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Abstract 

Background 

Developing novel therapies for complex disease requires better understanding of the causal 

processes that contribute to disease onset and progression. Although trans-acting gene 

expression quantitative trait loci (trans-eQTLs) can be a powerful approach to directly reveal 

cellular processes modulated by disease variants, detecting trans-eQTLs remains challenging 

due to their small effect sizes and large number of genes tested. However, if a single trans-

eQTL controls a group of co-regulated genes, then multiple testing burden can be greatly 

reduced by summarising gene expression at the level of co-expression modules prior to trans-

eQTL analysis.  

Results 

We analysed gene expression and genotype data from six blood cell types from 226 to 710 

individuals. We inferred gene co-expression modules with five methods on the full dataset, as 
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well as in each cell type separately. We detected a number of established co-expression 

module trans-eQTLs, such as the monocyte-specific associations at the IFNB1 and LYZ loci, as 

well as a platelet-specific ARHGEF3 locus associated with mean platelet volume. We also 

discovered a novel trans association near the SLC39A8 gene in LPS-stimulated monocytes. 

Here, we linked an early-response cis-eQTL of the SLC39A8 gene to a module of co-expressed 

metallothionein genes upregulated more than 20 hours later and used motif analysis to identify 

zinc-induced activation of the MTF1 transcription factor as a likely mediator of this effect. 

Conclusions 

Our analysis provides a rare detailed characterisation of a trans-eQTL effect cascade from a 

proximal cis effect to the affected signalling pathway, transcription factor, and target genes. This 

highlights how co-expression analysis combined with functional enrichment analysis can greatly 

improve the identification and prioritisation of trans-eQTLs when applied to emerging cell-type 

specific datasets.  

Background 

Genome-wide association studies have been remarkably successful at identifying genetic 

variants associated with complex traits and diseases. To enable pharmacological and other 

interventions on these diseases, linking associated variants to causal intermediate phenotypes 

and processes is needed. A canonical example is the causal role of circulating LDL cholesterol 

in cardiovascular disease [1]. However, discovering clinically relevant intermediate phenotypes 

has so far remained challenging for most complex diseases. At the molecular level, cis-acting 

gene expression quantitative trait loci (cis-eQTLs) can be used to identify putative causal genes 

at disease-associated loci, but due to widespread co-regulation between neighbouring genes [2] 
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and poor understanding of gene function, these approaches often identify multiple candidates 

whose functional relevance for the disease is unclear. 

 

A promising approach to overcome the limitations of cis-eQTLs is trans-eQTL analysis linking 

disease-associated variants via signalling pathways and cellular processes (trans-acting factors) 

to multiple target genes. Although trans-eQTLs are widespread [3], most transcriptomic studies 

in various cell types and tissues are still underpowered to detect them [4]. This is due to limited 

sample sizes of current eQTL studies, small effect sizes of trans-eQTLs, and the large number 

of tests performed (>106 independent variants with >104 genes). To reduce the number of tested 

phenotypes, co-expression analysis methods are sometimes used to aggregate individual 

genes to co-expressed modules capturing signalling pathways and cellular processes [5]. Such 

approaches have been successful in identifying trans-eQTLs in yeast [6] as well as various 

human tissues [7–9] and purified immune cells [10,11]. 

 

Gene co-expression modules can be detected with various methods. Top-down matrix 

factorisation approaches such as independent component analysis (ICA) [12], sparse 

decomposition of arrays (SDA) [7] and probabilistic estimation of expression residuals (PEER) 

[13] seek to identify latent factors that explain large proportion of variance in the dataset. In 

these models, a single gene can contribute to multiple latent factors with different weights. In 

contrast, bottom-up gene expression clustering methods such as weighted gene co-expression 

network analysis (WGCNA) [14] seek to identify non-overlapping groups of genes with highly 

correlated expression values. Recently, both matrix factorisation and co-expression clustering 

methods have been further extended to incorporate prior information about biological pathways 

and gene sets, resulting in pathway-level information extractor (PLIER) [9] and funcExplorer 

[15], respectively. Out of these methods, ICA, WGCNA, SDA and PLIER have previously been 

used to find trans-eQTLs for modules of co-expressed genes [7–11], but only a single method at 
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a time. However, since different methods solve distinct optimisation problems, they can detect 

complementary sets of co-expression modules [5]. Thus, applying multiple co-expression 

methods to the same dataset can aid trans-eQTL detection by identifying complementary sets of 

co-expression modules capturing a wider range of biological processes. 

 

Another aspect that can influence co-expression module detection is how the data is partitioned 

prior to analysis [5]. This is particularly relevant when data from multiple cell types or conditions 

is analysed together. When co-expression analysis is performed across multiple cell types or 

conditions, then the majority of detected gene co-expression modules are guided by differential 

expression between cell types [16,17]. As a result, cell-type-specific co-expression modules can 

be missed due to weak correlation in other cell types [16]. One strategy to recover such 

modules is to perform co-expression analysis in each cell type separately [5].  

 

In this study, we performed comprehensive gene module trans-eQTL analysis across six major 

blood cell types and three stimulated conditions from five published datasets. To maximise gene 

module detection, we applied five distinct co-expression analysis methods (ICA, PEER, PLIER, 

WGCNA, funcExplorer) to the full dataset as well as individual cell types and conditions 

separately. Using a novel aggregation approach based on statistical fine mapping, we grouped 

individual trans-eQTLs to a set of non-overlapping loci. Extensive follow-up with gene set and 

transcription factor motif enrichment analyses allowed us to gain additional insight into the 

functional impact of trans-eQTLs and prioritise loci for further analyses. In addition to replicating 

two known monocyte-specific trans-eQTLs at the IFNB1 [11,17–19] and LYZ loci [10,20,21], we 

found that the trans-eQTL at the ARHGEF3 locus detected in multiple whole blood datasets [8–

10,22] was highly specific to platelets in our analysis. Finally, we also detected a novel 

association at the SLC39A8 locus that controlled a group of genes encoding zinc-binding 

proteins in LPS-stimulated monocytes.   
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Results 

Cell types, conditions and samples 

We used gene expression and genotype data from five previously published studies from three 

independent cohorts [18,20,23–25]. The data consisted of CD4+ and CD8+ T cells [23,24], B 

cells [20,23], neutrophils [23,25], platelets [23], naive monoctyes [18,23] and monocytes 

stimulated with lipopolysaccharide for 2 or 24 hours (LPS 2h, LPS 24h) and interferon-gamma 

for 24 hours (IFNγ 24h) [18]. The sample size varied from n = 226 in platelets to n = 710 in 

naive monocytes (Figure 1A). After quality control, normalisation and batch correction (see 

“Methods”), the final dataset consisted of 18,383 unique protein coding genes profiled in 3,938 

samples from 1,037 unique genotyped individuals of European ancestries (Figure 1B). Even 

though the samples originated from five different studies, they clustered predominantly by cell 

type of origin (Figure 1B).   
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Figure 1. Data, analysis workflow and results. A Sample sizes of cell types and conditions 

included in the analysis. LPS - lipopolysaccharide, IFNg - interferon-gamma. B Multidimensional 

scaling (MDS) analysis of the gene expression data and principal component analysis (PCA) of 

genotype data after quality control and normalisation. Cell types and conditions are color-coded 

according to panel A. Genotyped samples from this study have been projected to the 1000 

Genomes Project reference populations. C Following quality control, five co-expression 

methods were applied to two different data partitioning approaches: (1) gene expression profiles 

across all cell types and conditions were analysed together (integrated approach), (2) gene 

expression profiles from each cell type and condition were analysed separately (separate 

approach). D The number of gene modules detected from integrated and separate analyses. E 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 24, 2020. ; https://doi.org/10.1101/2020.04.22.055335doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.22.055335
http://creativecommons.org/licenses/by/4.0/


7 

For trans-eQTL analysis we used the estimated module activity profile (‘eigengene’) as our 

phenotype. To identify independent trans-eQTLs, we performed statistical fine mapping for all 

nominally significant (P-value < 5x10-8) associations and grouped together all associations with 

overlapping credible sets. F Manhattan plot of nominally significant (P-value < 5x10-8) trans-

eQTLs. Each point corresponds to a gene module that was associated with the corresponding 

locus and is color-coded by the cell type from panel A.  

Detecting trans-eQTLs regulating modules of co-expressed genes  

We performed co-expression analyses with ICA, WGCNA, PLIER, PEER and funcExplorer on 

the full gene expression dataset (integrated approach) as well as on each cell type and 

condition separately (separate approach) (Figure 1C). In total, we obtained 482 gene modules 

from the integrated approach and 3,509 from the separate clustering of different cell types 

(Figure 1D; Additional file 1: Figure S1). For every module, the methods inferred a single 

characteristic expression pattern (‘eigengene’) that represents the expression profiles of the 

module genes across the samples. Although implementation details varied between methods 

(see “Methods”), these eigengene profiles were essentially linear combinations of expression 

levels of genes belonging to the modules. 

 

For trans-eQTL analysis, we included 6,861,056 common (minor allele frequency > 5%) genetic 

variants passing strict quality control criteria. First, we used linear regression implemented in 

MatrixEQTL [26] package to identify all genetic variants nominally associated (P-value < 5x10-8) 

with the eigengenes of each of the 3,991 co-expression modules detected across 9 cell types 

and conditions. We performed trans-eQTL analysis in each cell type and condition separately. 

Next, we used SuSiE [27] to fine map all significant associations to 864 independent credible 

sets of candidate causal variants (Figure 1E). Since we applied five co-expression methods to 
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both integrated and cell type specific (separated) datasets, we found a large number of 

overlapping genetic associations. We thus aggregated overlapping credible sets from 864 

associations to 601 non-overlapping genomic loci (Additional file 1: Figure S2; see “Methods”). 

We observed that some, especially smaller, co-expression modules were driven by strong cis-

eQTL effects that were controlling multiple neighbouring genes in the same module. To exclude 

such effects, we performed gene-level eQTL analysis for 18,383 protein-coding genes and the 

601 lead variants identified above. We excluded co-expression modules where the module lead 

variant was not individually associated with any of the module genes in trans (> 5Mb away) (see 

“Methods”). This step reduced the number of nominally significant trans-eQTL loci to 303 

(Figure 1F; Additional file 2). Finally, to account for the number of co-expression modules 

tested, we used both Benjamini-Hochberg false discovery rate (FDR) and Bonferroni correction 

(see “Methods”). The FDR 10% threshold reduced the number of significant associations to 140 

and Bonferroni threshold retained only 4 significant loci, including loci near IFNB1 (Additional file 

1: Figure S3) and LYZ (Additional file 1: Figure S4) genes that have been previously reported in 

several other studies [10,17–21] (Additional file 1: Table S1). While the strong trans-eQTL 

signals at the IFNB1 and LYZ loci were detected by all co-expression methods in both 

integrated and separate analyses, most associations were detected by only a subset of the 

analytical approaches (Additional file 2). Furthermore, almost all trans-eQTLs that we detected 

had highly cell type and condition specific effects (Additional file 1: Figure S5). We will now 

dissect two such cell type and condition specific associations in more detail. 

Platelet specific trans-eQTL at the ARHGEF3 locus is associated 

with multiple platelet traits  

We found that the rs1354034 (T/C) variant located within the ARHGEF3 gene is associated with 

three co-expression modules in platelets: one ICA module detected in integrated analysis (IC68, 
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1,074 genes) and two co-expression modules detected in a platelet-specific analysis by PLIER 

(X6.WIERENGA_STAT5A_TARGETS_DN, 918 genes) and funcExplorer (Cluster_12953, 5 

genes) (Figure 2B, Additional file 1: Figure S6). The T allele increases the expression of the 

ARHGEF3 gene in cis and the two lead variants are the same (Figure 2A). Furthermore, both 

the cis and trans-eQTLs colocalise with a GWAS hit for mean platelet volume (cis PP4 = 0.99, 

trans PP4 > 0.99 for all modules), platelet count (cis PP4 = 0.99, trans PP4 > 0.99 for all 

modules) and plateletcrit (trans PP4 > 0.99 for all modules) (Figure 2A) [28]. Interestingly, 

ARHGEF3 itself is not in any of the three modules and the module eigengenes are not strongly 

co-expressed with ARHGEF3 (Pearson’s r ranging from 0.07 to 0.33 in platelets). While IC68 

and X6.WIERENGA_STAT5A_TARGETS_DN share 74 overlapping genes (one-sided Fisher’s 

exact test P-value = 0.003), none of the genes in Cluster_12953 is in any of the other modules. 

 

Although the ARHGEF3 trans-eQTL has been detected in multiple whole blood trans-eQTL 

studies [3,8,9,22] (Additional file 1: Table S1), our analysis demonstrates that this association is 

highly specific to platelets and not detected in other major blood cell types (Figure 2B). 

Furthermore, even though ARHGEF3 is expressed in multiple cell types, the cis-eQTL effect is 

also only visible in platelets (Additional file 1: Figure S6). Reassuringly, the trans-eQTL effect 

sizes in our small platelet sample (n = 216) are correlated (Pearson’s r = 0.68, P-value = 5.1x10-

12) with the effects from the largest whole blood trans-eQTL meta-analysis [3] (n = 31,684) 

(Additional file 1: Figure S7). The platelet specificity of the ARHGEF3 association is further 

supported by functional enrichment analysis with g:Profiler [29] which found that both the PLIER 

module X6.WIERENGA_STAT5A_TARGETS_DN and target genes from the gene-level 

analysis were strongly enriched for multiple terms related to platelet activation (Figure 2E; 

https://biit.cs.ut.ee/gplink/l/rtyNe5M2R4). Cluster_12953, however, was enriched for cellular 

response to iron ion, suggesting that ARHGEF3 might be involved in multiple independent 
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processes [9,30]. Altogether, these results demonstrate how a trans-eQTL detected in whole 

blood can be driven by a strong signal present in only one cell type.  

Figure 2. Platelet-specific trans-eQTL at the ARHGEF3 locus. A Regional plots showing 

colocalisation between GWAS signal for mean platelet volume [28], cis-eQTL for ARHGEF3 in 

platelets and trans-eQTL for a platelet-specific co-expression module detected by PLIER. Cis 

and trans credible sets (cs) are marked on the plots. The cis credible set consists of only the 

lead variant. B Line graph showing that the association between the modules and ARHGEF3 

locus is platelet specific. In cell-type-specific clustering, only a single P-value from the 

corresponding cell type is available. The integrated modules have P-values from each of the cell 
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types and the values are connected by a line. C Association between the trans-eQTL lead 

variant (rs1354034) and eigengene of module X6.WIERENGA_STAT5A_TARGETS_DN in 

platelets. D Association between the trans-eQTL lead variant (rs1354034) and ARHGEF3 

expression in platelets. E Manhattan plot of gene-level eQTL analysis for the trans-eQTL lead 

variant. Dark blue points highlight the genes in module 

X6.WIERENGA_STAT5A_TARGETS_DN. F Functional enrichment analysis of modules 

associated with ARHGEF3 locus (see full results at https://biit.cs.ut.ee/gplink/l/rtyNe5M2R4). 

Empty cell indicates that no gene in the module is annotated to the corresponding term, 

enrichment P-value = 1 shows that at least some of the genes in the module are annotated to 

the term, but not enough to report over-representation. The last column combines the FDR 5% 

significant genes from the gene-level analysis. GO - Gene Ontology, KEGG - Kyoto 

Encyclopedia of Genes and Genomes Pathways, REAC - Reactome Pathways. 

SLC39A8 locus is associated with zinc ion homeostasis in LPS-

stimulated monocytes 

One of the novel results in our analysis was a locus near the SLC39A8 gene that was 

associated (P-value = 1.2x10-9) with a single co-expression module detected by funcExplorer 

(Cluster_10413) in monocytes stimulated with LPS for 24 hours (Figure 3A-C). The module 

consisted of five metallothionein genes (MT1A, MT1F, MT1G, MT1H, MT1M) all located in the 

same locus on chromosome 16 (Figure 3D). Although the trans-eQTL lead variant (rs75562818) 

was significantly associated with the expression of the SLC39A8 gene (Figures 3A and 3D), the 

two association signals did not colocalise and the credible sets did not overlap (Figure 3A; 

Additional file 1: Figure S8), indicating that the cis-eQTL detected in naive and stimulated 

monocytes in our dataset is not the main effect driving the trans-eQTL signal. Furthermore, the 

expression of SLC39A8 was only moderately correlated with the eigengene value of 
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Cluster_10413 (Pearson’s r = 0.27). Since SLC39A8 is strongly upregulated (log2 fold-change = 

3.53) in response to LPS already at two hours (Figure 4A), we speculated that there might be a 

transient eQTL earlier in the LPS response. To test this, we downloaded the eQTL summary 

statistics from the Kim-Hellmuth et al, 2017 study that had mapped eQTLs in monocytes 

stimulated with LPS for 90 minutes and six hours [31]. Indeed, we found that the cis-eQTL 90 

minutes after LPS stimulation colocalised with our trans-eQTL (Figure 3A) and this signal 

disappeared by six hours after stimulation (Additional file 1: Figure S9).  

 

To understand the function of the SLC39A8 locus, we turned to the target genes. Gene-level 

analysis identified two more metallothionein genes (MT1E and MT1X) from the same locus as 

likely target genes (Figure 3D). Enrichment analysis with g:Profiler revealed that these genes 

were enriched for multiple Gene Ontology terms and pathways related to zinc ion homeostasis 

(Figure 3E, full results at https://biit.cs.ut.ee/gplink/l/v7FhJRn4Rj). Furthermore, the promoter 

regions of the 7 genes were also enriched for the binding motif of the metal transcription factor 1 

(MTF1) transcription factor (P-value = 2.1x10-4, Figure 3E). Taken together, these results 

suggest that a transient eQTL of the SLC39A8 gene 90 minutes after stimulation regulates the 

expression of 7 zinc binding proteins 24 hours later. Multiple lines of literature evidence support 

this model (Figure 4B). First, the ZIP8 protein coded by the SLC39A8 gene is a manganese and 

zinc ion influx transporter [32]. Secondly, SLC39A8 is upregulated by the NF-κB transcription 

factor in macrophages and monocytes in response to LPS and this upregulation leads to 

increased intracellular Zn2+ concentration [33]. Third, Zn2+ influx increases the transcriptional 

activity of the metal transcription factor 1 (MTF1) [34] and metallothioneins, which act as Zn2+-

storage proteins, are well known target genes of the MTF1 transcription factor [35]. Finally, 

SLC39A8 knockdown in mice leads to decreased expression of the metallothionein 1 (MT1) 

gene [33]. 
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Figure 3. Transient cis-eQTLs for SLC39A8 is associated with the expression of seven 

metallothionein genes in trans in monocytes stimulated with LPS for 24 hours. A Regional plots 

comparing association signals between naive (rs11097779) and transiently induced cis-eQTLs 

(rs75562818) for SLC39A8 and trans-eQTL (rs75562818) for a module of five co-expressed 

metallothionein genes. LPS-induced cis-QTL summary statistics 90 minutes post stimulation (n 

= 134) were obtained from Kim-Hellmuth et al, 2017 [31]. B Graph showing that the association 

between the module and SLC39A8 locus is stimulation specific. As this module was detected by 

a cell type specific clustering, only a single value from the corresponding cell type is available. C 

Association between trans-eQTL (rs75562818) and eigengene of funcExplorer module 

Cluster_10413 in monocytes after 24 hours of LPS stimulation. D Manhattan plot of gene-level 
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eQTL analysis for rs75562818. Dark blue points highlight the genes in module Cluster_10413. E 

Functional enrichment analysis of the SLC39A8 associated module (see 

https://biit.cs.ut.ee/gplink/l/v7FhJRn4Rj for full results). The last column combines the FDR 5% 

significant genes from the gene-level analysis. MTF1 - metal transcription factor 1. GO - Gene 

Ontology, WP - WikiPathways, REAC - Reactome Pathways, TF - transcription factor binding 

sites from TRANSFAC. 

 

To see if the SLC39A8 trans-eQTL might be associated with any higher level phenotypes, we 

queried the GWAS Catalog [36] database with the ten variants from the trans-eQTL 95% 

credible set. We found that a lead variant for red blood cell distribution width (rs7692921) was 

one of the variants in our credible set and in high LD (r2 = 0.991) with the trans-eQTL lead 

variant (Figure 4C) [37]. However, neither of the eQTL variants was in LD with a known 

missense variant (rs13107325) in the SLC39A8 gene that has been associated with 

schizophrenia, Parkinson’s disease and other traits (Figure 4C) [38].  
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Figure 4. Molecular mechanisms underlying the SLC39A8 trans-eQTL locus. A SLC39A8 gene 

expression values (log2 intensities) across naive and stimulated monocytes. B Overview of the 

known regulatory interactions underlying the cis and trans eQTL effects at the SLC39A8 locus. 

Figure adapted from [33]. C Pairwise LD (r2 within 1000 Genomes European populations) 

between the SLC39A8 variants highlighting missense variant (rs13107325), trans-eQTL 

(rs75562818), red blood cell distribution width (RBCDW) associated SNP (rs7692921) in our 

credible set and the cis lead variant from naive monocytes (rs11097779). LD was calculated 

using the LDlinkR (v.1.0.2) R package [39].   

Discussion 

Given that trans-eQTLs have been more difficult to replicate between studies and false positive 

associations can easily occur due to technical issues [40,41], it is increasingly important to 
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effectively summarise and prioritise associations for follow up analyses and experiments. We 

found that aggregation of credible sets of eigengene profiles from multiple co-expression 

methods (Additional file 1: Figure S2) successfully reduced the number of independent 

associations, but this still retained more than 300 loci that we needed to evaluate. To further 

prioritise associations, we used gene set and transcription factor motif enrichment analysis of 

the trans-eQTL target genes. Although motif analysis is often underpowered, it can provide 

directly testable hypotheses about the trans-eQTL mechanism such as the MTF1 transcription 

factor that we identified at the SLC39A8 locus. Similar approaches have also been successfully 

used to characterise trans-eQTLs involving IRF1 and IRF2 transcription factors [18,42].  

  

A major limitation of co-expression based approach for trans-eQTL mapping is that many true 

co-expression modules can remain undetected by various co-expression analysis methods. We 

sought to overcome this by aggregating results across five complementary co-expression 

methods. We found that while all methods were able to discover strong co-expression module 

trans-eQTLs such as those underlying the IFNB1 (Additional file 1: Figure S3) and LYZ 

(Additional file 1: Figure S4) associations, most co-expression module trans-eQTLs were only 

detected by a subset of the analysis methods. For example, the ARHGEF3 association was 

detected by three of the five methods (Figure 2B) and SLC39A8 co-expression module was 

found only by funcExplorer and only when samples from LPS-stimulated monocytes were 

analysed separately (Figure 3B). While it is always possible to include additional analysis 

methods, this should be appropriately weighed against the increase in the number of 

phenotypes tested. In our analysis, we decided to first use a relaxed nominal significance 

threshold of P-value < 5x10-8 and subsequently focus on associations that we could either 

replicate in independent datasets or find significant support from the literature. Finally, if the 

trans-eQTL locus controls a single or a small number of genes then co-expression-based 
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approaches are probably not well suited to detect such associations and gene-level analysis is 

still required. 

 

Since eQTL datasets from purified cell types are still relatively small and single cell eQTL 

datasets are even smaller [43], it is tempting to perform trans-eQTL analysis on whole tissue 

datasets such as the brain or whole blood [3]. However, it remains unclear what fraction of cell 

type and condition specific trans-eQTLs can be detected in whole tissue datasets collected from 

healthy donors. Although we were able to replicate the ARHGEF3 association in the eQTLGen 

whole blood meta-analysis, because our fine mapped lead variant happened to be one of the 

10,317 variants tested in eQTLGen, systematic replication requires genome-wide summary 

statistics that are currently lacking for trans-eQTL analyses. Secondly, tissue datasets can be 

biased by cell type composition effects. These can lead to spurious trans-eQTL signals, 

because genetic variants associated with cell type composition changes would appear as trans-

eQTLs for cell-type-specific genes [3]. Furthermore, multiple studies have demonstrated that 

also the co-expression signals in tissues are largely driven by cell type composition effects [44–

46]. Thus, even though PLIER detected the ARHGEF3 trans-eQTL in whole blood, this could 

have been at least partially driven by the change in platelet proportion between individuals [9]. 

Our analysis in purified cell types enabled us to verify that this was a truly platelet-specific 

genetic association. 

 

Although both in the case of ARHGEF3 and SLC39A8, we could be reasonably confident that 

the expression level of the cis gene mediated the observed trans-eQTL effect, there was only a 

modest correlation (Pearson’s r between 0.07 and 0.33) between the cis gene expression and 

the corresponding trans co-expression module expression. In case of SLC39A8 there seemed 

to be a temporal delay with the cis-eQTL being active early in LPS response and trans-eQTL 

appearing much later after proposed accumulation of the ZIP8 protein and increase in 
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intracellular zinc concentration. Temporal delay has also been reported for the trans-eQTLs at 

the INFB1 [18] and IRF1 [42] loci. Similarly, stimulation-specific cis-eQTL at CR1 locus in whole 

blood is not able to explain the full extent of the trans-eQTL observed at the same locus [47]. 

This suggests that if cis and trans effects are separated from each other either in time (early 

versus late response) or space (different cell types that interact with each other), then this might 

limit the power of methods that rely on genetically predicted gene expression levels to identify 

regulatory interactions [22,48,49] and infer causal models. This can also have a negative impact 

on mediation analysis [50–52], which seeks to estimate the proportion of trans-eQTL variance 

explained by the expression level of the cis gene. Altogether, these results indicate that limiting 

trans-eQTL analysis to missense variants and to variants that have been detected as cis-eQTLs 

in the same cell type might miss some true associations, because the cis effect might be active 

in some other, yet unprofiled, context. 

Conclusions 

We have performed a large-scale trans-eQTL analysis in six blood cell types and three 

stimulated conditions. We demonstrate that co-expression module detection combined with 

gene set enrichment analysis can help to identify interpretable trans-eQTLs, but these results 

depend on which co-expression method is chosen for analysis and how the input data is 

partitioned beforehand. We find that the detected trans-eQTLs are highly cell type specific and 

we use these approaches to perform in-depth characterisation of two cell type specific trans-

eQTL loci: platelet-specific trans-eQTL near the ARHGEF3 gene and monocyte-specific 

associations near the SLC39A8 locus. In both cases, the co-expression modules were enriched 

for clearly interpretable Gene Ontology terms and pathways, which directly guided literature 

review and more detailed analyses. We believe that applying co-expression and gene set 

enrichment based approaches to larger eQTL datasets has the power to detect many more 
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additional associations while simultaneously helping to prioritise trans-eQTLs for detailed 

experimental or computational characterisation.    

Methods 

Datasets used in the analysis 

CEDAR. The CEDAR dataset [23] contained gene expression and genotype data from CD4+ T-

cells, CD8+ T-cells, CD19+ B-cells and CD14+ monocytes, CD15+ neutrophils and platelets 

from up to 323 individuals. The raw gene expression data generated with Illumina HumanHT-12 

v4 arrays were downloaded from ArrayExpress [53] (accession E-MTAB-6667). The raw IDAT 

files were imported into R using the readIdatFiles function from the beadarray v2.28 [54] 

Bioconductor package.  

 

The raw genotype data generated by Illumina HumanOmniExpress-12 v1_A genotyping arrays 

were also downloaded from ArrayExpress (accession E-MTAB-6666). Genotype calling was 

performed with Illumina GenomeStudio v2.0.4, after which the raw genotypes were exported in 

PLINK format. 

 

Kasela, 2017. Kasela et al, 2017 [24] generated gene expression and genotype data from 

CD4+ and CD8+ T cells from 297 unique donors. The raw gene expression data generated with 

Illumina HumanHT-12 v4 arrays were downloaded from Gene Expression Omnibus (accession 

GSE78840). The genotype data generated by Illumina HumanOmniExpress-12 v1_A 

genotyping arrays were obtained from the Estonian Genome Center, University of Tartu 

(https://www.geenivaramu.ee/en/biobank.ee/data-access). Ethical approval was obtained from 

the Research Ethics Committee of the University of Tartu (approval 287/T-14). 
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Fairfax, 2012, Fairfax, 2014 and Naranbhai, 2015. Fairfax et al, 2012 [20] profiled gene 

expression in CD19+ B cells from 282 individuals (ArrayExpress accession E-MTAB-945). 

Fairfax et al, 2014 [18] profiled gene expression in naive CD14+ monocytes as well as in cells 

stimulated with lipopolysaccharide (LPS) for 2 or 24 hours and interferon-gamma for 24 hours 

from up to 414 individuals (accession E-MTAB-2232). Naranbhai et al., 2015 [25] profiled gene 

expression in CD15+ neutrophils from 93 individuals (accession E-MTAB-3536). The genotype 

data for all three studies were generated by Illumina HumanOmniExpress-12 genotyping arrays 

and were downloaded from European Genome-phenome Archive (accessions 

EGAD00010000144 and EGAD00010000520). 

Genotype data quality control and imputation 

We started with raw genotype data from each study in PLINK format and GRCh37 coordinates. 

Before imputation, we performed quality control independently on each of the three datasets. 

Briefly, we used Genotype harmonizer [55] v1.4.20 to align the alleles with the 1000 Genomes 

Phase 3 reference panel and exclude variants that could not be aligned. We used PLINK v1.9.0 

to convert the genotypes to VCF format and used the fixref plugin of the bcftools v1.9 to correct 

any strand swaps. We used ‘bcftools norm --check-ref x’ to remove any remaining variants 

where the reference allele did not match the GRCh37 reference genome. Finally, we excluded 

variants with Hardy-Weinberg equilibrium P-value > 10-6, missingness > 0.05 and MAF < 0.01. 

We also excluded samples with more than 95% of the variants missing. Finally, we merged 

genotype data from all three studies into a single VCF file.  

 

After quality control, we included 580,802 autosomal genetic variants from 1,041 individuals for 

imputation. We used a local installation of the Michigan Imputation Server v1.2.1 [56] to perform 
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phasing and imputation with EAGLE v2.4 [57] and Minimac4 [56]. After imputation, we used 

CrossMap.py v2.8.0 [58] to convert genotype coordinates to GRCh38 reference genome. We 

used bcftools v1.9.0 to exclude genetic variants with imputation quality score R2 < 0.4 and minor 

allele frequency (MAF) < 0.05. We used PLINK [59] v1.9.0 to perform LD pruning of the genetic 

variants and LDAK [60] to project new samples to the principal components of the 1000 

Genomes Phase 3 reference panel [61]. The Nextflow pipelines for genotype processing and 

quality control are available from GitHub (https://github.com/eQTL-Catalogue/genotype_qc).  

Detecting sample swaps between genotype and gene expression 

data 

We used Genotype harmonizer [55] v1.4.20 to convert the imputed genotypes into TRITYPER 

format. We used MixupMapper [62] v1.4.7 to detect sample swaps between gene expression 

and genotype data. We detected 155 sample swaps in the CEDAR dataset, most of which 

affected the neutrophil samples. We also detected one sample swap in the Naranbhai, 2015 

dataset.  

Gene expression data quality control and normalisation 

As a first step, we performed multidimensional scaling (MDS) and principal component analysis 

(PCA) on each dataset separately to detect and exclude any outlier samples. This was done 

after excluding the replicate samples and the samples that did not pass the genotype data 

quality control. Additional outliers were detected after quantile normalisation and adjusting for 

batch effects. The normalisation was performed using the lumiN function from the lumi v.2.30.0 

R package [63]. Batch effects, where applicable, were adjusted for with the 

removeBatchEffect function from the limma v.3.34.9 R package [64]. After quality control to 
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exclude outlier samples, the quantile normalised log2 intensity values from all datasets were 

combined. This was followed by regressing out dataset specific batch effects. Only the 

intensities of 30,353 protein-coding probes were used. Finally, the probe sets were mapped to 

genes. For genes with more than one corresponding probe set, the probe with the highest 

average expression was used. 18,383 protein-coding genes with unique Ensembl identifiers 

remained for co-expression analysis. We did not regress out any principal components from the 

gene expression data, as this can introduce false positives in trans-eQTL analysis due to 

collider bias [41]. In total, 3,938 samples remained after the quality control (Table 1).  

 

Table 1. Number of samples included in the analysis from each study and each cell type. 

Cell type Fairfax_2012 Fairfax_2014 Naranbhai_2015 Kasela_2017 CEDAR 

B cell 281 - - - 266 

T cell CD4+ - - - 279 294 

T cell CD8+ - - - 267 281 

neutrophil - - 93 - 291 

platelet - - - - 226 

monocyte naive - 420 - - 290 

monocyte LPS 2h - 255 - - - 

monocyte LPS 24h - 325 - - - 

monocyte IFNγ 24h - 370 - - - 

 

Co-expression analysis 

We applied five different methods to identify modules of co-expressed genes from the gene 

expression data. We used an expression matrix where rows correspond to genes and columns 

to individuals/samples as input for the methods. The gene expression profiles were centred and 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 24, 2020. ; https://doi.org/10.1101/2020.04.22.055335doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.22.055335
http://creativecommons.org/licenses/by/4.0/


23 

standardised prior to analysis. All methods infer gene co-expression modules, each of which 

can be described by a single expression profile (‘eigengene’) that captures the collective 

behavior of corresponding genes in the module. The approaches for defining eigengenes differ 

across the methods (see below). These eigengenes are treated as quantitative traits in the 

trans-eQTL analysis. To detect potential cell type and condition specific modules, we applied 

the same methods also to the expression matrices from each of the nine cell types and 

conditions separately. Summaries of the co-expression analysis results from both integrated 

and cell-type-specific expression data are shown in Additional file 1: Figure S1.  

Co-expression clustering methods 

Weighted gene co-expression network analysis (WGCNA). The WGCNA method [14] 

identifies non overlapping co-expressed gene modules. Each of the modules is represented by 

its first principal component of expression values of genes in the module termed as module 

eigengene. We used the function blockwiseModules for automatic block-wise network 

construction and module identification with default parameters from the dedicated R package 

WGCNA (v.1.66). The number of modules was detected automatically by the algorithm.  

 

funcExplorer. FuncExplorer [15] is a web tool that performs hierarchical clustering on gene 

expression values which is followed by automated functional enrichment analysis to derive the 

most biologically meaningful gene modules from the dendrogram. The expression data were 

uploaded to funcExplorer and the modules were detected using the following parameters: best 

annotation strategy, P-value threshold 0.01 for enrichment of Gene Ontology, KEGG and 

Reactome annotations. Every funcExplorer gene module is characterised by the eigengene 

profile which, like in WGCNA, is the first principal component of module expression values 

calculated in the same way as in WGCNA. The number of modules is detected automatically by 

funcExplorer and the different modules consist of non-overlapping sets of genes. The co-
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expression analysis results are available for browsing from 

https://biit.cs.ut.ee/funcexplorer/user/2a29dfa6de6b8b733f665352735adaf5 where the option 

‘Dataset’ includes the full selection of expression data used in this analysis. Dataset 

‘Merged_ENSG_expression’ incorporates integrated samples from all cell types and conditions, 

‘CL_0000233_naive’ stands for platelets, ‘CL_0000236_naive’ for B-cells, ‘CL_0000624_naive’ 

for CD4+ T-cells, ‘CL_0000625_naive’ for CD8+ T-cells, ‘CL_0000775_naive’ for neutrophils, 

‘CL_0002057_naive’ for monocytes and ‘CL_0002057_IFNg_24h’, ‘CL_0002057_LPS_24h’, 

‘CL_0002057_LPS_2h’ include gene expression matrices from corresponding stimulated 

monocyte samples. 

Matrix factorisation methods 

Matrix factorisation methods, such as ICA, PLIER and PEER, deconvolve the input gene 

expression matrix into two related matrices [5]. One of the matrices is the matrix of factor 

loadings for each sample and the other describes the gene-level weights of the factors. In the 

case of ICA, PLIER and PEER, we used the factor loadings as module eigengene profiles. For 

g:Profiler enrichment analysis we used the gene-level weights to define the genes that 

characterise the modules by choosing the ones that are the most influenced, i.e. the genes at 

both extremes of gene weight values (2 standard deviations from the mean weights in this 

module). Thus, different modules can include overlapping sets of genes.   

 

Independent component analysis (ICA). The ICA [12] method attempts to decompose gene 

expression measurements into independent components (factors) which represent underlying 

biological processes. The fastICA [65] algorithm in R was run using the wrapper package 

picaplot v.0.99.7 (https://github.com/jinhyunju/picaplot). The number of components to be 

estimated was automatically detected by the implementation using a 70% variance cut-off value. 
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The ICA algorithm was run 15 times and only the components that replicated in every run were 

used.  

 

Pathway-level information extractor (PLIER). PLIER [9] is a matrix decomposition method 

that uses prior biological knowledge of pathways and gene sets to deconvolve gene expression 

profiles as a product of a small number of latent variables (factors) and their gene weights. We 

performed PLIER analysis using the dedicated R package (v.0.99.0; downloaded from 

https://github.com/wgmao/PLIER) with the collection of 5,933 gene sets available in the 

package comprising canonical, immune and chemgen pathways from MSigDB [66], and various 

cell-type markers from multiple sources. PLIER was run with 100 iterations. Only the 16,440 

genes appearing in both gene expression data and the pathway annotation matrix were used. 

The initial number of latent variables was set using the num.pc function provided by the 

package.  

 

Probabilistic estimation of expression residuals (PEER). PEER [13,67] is a factor analysis 

method that uses Bayesian approaches to infer hidden factors from gene expression data that 

explain a large proportion of expression variability. We applied PEER method for co-expression 

analysis using the peer R package (v.1.0; downloaded from https://github.com/PMBio/peer) with 

default parameters, accounting also for the mean expression. The initial number of factors was 

determined using the num.pc function from the PLIER package.  

Functional enrichment analysis 

We used the g:GOSt tool from the g:Profiler toolset [29] via dedicated R package gprofiler2 

(v.0.1.8) for functional enrichment analysis of gene modules. The short links to the full 

enrichment results were automatically generated using the parameter as_short_link = T in 
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the function gost. The results shown in this paper were obtained with data version 

e99_eg46_p14_55317af.  

Cis-eQTL analysis and fine mapping 

We performed cis-eQTL analysis using the qtlmap (https://github.com/eQTL-Catalogue/qtlmap) 

Nextflow [68] workflow developed for the eQTL Catalogue project [69]. Briefly, we performed 

cis-eQTL analysis in a +/- 1 Mb window centered around each gene. We used the first six 

principal components of both the gene expression and genotype data as covariates in the 

analysis. The eQTL analysis was performed using QTLtools [70].  

 

For cis-eQTL fine mapping, we used the Sum of Single Effects (SuSiE) model [27] implemented 

in the susieR v0.9.0 R package. We performed fine mapping on a +/- 1 Mb cis window centered 

around the lead eQTL variant of each gene. We performed fine mapping on individual-level 

genotype and gene expression data. Prior to fine mapping, we regressed out six principal 

components of the gene expression and genotype data from the gene expression data. To 

identify significant eQTLs for QTL mapping, we performed Bonferroni correction for each gene 

to account for the number of variants tested per gene and then used Benjamini-Hochberg FDR 

correction to identify genes with FDR < 0.1. The fine mapping Nextflow workflow for cis-eQTLs 

is available from GitHub (https://github.com/kauralasoo/susie-workflow). 

Gene module trans-eQTL analysis and fine mapping 

The MatrixEQTL [26] R package (v2.2) was used for trans-eQTL analysis to fit a linear model 

adjusted for sex, batch (where available) and the first three principal components of the 

genotype data. Before the analysis, the module eigengene profiles were transformed using the 

inverse normal transformation to reduce the impact of outlier eigengene values produced by 
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some clustering methods. A total of 6,861,056 autosomal genetic variants with minor allele 

frequency (MAF) > 0.05 were tested. Due to the partial sharing of individuals between cell types 

and conditions, the eQTL analysis was performed in each cell type and condition separately. To 

achieve this, the eigenvectors from the integrated approach were split into cell type specific sub-

eigenvectors before the analysis. The results from every analytical setting (data partitioning 

approach (n = 2), co-expression method (n = 5), cell type (n = 9), 90 trans-eQTL analyses in 

total), were then individually filtered to keep nominally significant variant-module associations 

(P-value < 5x10-8).  

 

Next, we applied SuSiE [27] to fine map the nominally significant associations to independent 

credible sets of variants. For every gene module, we started fine mapping from the lead variant 

(variant with the smallest association P-value for this module) and used a +/- 500,000 bp 

window around the variant to detect the credible sets. We continued fine mapping iteratively 

with the next best nominally significant variant outside the previous window to account for LD 

and continued this process until no variants remained for the gene module. This procedure 

resulted in a total of 864 credible sets across all cell types, co-expression analysis methods and 

data partitioning approaches (integrated and separate).   

 

To aggregate and summarise overlapping associations, we combined all credible sets into an 

undirected graph where every node represents a credible set of a module from a triplet (data 

partitioning approach, co-expression method, cell type) and we defined an edge between two 

nodes if the corresponding credible sets shared at least one overlapping variant (Additional file 

1: Figure S2). The graph was constructed using the igraph R package. After obtaining the 

graph, we searched for connected components, i.e. subgraphs where every credible set is 

connected by a path, to combine the vast number of results into a list of non-overlapping loci (n 

= 601). For every component we defined the lead variant by choosing the intersecting variant 
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with the largest average posterior inclusion probability (PIP) value across all the credible sets in 

the component.   

 

Genes in physical proximity often have correlated expressions levels and could thus manifest as 

co-expression modules in our analysis. Consequently, if one or more genes in such modules 

have cis-eQTLs, then these cis variant-module associations would also be detected by our 

approach. To differentiate cis-acting co-expressions module eQTLs from true trans 

associations, we decided to add an additional filtering step based on gene-level analysis. We 

performed gene-level eQTL analysis for individual gene expression traits of the 18,383 protein-

coding genes and the 601 lead variants. The gene-level eQTL analysis was performed using the 

MatrixEQTL R package with the same settings and data transformations as in the module-level 

analysis described above. From every credible set component, we excluded the variant-module 

pairs together with corresponding credible sets where no trans associations (variant-level 

Benjamini-Hochberg FDR 5%) were included in the module. As trans-eQTLs we consider 

variants that act on distant genes (> 5 Mb away from the lead variant) and genes residing on 

different chromosomes. After this filtering step we repeated the process of aggregating credible 

sets and 303 non-overlapping loci remained (Additional file 1: Figure S10; Additional file 2).  

 

To further account for the number of co-expression modules tested, we applied both Benjamini-

Hochberg false discovery rate (FDR) and Bonferroni correction at the level of each analytical 

setting (Additional file 1: Figure S10). We applied the FDR 10% threshold to every module - lead 

variant pair from each of the 90 analytical settings (data partitioning approach, co-expression 

analysis method, cell type) and if a pair did not pass the threshold we excluded it together with 

the corresponding credible set(s) from the results. Bonferroni correction was applied in a similar 

manner with a threshold P-value < !×#$
%&

'(
,  where 𝑛*, 𝑖	 = 	1, . . . ,90, stands for the number of 
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modules from the corresponding co-expression method and data partitioning approach. We 

repeated the graph-based aggregation process on the remaining credible sets individually from 

both correction methods and as a result the FDR 10% threshold reduced the number of 

significant associations to 140 and Bonferroni threshold to only 4 significant trans-eQTLs. 

Colocalisation 

We downloaded GWAS summary statistics for 36 blood cell traits [28] from the NHGRI-EBI 

GWAS Catalog [36]. We downloaded coloc [71] R package v3.1 from bioconda [72]. The cis-

eQTL colocalisation Nextflow workflow is available from GitHub 

(https://github.com/kauralasoo/colocWrapper). The same workflow was adjusted for trans-eQTL 

colocalisation.  

Replication of genetic associations 

Kim-Hellmuth et al, 2017 [31] profiled gene expression in monocytes before and after 

stimulation with LPS, muramyl-dipeptide (MDP) and 5′-triphosphate RNA for 90 minutes and 6 

hours. We downloaded the eQTL summary statistics from ArrayExpress [53] (accession E-

MTAB-5631). Individual-level genotype data were not available for this study. The eQTLGen 

Consortium [3] performed trans-eQTL analysis for 10,317 trait-associated genetic variants in 

31,684 whole blood samples. We downloaded the summary statistics from 

https://www.eqtlgen.org/trans-eqtls.html.  
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Additional file 1 

 

Figure S1. Number of detected gene modules and their size distributions across co-expression 
analysis methods and data partitioning approaches. The modules from WGCNA and 
funcExplorer are non overlapping while ICA, PLIER and PEER can define larger modules that 
share the same set of genes. The numbers on top of the boxplots show the number of modules 
obtained from each method. 
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Figure S2. Aggregating fine mapping credible sets in the example of ARHGEF3 trans-eQTL 
locus. We performed fine mapping on the lead variants of every gene module to find 
corresponding credible sets (see “Methods”). A The figure shows an example of three credible 
sets on chromosome 3 for three gene modules: IC68 from applying ICA to integrated expression 
data; Cluster_12953 from funcExplorer and X6.WIERENGA_STAT5A_TARGETS_DN from 
PLIER, both applied to gene expression data from platelets. The associations shown here were 
detected in platelets. Each circle represents a variant belonging to the corresponding credible 
set and the different credible sets are distinguished by colors. B The credible sets are combined 
into a graph structure where every node is a credible set of variants and we define an edge 
between two nodes if they share at least one variant. Grey circles represent all the credible sets 
from other genomic regions. Here the number of shared variants is shown on the edges and the 
number of variants belonging to the credible set is shown on the nodes. We searched for 
connected components, grouped these credible sets together and defined a lead variant for 
every group based on the largest average posterior inclusion probability (PIP) value within the 
group. In this example, as all the credible sets share a single variant, rs1354034, then they are 
grouped together and the overlapping variant with largest PIP is rs1354034. 
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Figure S3. Monocytes specific trans-eQTL near IFNB1 that was first detected by Fairfax et al, 
2014 [18] and later replicated in Quach et al, 2016 [17] after 6 hours of LPS stimulation 
(Additional file 1: Table S1). Both studies performed gene-level trans-eQTL analysis only. A 
Association signals for IFNB1 cis-eQTL after 2 hours of LPS stimulation and trans-eQTL for 
module IC140 (ICA, 445 genes) after 24 hours of LPS stimulation. We do not detect a 
colocalisation between the cis and trans associations, but this could be due to potential 
confounding caused by probe hybridisation bias in our cis-eQTL analysis. B Line graph showing 
that the association between the co-expression modules and IFNB1 trans-eQTL lead variant is 
specific to LPS stimulation. C Manhattan plot of gene-level analysis for trans-eQTL lead variant 
rs13296842 (chr9_20818520_A_G). Dark blue points mark genes belonging to module IC140. 
The module also includes IFNB1. D Association between trans-eQTL lead variant (rs13296842) 
and eigengene values of a representative ICA module IC140 across cell types. E Functional 
enrichment analysis of the IFNB1 associated modules (see https://biit.cs.ut.ee/gplink/l/Gi0ZDjn-
RM for full results). Empty cell indicates that no gene in the module is annotated to the 
corresponding term. The last column combines the FDR 5% significant genes from the gene-
level analysis. GO - Gene Ontology, REAC - Reactome Pathways, TF - transcription factor 
binding sites from TRANSFAC, WP - WikiPathways. 
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Figure S4. Monocyte-specific trans-eQTL near LYZ that has been previously detected in three 
independent studies [10,20,21]  (Additional file 1: Table S1). A Colocalisation between cis-eQTL 
for LYZ in naive monocytes and trans-eQTLs for module IC86 (ICA, 309 genes) in naive 
monocytes and 24 hours after stimulation with IFNγ. The cis and trans credible sets shown in 
this figure are identical and contain 4 variants. B Line graph showing that the association 
between the modules and LYZ trans-eQTL locus is detected only in naive and stimulated 
monocytes. This association was detected by at least one module from each of the five co-
expression methods and both data partitioning approaches. In total 58 gene modules (54 after 
Bonferroni threshold) were associated with the locus and 15 of the modules contained the LYZ 
gene itself. There were 14 integrated approach modules that were associated in both naive and 
stimulated monocytes. C Manhattan plot of gene-level analysis for trans-eQTL lead variant 
rs10784774 (chr12_69344099_A_G) in monocytes after 24 h of stimulation with IFNγ. Dark blue 
points highlight the genes in module IC86. D Association between trans-eQTL lead variant 
(rs10784774) and eigengene of ICA module IC86 across cell types. For g:Profiler enrichment 
results with all associated modules see https://biit.cs.ut.ee/gplink/l/llOr6uCTR8.   
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Table S1. Literature-based replication of trans-eQTL loci near IFNB1, LYZ and ARHGEF3 
genes. Linkage disequilibrium (r2) was calculated using European samples from the 1000 
Genomes Phase 3 reference panel. 

trans-eQTL Replication 

Locus Lead 
rs ID Context Study Dataset Context rs ID r2 

Replication 
variant in 

credible set 

IFNB1 rs13296842 monocytes 
LPS 24h 

Fairfax et al., 
2014 [18] 

Fairfax_2014 monocytes 
LPS 24h 

rs2275888 0.57 
(0.86*) 

FALSE 

Quach et al., 
2016 [17] 

Quach_2016 monocytes 
LPS 6h 

rs12553564 0.57 
(0.86*) 

FALSE 

Ramhdani et al., 
2020 [11] 

Fairfax_2014 monocytes 
LPS 24h 

rs2275888 0.57 
(0.86*) 

FALSE 

Ruffieux et al., 
2018 [19] 

Fairfax_2014 monocytes 
LPS 24h 

rs3898946 0.88 TRUE 

LYZ rs10784774 

monocytes 
naive, 
LPS 2h, 
LPS 24h, 
IFNγ 24h 

Rotival et al., 
2011 [10] 

GHS monocytes rs11177644 0.79 TRUE 

Fairfax et al., 
2012 [20] 

Fairfax_2012 monocytes rs10784774 1 TRUE 

Rakitsch and 
Stegle, 2016 
[21] 

CTS monocytes rs6581889 0.79 TRUE 

ARHGEF3 rs1354034 platelets 

Võsa et al., 
2018 [3] 

eQTLGen blood rs1354034 1 TRUE 

Mao et al., 2019 
[9] 

Battle_2014 blood rs1354034 1 TRUE 

Rotival et al., 

2011 [10] 

GHS monocytes rs12485738 0.6 FALSE 

rs1344142 0.6 TRUE 

Wheeler et al., 

2019 [22] 

FHS blood - - - 

Nath et al., 2017 

[8] 

DILGOM07 blood rs1354034 1 TRUE 

GHS - Gutenberg Health Study, FHS - Framingham Heart Study, CTS - Cardiogenics 
Transcriptomic Study, * - strongest LD in the credible set.  
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Figure S5. Clustering of trans-eQTLs by effect sizes across cell types and conditions. Each 
locus is represented by the strongest associated gene module from integrated approach, 186 
out of the nominally significant 303 loci are shown. Loci associated with modules detected only 
in cell type and conditions specific data partitions are not shown, because their effect sizes in 
other cell types are not defined. The effect sizes in every row are scaled relative to the 
corresponding strongest effect. The annotation bars on the left show indicators for trans-eQTLs 
that were significant after Bonferroni correction (blue stripes) and with FDR 10% (red stripes).  
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Figure S6. Intronic variant located within the ARHGEF3 gene (rs1354034) is associated with 
three co-expression modules in platelets: X6.WIERENGA_STAT5A_TARGETS_DN (918 
genes) from PLIER, IC68 (1,074 genes) from ICA and Cluster_12953 (5 genes) from 
funcExplorer. A-C Regional plots of trans-eQTL summary statistics for each of the modules. 
Corresponding credible sets are highlighted in green. D-F Manhattan plots of gene-level eQTL 
analysis for the trans-eQTL lead variant (rs1354034). Dark blue points highlight the genes in the 
corresponding module. G-I Association between rs1354034 and eigengene values of three 
modules. J Mean expression of the ARHGEF3 stratified by the lead variant (rs1354034). 
Although ARHGEF3 is expressed in multiple cell types, the cis-eQTL effect is only visible in 
platelets.  
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Figure S7. Replication of the ARHGEF3 trans-eQTL variant (rs1354034) in eQTLGen [3]. Z-
scores of all genes associated with the rs1354034 variant in trans from eQTLGen (FDR < 0.05) 
are shown on the x-axis and effect sizes in platelet samples (n = 226) from this study are shown 
on the y-axis. The effect sizes for genes significantly associated in platelets (FDR < 0.05, green 
dots) are correlated between the two studies (Pearson’s r = 0.68) and agree in effect size 
direction. 
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Figure S8. The SLC39A8 trans-eQTL lead variant (rs75562818) and cis-eQTLs for SLC39A8 
probe sets (ILMN_1695316 and ILMN_2233539) do not colocalise in any of the monocyte 
conditions in our data. While the trans and cis credible sets do not overlap, one of the cis 
credible set for probe ILMN_2233539 overlaps with the credible set of probe ILMN_1695316 in 
naive and 24h LPS stimulated monocytes. A-C cis-eQTL summary statistics from naive 
monocytes for probes ILMN_1695316 (A), ILMN_2233539 (B) and trans-eQTL for module 
Cluster_10413 in monocytes after 24 hours of LPS stimulation (C). D-F cis-eQTL summary 
statistics from monocytes after 2 hours of LPS stimulation. G-I cis-eQTL summary statistics from 
monocytes after 24 hours of LPS stimulation. The trans credible set is shown in green. The 
position of the missense variant in the SLC39A8 gene (rs13107325) is shown with the blue 
diamond. The cis and trans lead variants are highlighted with red circles.   
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Figure S9. Regional plots comparing association signals of SLC39A8 trans-eQTL (rs75562818) 
and cis-eQTLs from Kim-Hellmuth et al, 2017 [31]. A cis-eQTL summary statistics from naive 
monocytes (n = 134). B cis-eQTL summary statistics 90 minutes after LPS stimulation (n = 134). 
C cis-eQTL summary statistics 6 hours after LPS stimulation (n = 134). The cis-eQTL signal 
seen after 90 minutes of stimulation has disappeared by 6 hours of stimulation.  
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Figure S10. The complete analysis workflow from gene co-expression analysis and gene 
module trans-eQTL mapping to multi-step filtering approaches. Aggregating nominally 
significant credible sets to non-overlapping groups (Figure S2) resulted in 601 loci. This was 
followed by gene-level trans-eQTL analysis to exclude credible sets of modules where the 
module does not include any gene-level-significant trans genes (FDR 5%). The remaining 
credible sets were again aggregated using the same approach, 303 loci remained. The credible 
sets were further filtered by applying FDR 10% threshold to the associations and excluding 
corresponding credible sets before the aggregation procedure which left us with 140 non-
overlapping loci. An even more conservative Bonferroni threshold which takes into account the 
number of modules detected by corresponding clustering method and analysis setting (ni, i = 
1,...,90) was applied which further reduced the set of significant trans-eQTLs to 4.           
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