
gene repression [51,52]. The maintenance of methylation patterns is achieved by DNMT1 [53]. 
Despite of its major role in the maintenance of DNA methylation status , several evidences that 
DNMT1 cannot maintain the global DNA methylation by itself has been raised [54,55]. Several 
studies evaluated the effects of DNMT1 transcriptional changes and their downstream 
consequences. However, the upstream regulation of this critical enzyme is not commonly 
addressed. Epigenetic changes, definitive or transient, can influence and compromise the 
biological processes in the organisms [56]. Therefore, the integration of these proteins as 
potential biomarkers of epigenetic regulation is critical for an improvement of hazard and risk 
assessment. These biomarkers can potentially predict adverse outcome effects along the 
organism’s lifecycle [57,58], representing inherent, stable and robust mechanisms of memory of 
environmental exposures [59] and thus potentially providing an easy, sensitive and accurate tool 
to address changes after environmental exposures [60]. 
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Following the findings presented above, in the present study we selected the human 
pharmaceutical SIM and the keystone amphipod G. locusta, to identify and validate the use of 
potential epigenetic biomarkers in ecotoxicological studies. The keystone marine species, 
Gammarus locusta, is an interesting test species due to its sensitivity to a wide variety of 
contaminants, easy culturing and its presence on the base of several trophic chains, highlighting 
its ecological relevance in aquatic ecosystems [35,61-66]. Furthermore, its short lifecycle is a 
great advantage for applying this species in epigenetic studies. 

As a case study, we exposed G. locusta to environmentally relevant levels of SIM and a battery 
of epigenetic biomarkers (DNA methylation levels and the expression of key epigenetic 
regulators: DNA methyltransferase 1 - dnmt1, DNA methyltransferase 1- associated protein 1 - 
dmap1, E3-ubiquitin-protein ligase UHRF1 - uhrf1, Histone-Acetyltransferase 5 - kat5 and 
Ubiquitin-Specific Peptidase 7 - usp7) were evaluated concomitantly with endpoints at 
individual- level (survival and growth).  

2. Results 

2.1. Basal Expression levels 

This study is the first to characterize basal expression of epigenetic-related genes in the genus 

Gammarus. Figure 1A compares the gene transcription between several selected epigenetic 

regulators. Moreover, transcription level of the selected candidate housekeeping genes was also 

assessed (Figure 1B). All data were normalized to clathrin. actin was the most transcribed gene, 

expressing 239.9-fold more than the other housekeeping genes and eif2 only being expressed 

7-fold more, when both were compared with clathrin. rpl13 and gapdh were transcribed 118.6 

and 69.3 times more than clathrin, respectively.  

In our assay, dnmt1 (CT mean = 27.73) was the less expressed gene with 10-fold less transcripts 

in comparison to clathrin. kat5 (CT mean = 24.89) and usp7 (CT mean = 25.19) displayed similar 

transcription levels with 2.0 and 2.5-fold less transcripts than clathrin, respectively. uhrf1 (CT 

mean = 26.27) and dmap1 (CT mean = 25.75) were transcribed 4.7 and 3.8 times less than 

clathrin (Figure 1A).  

  

 

 

 

 

 

 

2.2. Simvastatin as a case study 

2.2.1. Ecological Parameters 

Figure 2A and B displays the mortality rate and the metasomatic length of G. locusta after 15-

days of SIM exposure. The exposure of G. locusta to the three SIM concentrations (0.32 to 8 µgL-

Figure 1 – A) Basal expression of tested epigenetic regulators and B) validated housekeeping genes in Gammarus 
locusta. All data is presented in relative expression to clathrin (mean ± standard error). N=7-8. 

A B 
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1) did not induce any statistically significant differences in mortality. On the other hand, a dose-

dependent increase in metasomatic growth was observed with statistically significant 

differences at 1.6 and 8 µg.L-1. It should be noted that at the end of exposure amphipods were 

immature without any displayed secondary sexual characters.  

  

Figure 2 – A) Survival of Gammarus locusta after 15-days of exposure to several SIM concentrations. Data were 
normalized to control survival and presented as mean ± standard error. N=2 B) Metasomatic length of Gammarus 
locusta after 15-days of exposure to several SIM concentrations. Data were presented as mean ± standard error. N= 
34-35. Significant statistical differences, p<0.05 and p<0.01, are highlighted with asterisks (*)(**), respectively. 

3.2.2. Gene transcription of epigenetic regulators 

An upregulation was observed in the gene transcription of the housekeeping genes at 8 µg.L-1  

of SIM. Since all the housekeeping genes tested (actin-C, eif2, rpl13, gapdh, clathrin) presented 

the same pattern for all SIM tested concentrations (Figure 3), it is plausible to hypothesize that 

G. locusta, at the highest SIM concentration (8 µg.L-1), was experiencing an increase in the overall 

metabolism. A recent study calculated the stability coefficient of several candidate reference 

genes in Gammarus fossarum using five different algorithms and showed that clathrin and 

gapdh were the two most stable genes in this species [67]. Given that the reference genes must 

show a stable transcriptional pattern across treatments [68], the qRT-PCR data was normalized 

here with clathrin and gaphd, the genes with the most similar transcription levels to the genes 

of interest. Yet, all tested reference genes were stable across treatments, with the exception of 

the 8 µg.L-1 group. 

A B 
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Figure 3 - Pattern of mRNA transcription levels of candidate reference genes after an exposure for 15-days to SIM. 
Data (Mean ± Standard Error) are normalized to transcription levels of Solvent Control. Significant statistical 
differences (p<0.05) are highlighted with asterisks (*). N =7-8. 

Concerning the genes of interest, SIM induced significant changes in the transcription pattern of 

dnmt1 and dmap1. For dnmt1, a significant decrease in transcription was observed at 0.32 µg.L1 

and 8 µg.L-1. In contrast, a significant upregulation of dmap1 transcripts was observed at 1.6 

µg.L-1 SIM (Figure 4).  

 

 

 

Figure 4 – Pattern of mRNA transcription levels of studied epigenetic regulators after an exposure for 15-days to 

SIM. Data (Mean ± Standard Error) are normalized to gapdh and clathrin transcription levels and presented as fold-

changes relative to the Solvent Control. Significant statistical differences (p<0.05) are highlighted with asterisks (*). 

N= 7-8. 
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2.2.3. Global DNA methylation 

A significant decrease in global DNA methylation levels for the three tested treatments was 

observed. These data are in accordance with the data obtained for dnmt1 transcripts at 0.32 

µg.L-1 and 8 µg.L-1.  

  

Figure 5 - Percentage of Global DNA Methylation (Mean ± Standard Error) after 15 days of SIM exposure. Significant 
statistical differences are highlighted with asterisks (*) for p<0.05 and (**) for p<0.01. N= 8. 

 

3. Discussion 

In the last decade, a growing scientific interest on transgenerational epigenetic inheritance has 

emerged [69-71]. However, despite the increasing number of studies showing transgenerational 

epigenetic impacts, the integration of epigenetic markers in the frame of hazard and risk 

assessment is still not a reality. Currently, environmental chemical hazard and risk assessment 

frameworks rely mostly on hazard identification, dose−response studies, exposure assessment 

and risk characterization, often using a tier approach in four main categories (tier 1-4), without 

addressing transgenerational and epigenetic effects [12,72]. 

 

Understanding the long-term effects of epigenetic changes can improve our knowledge about 

the adaptive regulation and/or disruptive responses, addressing the concerns about how these 

effects may modulate the populations´ evolution [73]. Therefore, the identification and 

validation of biomarkers of epigenetic modifications can be of great interest as early warning 

tools in risk assessment frameworks to mitigate the risks of environmental exposures 

[12,23,74,75].  

 

DNA methylation is a process relatively stable. In mammals, erasure of this mark can be achieved 

by an active or passive demethylation. Active demethylation involves the presence of enzymes 

called Ten-Eleven Translocases (TETs) that progressively oxidize 5-mC and transforms it in other 

bases more unstable. On the other hand, passive demethylation occurs in DNA replication. If the 
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process of DNA methylation is not effective, a passive demethylation occurs concomitantly with 

the synthesis of new DNA strands. Therefore, the accurate maintenance of DNA methylation is 

critical to faithfully propagate specific patterns along individuals and generations [76,77].  

 

The absence of any genes-encoding TETs in the transcriptome of G. locusta (unpublished data) 

suggest the importance of passive demethylation process and the putative role of dnmt1 in 

maintaining the patterns of cytosine methylation in this species. Here, we evaluated the gene 

transcription levels of several epigenetic regulators and the levels of global DNA methylation, in 

G. locusta after 15 days of exposure to SIM, as a proxy to validate potential biomarkers for early 

detection of adverse effects. In the current study we observed a significant downregulation of 

dnmt1 in G. locusta exposed to SIM concentrations of 0.32 and 8 µg.L-1.These findings integrate 

well with similar observations reported in mammalians models under SIM exposure [47,78]. In 

cancer cell lines, Karlic et al. [78] reported the downregulation of DNMT1 mRNA transcription in 

response to SIM. Together, these results give further support to the use of dnmt1 gene as an 

early warning biomarker of epigenome modifications.  

In mammalian genomes, downregulation of DNMT1, the protein responsible for DNA 

maintenance of methylation process, can lead to global DNA hypomethylation, that is frequently  

associated with an increase of global gene transcription [79]. Several studies with SIM indicated 

upregulation of Krüppel-like factor 2 (KLF2) genes  [80], sterol regulatory element-binding 

protein (SREBP) [81], aryl hydrocarbon receptor (AhR), pregnane X receptor (PXR) and 

downstream pathways as CYP1a, CYP3a [82,83] and peroxisome proliferator-activated receptor 

(PPARs) [84,85]. A downregulation of several proteins is also frequently associated with 

epigenetic machinery. For example, enhancer of zeste homolog-2 (EZH2), a histone lysine 

methylase [86] and  DNMT1 [47] were reported as downregulated proteins in human colorectal 

cancer (CRC) cell line after SIM exposure. This appears to support the hypothesis that SIM is able 

to induce global DNA hypomethylation. To confirm this hypothesis, in the present study we 

quantified the G. locusta global DNA methylation levels after SIM exposure. Our data revealed 

a global DNA hypomethylation at all SIM treatments, thus supporting the downregulation of 

dnmt1 at 0.32 µg.L-1 and 8 µg.L-1.  

 

As the dnmt1 expression was not affected by SIM exposure at 1.6 µg.L-1, the global DNA 

hypomethylation observed at this SIM concentration could also be associated with other genes. 

The upregulation of dmap1 may mediate the observed global DNA hypomethylation response. 

Studies in human cell lines and mice revealed that DNA hypomethylation is associated with DNA 
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instability [87,88]. Negishi et al. [89] demonstrated that DMAP1 is requited to the maintenance 

of DNA integrity by mediating the involvement of the essential repairing machinery to DNA 

regions with double-strand breaks, ensuring a faithful DNA repair and replication [90]. In order 

to prevent this instability, a switch between chromatin status occurs, in a fluid manner, creating 

feedback loops in chromatin condensation and allowing the adaptation to external stimuli [91]. 

This switch is accomplished by the modulation of acetylation of lysine 16 in histone H4 

(H4K16ac), a DMAP1-induced, acting in inter-nucleosome interaction and as a scaffold for other 

transcription factors and chromatin-modifying proteins [92,93]. A growing body of evidences 

suggests that statins can promote the acetylation of H3 and H4 histones [45,78,94]. Thus, the 

increase of dmap1 transcription may be directly related with the increasing transcription of 

several genes or through the negative feedback required for the protection of the genome. 

However, to clarify this mechanism, future studies should evaluate the interplay between these 

proteins and their binding partners in specific sites of chromatin and additional insights into 

histone modifications should be disclosed.  

 

In this work, we also measured the G. locusta metasomatic length, which for control animals 

were similar to the basal length reported for the same age class [63]. This fact allowed the 

validation and the use of this endpoint. SIM exposure induced a dose-response curve with an 

increase of metasomatic length in G. locusta, at the two highest tested concentrations. Dahl et 

al. [95] reported that exposure of a copepod, Nitocra spinipes, from 24-hours Nauplii until the3rd 

copepodite stage, induced a significant increase of body length at 1.6 µg.L-1 SIM. We hypothesize 

that the increase of metasomatic length after SIM exposure may reflect an adaptive 

phenomenon after 15-days of SIM exposure and could represent an hormesis response, known 

to trigger the  overall increase in metabolism. Interestingly, Neuparth et al. [35] observed a 

decrease metasomatic length in G. locusta after 36-days exposure under 0.32 µg.L-1, 1.6 µg.L-1 

and 8 µg.L-1 SIM conditions. If the SIM exposure is prolonged beyond the 15 days, a subsequent 

instability in critical biological processes may override the observed stress-induced responses 

and lead to the adverse effects reported in  Neuparth et al. [35]. In the study of Neuparth et al. 

[35], G. locusta was exposed to SIM during 36-days and lethality was observed at 8 µg.L-1. 

Moreover, G. locusta growth was impaired in a sex-dependent manner with a higher sensitivity 

in females, whose reproductive performance was reduced or completely hampered. 

The adverse effects of SIM exposure [35] and the disruption of critical epigenetic machinery, can 

lead to the perpetuation of instability and adversity, resulting in disruption of critical biological 

processes in G. locusta. These findings suggest that the epigenetic disruption should be included 
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in further studies performed to evaluate the multigenerational and transgenerational effects of 

SIM.  

Furthermore, compounds with the potential to inhibit MP have been shown to act in one carbon 

metabolism [96-98]. This pathway is involved in S-adenosyl methionine (SAM) production, the 

methyl donor for DNA methylation reactions. The inhibition of this pathway induces a 

decreasing in SAM levels and may mediate a potential demethylation [99]. These previous 

studies give further support to the findings presented here.  

Concerning other tested genes in the present study, uhrf1, kat5 and usp7, showed a stable 

pattern along the different concentrations of SIM. The absence of changes in the transcription 

levels of several genes related with epigenetic could lead to the hypothesis  that these may not 

work as early warning markers [12]. Despite the transcription of several selected genes were not 

altered after SIM exposure, these genes (uhrf1, kat5 and usp7) have essential functions in 

epigenetic machinery; and therefore could be promising biomarkers in the context of other 

environmental pollutants. Future work should evaluate the transcription of these genes in the 

context of exposure to other chemicals reported to modulate the regulation of the epigenome.  

 

Overall, this study propose new epigenetic biomarkers in G. locusta as a proxy to improve hazard 

and risk assessment. The disruption of epigenetic machinery is the main process responsible for 

the propagation of adversity over generations. The inheritance of methylation profiles across 

DNA replication rounds is propagated through the activity of DNMT1. The disruption of DNMT1 

levels can modify the methylation of DNA regions, leading to the transfer of this adverse effect 

throughout mitotic and meiotic processes by the disruption of methylation patterns in germline. 

Thereby these effects can be potentially propagated to subsequent generations, including non-

exposed. The inclusion of epigenetic biomarkers proposed in this study in future hazard and 

environmental risk assessment and in the environmental management framework guidelines 

may provide, along with other data, important insights into potential transgenerational 

inheritance after contaminants exposure. The findings of this work, together with previous 

studies, supports the integration of DNMT1, DMAP1 and the global DNA methylation as a 

biomarker in hazard and environmental risk assessment.  

4. Material and Methods 

4.1. Amphipods Culture System 
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A permanent laboratory culture system of G. locusta is established at Interdisciplinary Centre of 

Marine and Environmental Research – CIIMAR. The amphipods were maintained at 20°C and 

33‰ salinity with photoperiod set to 16h:8h (light:darkness), following the methodology 

described in detail by Neuparth et al. [63]. Fine to medium sand with 1 cm layer and small stones 

were placed in the bottom of the aquaria to assure the optimal raising conditions for G. locusta 

and simulate natural habitat. Aeration was established with plastic tips, allowing constant 

bubbling. Ulva sp. and sediments were collected in Aguda beach (41°3'6"N 8°39'21"W), Vila 

Nova de Gaia, in a site devoid of direct contamination source. The culture system is partially 

renewed once per year with organisms collected in Sado Estuary (38° 31'14"N 8°53'32"W).  

4.2. Experimental System 

The experimental design followed the conditions described in Neuparth et al. [35]. Briefly, the 

bioassay was conducted, during 15 days, in 7 L aquaria housing 60 juvenile (immature) 

amphipods with 10-days old in a semi-static system with five exposure conditions, two controls 

(0.45µm-filtered natural seawater and a solvent control with 0.0005% acetone) and three 

simvastatin treatments (0.32 µg.L-1, 1.6 µg.L-1 and 8 µg.L-1) with 2 replicates. Simvastatin (CAS 

number 79902-63-9, ≥ 97%) was purchased from Sigma-Aldrich and was prepared in acetone. 

Acetone percentage in all aquaria except natural seawater control was 0.0005%. The 

concentrations of SIM selected for the present study were based upon our previous research 

[35], which observed a severe impact on G. locusta reproduction at the highest levels selected, 

and data from environmental levels in aquatic ecosystems. The experimental apparatus was 

checked daily to ensure feeding needs, aeration and removal of dead animals, if any. Total water 

renewals were performed every two days, together with new test solutions applied to the 

aquaria. Throughout the experiment, amphipods were fed ad libitum with Ulva sp. The 

experimental conditions were similar to the culture system described above. Due to the high 

stability of SIM in water revealed in our previous studies [35,41], that used similar experimental 

design to that here reported, the actual concentrations of SIM were not monitored in the 

present study. At the end of exposure, survival and metasomatic length was measured, 

according to the methods described in Neuparth et al. [63]. Finally, amphipods were individually 

preserved in RNAlater® to ensure RNA/DNA quality and then stored at -80ºC until further use.  
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4.3. RNA isolation and cDNA synthesis 

Total RNA from eight immature individual amphipods was extracted with NZYol® (Nzytech, 

Portugal) together with the illustraTM RNAspin Mini RNA Isolation Kit (GE Healthcare, United 

Kingdom), following the manufacturer´s instructions. RNA was quantified with a Take3TM on a 

microplate reader (Biotech Synergy HT) coupled with the software Gen5 (version 2.0). RNA 

quality and quantity were verified by electrophoresis in 1.5% agarose gel and by measurement 

of the ratio of optical density at λ260/280 nm. Synthesis of cDNA was performed with NZY First-

Strand cDNA Synthesis Kit (nzytech®, Portugal), using 1 μg of total RNA in a total volume of 20 

µL per reaction, as manufacturer’s instructions. At the end of the conversion, cDNA was stored 

at -20°C until qRT-PCR analysis. 

4.4. Primers design and validation  

The sequences of G. locusta used in this work were extracted from our G. locusta transcriptome 

(data not shown). Hyalella azteca was used as a reference species to find genes of interest. 

Primers were designed in Primer-Blast from NCBI, a Primer3plus tool coupled to NCBI Blast [100]. 

Primers specificity was tested in range 60 ± 2.0°C. Amplification with Phusion® High-Fidelity PCR 

Master Mix (Thermofischer, Portugal), was performed according Manufacturer´s Instructions, in 

a 20 µL total volume reaction. For each tested gene, product identity was confirmed by cloning 

in pGEM®-T Easy Vector Systems (Promega Corporation, USA), followed by Sanger sequencing. 

The genes selected for the present study were the following: 1) dnmt1, the methyltransferase 

critical for the maintenance of DNA methylation [53], 2) uhrf1 , a central hub for maintenance of 

DNA methylation and a pivotal regulator of crosstalk between DNA methylation and histone 

modifications [101,102], 3) dmap1, a transcriptional co-repressor associated with DNMT1 and 

histone deacetylase 2 (HDAC2) in replication foci during S phase [103], 4) usp7, a deubiquitinating 

enzyme that prevents proteasomal degradation of UHRF1/DNMT1 complex [104,105] and 5) 

kat5, a histone acetyltransferase that induces USP7/DNMT1 destabilization and proteasomal 

degradation [106,107]. 

 

4.5. Real Time Quantitative-Polymerase Chain Reaction (qRT-PCR) 

qRT-PCR was used to evaluate the gene transcription of dnmt1, dmap1, uhrf1, usp7 and kat5. 

Validated primers and fluorescence-based quantitative real time PCR (qRT-PCR) conditions are 

described in Table 1. Reactions were performed as Manufacturer´s instructions in a total volume 

of 10 μL. 400nM of each primer and 10ng of cDNA were used per well. All samples were assessed 

in duplicate. PCR reactions efficiency was determined by standard curves performed with six 
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serial dilutions of the cDNA pool of all samples (from 0.0064 to 20 ng of cDNA) [41,108]. Reactions 

were conducted in a Mastercycler®ep realplex (Eppendorf, Spain). PCR conditions were as 

follows: 95ºC for two minutes, followed by 35 cycles of 95ºC for five seconds and combined 

annealing and extension at 58-62ºC, for 25 seconds. Then, a melting curve analysis was 

performed (from 55ºC to 95ºC) to confirm specificity of products obtained. The presence of 

contaminations and potential by-products of PCR such as primers dimers were excluded by 

concomitant running of no template controls. PCR products were analysed by electrophoresis in 

2% agarose gel to check the presence of a single expected band. Product’s identity was 

confirmed by sanger sequencing. Relative change in transcription abundance of target genes 

was normalized to gapdh and clathrin and calculated using the Livak method [109]. Expression 

levels were normalized to solvent control mean and data were expressed as fold changes 

relative to this group. 

 

Table 1 – Sequences of primers (5´- 3´) used for evaluation of gene transcription as well as conditions used in 
amplification reaction. F - Forward Primer; R – Reverse Primer. 

 Primers Sequence (5´- 3´) Expected 
band 

size (bp) 

Annealing/Extension 
Temperature (°C) 

Reaction 
Efficiency 

(%) 
kat5 F: ACACGCATCAAGAACATACGC 

R: GTCTCTCCAAGCATTTGTGGC 
157 60 91 

dmap1 F: TCACCGCACTAATGTCCCC 
R:CATCAGTAGAGTAGAGCAGGGC 

98 62 99 

dnmt1 F: CGAGTGGTGGATCTCTGGC 
R: ACAGCGTCCACATACGGC 

120 62 95 

usp7 F: TGGAAGGAGTGATACCTCGG 
R: AGCGTCGTATTTGTTGTCCC 

197 62 101 

uhrf1 F: GCGACGAGTGCGATAAACCC 
R: CTTCACCTTTTCTCCCGCCC 

137 61 97 

clathrin F: AAACTGACCCAACACTGGCG 
R: GCAGGAACACATAGTCGGGG 

147 60 102 

gapdh F: AGGCTCACTTCAGCAACGG     
R: GTACTTCTCCTCGTTGACGC 

95 62 94 

actin5C F: AAAAGTCCTACGAACTCCCCG 
R: CTTACGAATGTCCACGTCGC 

164 60 95 

eif2 F: CTCAGGTGCTGCGTATTGGC 
R: CTGCTTCTGTTGGAATCGTCCC 

179 60 98 

rpl13 F: GCAAGCTCATCCTGTTCCCC 
R: ACCAGCATGGAGTAAACGTCG 

190 62 105 

 

4.6. DNA isolation   

Genomic DNA was isolated from eight individual amphipods with NZY Tissue gDNA Isolation Kit 

from nzytech® following the manufacturer´s instructions. A homogenization step was 
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introduced in pre-lysis samples to facilitate the DNA extraction. DNA was quantified with a 

Take3TM on a microplate reader (Biotech Synergy HT) coupled with the software Gen5 (version 

2.0) and the DNA purity was assessed by measurement of the ratio of optical density at λ260/280 

nm. Pure DNA was stored at -20°C until global DNA methylation quantification. 

4.7. Quantification of global DNA methylation   

Global DNA methylation was determined in eight DNA samples per treatment using the 

MethylFlash Global DNA Methylation (5-mC) ELISA Easy Kit (Colorimetric) from Epigentek® 

according to the manufacturer´s instructions. 100 ng of each DNA sample in duplicate was 

employed.  

4.8. Statistical Analysis 

Data obtained from this study were checked for homogeneity of variances (Levene’s test) and 

normality (Kolmogorov-Smirnov test). Data were transformed when one of these assumptions 

was not validated. Data were then analysed by one-way ANOVA. Post-hoc comparisons were 

carried out using Fisher’s least significant difference (LSD) test. Significant statistical differences 

were set as p<0.05. All treatments were compared with solvent control group. Statistica 13 

(Statsoft, USA) was used to compute all analysis. 
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