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Abstract

We compared the consistency, accuracy and reproducibility of next-generation short 

read sequencing between ten laboratories involved in food safety (research institutes, 

state laboratories, universities and companies) from Germany and Austria. Participants 

were asked to sequence six DNA samples of three bacterial species (Campylobacter 

jejuni, Listeria monocytogenes and Salmonella enterica) in duplicate, according to their 

routine in-house sequencing protocol. Four different types of Illumina sequencing 

platforms (MiSeq, NextSeq, iSeq, NovaSeq) and one Ion Torrent sequencing instrument

(S5) were involved in the study. Sequence quality parameters were determined for all 

data sets and centrally compared between laboratories. SNP / and cgMLST calling were

performed to assess the reproducibility of sequence data collected for individual 

samples. Overall, we found Illumina short read data to be more accurate and consistent 

than Ion Torrent sequence data, with little variation between the different Illumina 

instruments. Two laboratories with Illumina instruments submitted sequence data with 

lower quality, probably due to the use of a library preparation kit, which shows difficulty 

in sequencing low GC genome regions. Differences in data quality were more evident 

after assembling short reads into genome assemblies, with Ion Torrent assemblies 

featuring a great number of allele differences to Illumina assemblies. Clonality of 

samples was confirmed through SNP calling, which proved to be a more suitable 

method for an integrated data analysis of Illumina and Ion Torrent data sets, than 

cgMLST calling.

1. Introduction

Whole genome sequencing (WGS) is a high resolution, high-throughput method for the 

molecular typing of bacteria. Through bioinformatic analysis of bacterial genome 

sequences, it is not only possible to identify bacteria on a species and sub-species 

level, but also to identify antimicrobial resistance and virulence genes. Further, it is 

possible through a variety of methods, such as variant calling, k-mer based, or gene-by-

gene approaches, to determine the relatedness / clonality between bacterial isolates, 
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making it the ideal tool for outbreak studies, routine surveillance and clinical diagnostics 

(Ronholm et al., 2016). Initially expensive and difficult to set up, the technology is 

becoming continuously more user-friendly and affordable (Uelze et al., 2020). In recent 

years, funding provided through federal initiatives has enabled public health and food 

safety laboratories in Germany and worldwide to acquire sequencing platforms. A 

number of different sequencing technologies exist, each with their own upsides and 

shortcomings. For example, Illumina sequencing platforms generally produce relatively 

short paired-end sequencing reads with high accuracy, while the more affordable Ion 

Torrent technology outputs single-end reads with often greater read lengths, but higher 

error rates (Quail et al., 2012; Fox et al., 2014; Salipante et al., 2014; Kwong et al., 

2015; Escalona et al., 2016). Which sequencing platform different laboratories choose 

to acquire is not only dependent on financial resources, but also on individual needs 

and routine applications, with throughput, error rates / error types, read lengths and run 

time as the main concerning parameters. This leads to an increased diversification of 

the sequencing community (Moran-Gilad et al., 2015), creating a natural competition 

between producers, which benefits users through an ongoing improvement of 

technology and equipment. However, diversification also hampers standardization and 

despite ongoing calls for the establishment of agreed minimal sequencing quality 

parameters, this process has been much delayed (Endrullat et al., 2016). 

Increasingly, microbial disease surveillance systems are based on WGS data. For 

example, Pathogenwatch (https://pathogen.watch) is a global platform for genomic 

surveillance, which analyses genomic data submitted by users and conducts cgMLST 

clustering to monitor the spread of important bacterial pathogens. Similarly, the 

GenomeTrakr network uses whole-genome sequence data and performs cg/wgMLST 

and SNP calling to track food-borne pathogens (https://www.fda.gov/food/whole-

genome-sequencing-wgs-program/genometrakr-network) integrated into NCBI 

Pathogen Detection (https://www.ncbi.nlm.nih.gov/pathogens/). In Germany, a network 

of Federal State Laboratories and Federal Research Institutions supports the 

investigation of food-borne outbreaks through traditional typing and WGS methods. All 

genomic surveillance systems have in common that a high quality and accuracy of the 

sequencing data is crucial for a robust and reliable data analysis. 
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Proficiency testing (PT) is an important external quality assessment tool to ensure the 

accuracy and reproducibility of sequence data (Endrullat et al., 2016), whereas the aim 

of an interlaboratory study is to determine the variability of the results obtained by 

different collaborators. Several PT exercises with the focus on the sequencing of 

microbial pathogens have been published in recent years. In 2015, the GenomeTrakr 

network conducted a PT with 26 different US laboratories, which were instructed to 

sequence eight bacterial isolates according to a fixed protocol (Timme et al., 2018). In 

the same year, the Global Microbial Identifier (GM) initiative conducted an extensive 

survey with the aim to assess requirements and implementation strategies of PTs for 

bacterial whole genome sequencing (Moran-Gilad et al., 2015), followed by a series of 

global PT exercises (https://www.globalmicrobialidentifier.org/Workgroups/GMI-

Proficiency-Test-Reports). In an interlaboratory exercise in 2016, five laboratories from 

three European countries (Denmark, Germany, the Netherlands) were asked to 

sequence 20 Staphylococcus aureus DNA samples according to a specific protocol and 

report cgMLST cluster types (Mellmann et al., 2017). In this study, we present the 

results of an interlaboratory study for short-read bacterial genome sequencing with ten 

participating laboratories from German-speaking countries initiated by the §64 German 

Food and Feed Code (LFGB) working group “NGS Bacterial Characterisation” chaired 

by the Federal Office of Consumer Protection and Food Safety (BVL). The working 

group serves to validate and standardize WGS methods for pathogen characterization 

in the context of outbreak investigations. The interlaboratory study was carried out by 

the German Federal Institute of Risk Assessment (BfR) in 2019, with the aim to answer 

the question whether different WGS technology platforms provide comparable 

sequence data, taking into account the routine sequencing procedures established in 

these laboratories.

2. Materials and Methods

2.1 Study design
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In the frame of the §64 LFGB working group “NGS Bacterial Characterisation”, we 

conducted a interlaboratory study for next-generation sequencing. Twelve teams 

participated in the study. Participants included four Federal Research Institutes (3 

German, 1 Austrian), four German State Laboratories, one German university and three 

German companies. 

Participants were provided with DNA samples (40-55 µl, 60-187 ng/µl) of six bacterial 

isolates (Table 1) (two of each Campylobacter jejuni, Listeria monocytogenes and 

Salmonella enterica), with the species of the sample visibly marked on the tube 

containing the sample DNA.

Participants were instructed to sequence the samples according to their standard in-

house sequencing procedure. Where possible, participants were asked to sequence 

each isolate in two independent sequencing runs. No minimum quality criteria for the 

resulting sequencing data were requested. Together with the samples, participants 

received a questionnaire to document their applied sequencing method. Participants 

were given four weeks to conduct the sequencing and report the resulting raw 

sequencing data. Sequencing data was exchanged through a cloud-based platform and 

data quality was centrally analysed with open-source programs and in-house 

bioinformatic pipelines. Results of the sequencing data analysis were presented to the 

members of the §64 LFGB working group in November 2019. Following the meeting, 

ten participants agreed to a publication of the results of the interlaboratory study. Two 

participants declined a publication of their data due to a conflict of interest. Participants 

are anomalously identified with their laboratory code LC01 – LC10 assigned for this 

study. 

2.2. Study isolates, cultivation and DNA isolation

Detailed information to the samples is summarized in Supplementary File 1 (Tables S1 

to S3). 

The samples 19-RV1-P64-1 and 19-RV1-P64-2 were obtained from Campylobacter 

jejuni isolates (MLST type 4774 and 21 respectively). Campylobacter jejuni were pre-

cultured on Columbia blood agar, supplemented with 5 % sheep blood (Oxoid, Wesel, 
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Germany) for 24 hours at 42 °C under micro-aerobic atmosphere (5% O2; 10% CO2). A 

single colony was inoculated on a fresh Columbia blood agar plate for an additional 24 

hours. After incubation, bacterial cells were re-suspended in buffered peptone water 

(Merck, Darmstadt, Germany) to an OD600 of 2. Genomic DNA was extracted from this 

suspension with the PureLink® Genomic DNA Mini Kit (Thermo Fisher Scientific, 

Dreieich, Germany) according to manual instructions.

The samples 19-RV1-P64-3 and 19-RV1-P64-4 were obtained from Listeria 

monocytogenes serovar IIc and serovar IIb respectively. Listeria monocytogenes were 

cultured on sheep blood agar plates and incubated at 37°C over night. Genomic DNA 

was directly extracted from bacterial colonies using the QIAamp DNA Mini Kit (Qiagen, 

Hilden, Germany) following the manual instructions for gram-positive bacteria.

The samples 19-RV1-P64-5 and 19-RV1-P64-6 were obtained from Salmonella enterica

subsp. enterica serovar Infantis and serovar Paratyphi B var. Java respectively.

Salmonella enterica were cultivated on LB agar (Merck). A single colony was inoculated 

in 4 ml liquid LB and cultivated under shaking conditions (180–220 rpm) at 37 °C for 16 

hours. Genomic DNA was extracted from 1 ml liquid cultures using the PureLink® 

Genomic DNA Mini Kit (Thermo Fisher Scientific) according to manual instructions. 

DNA quality of all samples was verified with Nanodrop and Qubit and samples were 

stored at 4 °C before being express shipped in liquid form on ice.

2.3. PacBio reference sequences

As Pacific Biosciences (herein abbreviated as PacBio) sequencing was performed 

before the interlaboratory study started, DNA extractions used for PacBio sequencing 

differentiated from DNA extractions used for short read-sequencing. For Campylobacter

jejuni, Listeria monocytogenes and Salmonella enterica the PureLink® Genomic DNA 

Mini Kit (Invitrogen) was used for genomic DNA extraction. 

PacBio sequences for samples 19-RV1-P64-1 to 19-RV1-P64-5 were obtained from 

GATC as described before (Borowiak et al., 2018). 

Sample 19-RV1-P64-6 was sequenced in-house. Genomic DNA was sheared to 

approximately 10 kb using g-Tubes (Covaris, Brighton, U.K.) and library preparation was
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performed using the SMRTbell Template Prep Kit 1.0 and the Barcode Adapter Kit 8A 

(Pacific Bioscienses, Menlo Park, CA, USA). Sequencing was performed on a PacBio 

Sequel instrument using the Sequel® Binding Kit and Internal control Kit  3.0 and the 

Sequel® Sequencing Kit 3.0 (PacBio). Long read data was assembled using the 

HGAP4 assembler.

Information to the PacBio sequences is summarized in Supplementary File 1 (Tables 

S2-S3).

2.4. Whole-genome short read sequencing

All ten participants followed their own in-house standard protocol for sequencing. 

Important sequencing parameters such as the type of library preparation and 

sequencing kits, as well as the type of sequencing instrument were documented with a 

questionnaire (the questionnaire template in German language is provided as 

Supplementary File 2). The results of the questionnaire are summarized in 

Supplementary File 3. All participants determined the DNA concentration prior to 

sequencing library preparation. Of ten participants, seven chose a restriction digest for 

DNA fragmentation, while three laboratories fragmented DNA through mechanical 

breakage. Over half of participants pooled sequence libraries relative to genome sizes 

and almost all (with the exception of laboratory LC01) included a control in the 

sequencing run (i.e. PhiX).

All participants, with the exception of laboratories LC02 and LC08, sequenced samples 

in duplicates. Duplicates were defined as one sample sequenced in two independent 

sequencing runs on the same sequencing instrument, henceforth identified as 

sequencing run A and sequencing run B. Participants LC01, LC03, LC04, LC05, LC06, 

LC07, LC09, LC10 contributed 12 whole-genome sequencing data sets (combined 

forward and reverse reads) each, while participant LC08 contributed 6 whole-genome 

sequencing data sets. In contrast, laboratory LC02 sequenced the complete sample set 

on three different sequencing instruments in single runs, henceforth identified as 

LC02_a (Illumina iSeq), LC02_b (Illumina MiSeq), LC02_c (Illumina NextSeq). 

Therefore, participant LC02 contributed 18 whole-genome sequencing data sets.

7

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.22.054759doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.22.054759


Together, 120 whole-genome sequencing data sets were available for analysis. 

Taken the fact into consideration, that participant LC02 used three different sequencing 

instruments, a total of twelve individual sequencing instruments were included in the 

interlaboratory study: one Ion Torrent S5 instrument (Thermo Fisher Scientific), two 

iSeq, six MiSeq, two NextSeq and one NovaSeq instrument (all Illumina).

2.5. Assessment of raw sequencing data quality

The quality of the sequencing reads was assessed with fastp (Chen et al., 2018) with 

default parameters. Quality control parameters for each data set (forward and reverse 

reads for Illumina data) such as the number of total reads and the Q30 (before filtering) 

were parsed from the resulting fastp json reports. The coverage depth was calculated 

as the sum of the length of all reads divided by the length of the respective PacBio 

reference sequence. 

2.6. Short-read genome assembling

Raw Ion Torrent reads were trimmed using fastp v0.19.5 (Chen et al., 2018) with 

parameters --cut_by_quality3 --cut_by_quality5 --cut_window_size 4 --

cut_mean_quality 30. Trimmed Ion Torrent reads were de novo assembled with SPAdes

v3.13.1 (Nurk et al., 2013) with read correction. 

Raw Illumina reads were trimmed and de novo assembled with our in-house developed 

Aquamis pipeline (https://gitlab.com/bfr_bioinformatics/AQUAMIS/) which implements 

fastp (Chen et al., 2018) for trimming and shovill (based on SPAdes) (https://github.com/

tseemann/shovill) for assembly. Unlike SPAdes, shovill automatically down samples 

reads to a coverage depth of 100x prior to assembling. 

2.7. Assessment of genome assembly quality and bacterial characterization
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Quality of the genome assemblies was assessed with QUAST v5.0.2 

(https://github.com/ablab/quast) without a reference. Quality parameters such as 

number of contigs, length of largest contig and N50 were parsed from the QUAST report

text files for each assembly. 

Based on the genome assemblies (including the PacBio reference sequences), 

bacterial characterization was conducted with our in-house developed Bakcharak 

pipeline (https://gitlab.com/bfr_bioinformatics/bakcharak) which implements among 

other tools, ABRicate for antimicrobial resistance and virulence factor screening (https://

github.com/tsmeeann/abricate), and the PlasmidFinder database for plasmid detection 

(Carattoli et al., 2014), mlst (https://github.com/tseemann/mlst), SISTR (Yoshida et al., 

2016) for in silico Salmonella serotyping and Prokka (Seemann, 2014) for gene 

annotation. 

2.8. CgMLST allele calling

CgMLST allele calling was conducted with our in-house developed chewieSnake 

pipeline (https://gitlab.com/bfr_bioinformatics/chewieSnake) which implements 

chewBBACA (Silva et al., 2018). Only complete coding DNA sequences, with start and 

stop codon, according to the NCBI genetic code table 11, are identified as alleles by 

chewBBACA (with Prodigal 2.6.0 (Hyatt et al., 2010)). CgMLST allele distance matrices 

are computed with grapetree (ignoring missing data in pairwise comparison).

CgMLST schemes for Listeria monocytogenes (Ruppitsch et al., 2015) were derived 

from the cgMLST.org nomenclature server (https://www.cgmlst.org/). CgMLST schemes 

for Campylobacter jejuni and Salmonella enterica were derived from the chewBBACA 

nomenclature server (http://chewbbaca.online/).

2.9. SNP calling

SNP (single-nucleotide polymorphism) calling was conducted for each sample. 

Sequencing reads were trimmed prior to SNP calling. Assembled uncirculated PacBio 

sequences of the samples were used as reference sequences for SNP calling. SNP 
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calling was conducted with our in-house developed snippySnake pipeline 

(https://gitlab.com/bfr_bioinformatics/snippy-snake) which implements snippy v4.1.0 

(https://github.com/tseemann/snippy).

3. Results

3.1. Comparison of quality of sequencing reads

One important parameter to assess the quality of sequencing reads is the phred quality 

score. Commonly a Q score of 30 is used, which indicates a base call accuracy of ≥99.9

%. We compared the percentages of bases that have a quality score equal or larger to 

30. The results visualized in Figure 1 (see Supplementary File 4 for exact numbers), 

show that on average ~ 90 % of Illumina bases have a Q score ≥Q30, while only ~40 % 

of Ion Torrent bases achieve a Q score ≥Q30. Therefore, the base call accuracy of 

Illumina data is greater than that of Ion Torrent data. There is little variation within the 

Illumina instrument series (mean values: iSeq: 91.7 %; MiSeq: 90.8 %; NextSeq: 90.4 

%; NovaSeq: 92.4 %), indicating that no particular instrument of the series out or under 

performs the others. In contrast, sequencing data with higher or lower quality scores 

was consistently associated with individual laboratories. Among the participants 

employing Illumina instruments, LC08 overall produced the lowest quality data (LC08 

mean: 82.1 %), while LC02_b produced the highest quality data (LC02_b mean: 97.9 

%), both with a MiSeq instrument. Interestingly, the same laboratory LC02 remained 

behind the average for Illumina data when employing a NextSeq instrument (LC02_c 

mean: 87.1 %). Of course, sequence quality might also depend on loading 

concentration and number of cycles used for sequencing. Quality scores remained 

largely consistent between runs. Equally, the type of bacterial species had little 

influence on sequencing data quality. 

We further assessed the total number of reads and bases of each data set. Since 

ideally there is little variation in the length of the reads (for Illumina), the number of 

reads is closely correlated with the total number of produced bases, as can be seen 

from Supplementary File 4. To achieve a reasonable coverage over the whole genome 
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a minimum number of reads / total bases is required (this can be easily calculated when

a suitable reference genome is available). 

As  visualized  in  Figure  2,  the  total  number  of  produced  bases  varied  across

laboratories,  instruments  and  samples,  as  well  as  between  sequencing  runs.  For

example, for sample 19-RV1-P64-1, laboratory LC10 produced the greatest number of

sequencing bases:  ~1.8  billion  base (~12.2  million  reads),  while  laboratory  LC02_b

produced  the  lowest  number  of  sequencing  bases:  ~0.8  billion  bases  (~0.4  million

reads).  The number of  reads /  total  number of  bases has a direct  influence on the

coverage depth (in this study calculated by the total number of bases divided by the

length of the PacBio reference). Sufficient coverage depth is an important requirement

for successful downstream analysis, such as variant detection and assembly. However,

up to now there is no widespread consensus for the recommended minimum coverage

depth  for  bacterial  whole  genome  sequencing.  In  the  accompanying  questionnaire,

participants stated that they intended to achieve a coverage depth ranging from >20x to

<300x,  with  most  participants  opting  for  a  coverage  depth  of  60x  to  70x.  Actual

coverage depths ranged from 26x (LC03, 19-RV1-P64-5, run A) to 1201x (LC10, 19-

RV1-P64-1, run B), with most data sets featuring coverage depths from 75x to 196x

(Q0,25 and Q0,75 ). With the exception of a small number of data sets (LC03: 19-RV1-P64-

2, 19-RV1-P64-5, 19-RV1-P64-6; LC05: 19-RV1-P64-6, all run A), all  other data sets

were well above a coverage depth of 30x. Similarly, to the total number of produced

reads, actual coverage depths varied between laboratories, instruments and samples,

as well  as between sequencing runs.  In concordance with the high number of  total

reads / bases, laboratory LC10 produced data sets with very high coverage depths with

an average of 736x. When coverage depths were normalized, by assigning a coverage

depth of 1 to  sample 19-RV1-P64-1 of each group, we found that  coverage depths

varied in a predictable manner in relation to the genome size of the sample as shown in

Figure 4. Some participants chose to pool sequencing libraries relative to genome sizes

of  the samples,  which  in  most  cases ensured a more  consistent  sequencing depth

across  the  samples  (LC02_a,  LC03,  LC04,  LC06).  In  comparison,  participants  that

pooled sequencing libraries of all  samples equally (LC01, LC05, LC07, LC08, LC10)

obtained lower coverage depths for bacterial isolates with larger genome sizes (i.e. ~4.9
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Mbp for  Salmonella  enterica),  and  high  coverage  depths  for  bacterial  isolates  with

smaller genome sizes (i.e. ~1.7 Mbp  Campylobacter jejuni). However, in most cases

pooling  the  DNA libraries  relative  to  genome  size  only  reduced  the  impact  of  the

genome  size  effect,  without  eliminating  it.  Only  laboratory  LC06  achieved  a  high

consistency across all samples. 

3.1. Comparison of quality of genome assemblies and bacterial characterization

The genome assemblies constructed from the short read data were assessed and all 

determined quality parameters are listed in Supplementary File 4. We found little 

variation in the length of the genome assemblies within the short read assemblies (sd 

values for the samples ranged from ~3 Kbp to ~11 Kbp). However, all short read 

assemblies were ~36 to ~66 Kbp shorter than their respective PacBio references, likely 

due to overlapping end regions in the PacBio sequences, which were not circularized 

prior to analysis.

Similarly,  there  was  little  variation  for  the  calculated  GC values  (sd  values  for  the

samples  ranged  from  0.01  to  0.03  %). Besides  the length,  the  quality  of  genome

assemblies is determined by the total number of contigs, and the size of the largest

contig, with assemblies featuring fewer, larger contigs generally being more useful for

downstream  analyses. Both  parameters  are  combined  in  the  N50  value,  which  is

defined as the length of the shortest contig in the set of largest contigs that together

constitute at least half of the total assembly size. The N50 values for all assemblies are

visualized in Figure 5. We found N50 values to be overall  very similar for individual

samples, regardless of which laboratory or instrument provided the sequencing data,

with a few notable exceptions (i.e. LC06, LC08). In general, highest N50 values were

obtained for Listeria monocytogenes samples (19-RV1-P64-3: ~600 Kbp; 19-RV1-P64-

4: ~480 Kbp), followed by Salmonella enterica samples (19-RV1-P64-5: ~200 Kbp; 19-

RV1-P64-6: ~340 Kbp), and Campylobacter jejuni samples (19-RV1-P64-1: ~220 Kbp;

19-RV1-P64-2: ~180 Kbp). 

Assemblies of laboratories LC06 and LC08 consistently had much lower N50 values

(also shown by a higher total number of contigs and shorter contigs lengths), compared
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to the rest of the group. For example, while the majority of assemblies achieved an N50

of ~ 605 Kbp (± 550 bp) for sample 19-RV1-P64-3, the N50 for assemblies of LC06

ranged around ~ 256 Kbp, while the N50 for assemblies of laboratory LC08 was even

lower  (~71 Kbp).  Interestingly,  no  linear  correlation  was apparent  between the  N50

value and the coverage depth as shown in Figure 6. 

Coding frames in the genome assemblies were annotated to determine the MLST type,

as well as resistance and virulence genes. In total, there was little variation for the total

number of detected CDS (defined as a sequence containing a start and stop codon).

The total number of CDSs varied by sample (19-RV1-P64-1: n=~1597; 19-RV1-P64-2:

n=~1713; 19-RV1-P64-3: n=~2892; 19-RV1-P64-4: n=~2913; 19-RV1-P64-5: n=~4667;

19-RV1-P64-6: n=~4393) with a standard deviation of 8 to 15 coding frames.

The Multilocus Sequence Type (MLST) was determined correctly for all data sets. The 

same plasmid markers could be detected from all short read genome assemblies. Two 

more plasmid markers (Col8282_1 and ColRNAI_1) could be detected in the short read 

assemblies compared to the PacBio reference for 19-RV1-P64-6, likely due to the fact 

that small plasmids are often excluded from PacBio sequences (read lengths too short).

In three cases, resistance genes detected in the PacBio references were not present in 

the short read assemblies: blaOXA-184 in 19-RV1-P64-1, of laboratory LC06 (run A) and 

aadA1 in 19-RV1-P64-6, of laboratory LC09 (both runs). 

Although overall the same virulence genes could be detected from all short-read 

assemblies, there was some variation with assemblies from laboratories LC01, LC06 

and LC08 often missing virulence genes (Supplementary File 4). For example, virulence

factors flaA and flaB could not be detected in assemblies from laboratory LC01 for 

sample 19-RV1-P64-1. Interestingly, the same two genes were present in both 

assemblies of laboratory LC01 for sample 19-RV1-P64-2, but absent in all other 

assemblies for this sample. In another example the genes sopD2 and sseK1 could not 

be detected from the assembly for sample 19-RV1-P64-5 from laboratory LC08. The 

absence of virulence and resistance genes is likely caused by contig borders. 

3.3. CgMLST calling
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CgMLST was conducted to compare the effect of differences in the genome assemblies 

on clustering. All cgMLST distance allele matrices are presented in Supplementary File 

5. The cgMLST distance matrix  for sample 19-RV1-P64-1 is visualized in Figure 7. 

CgMLST distance matrices for the six samples were overall very similar. In general, 

most assemblies had zero allele differences. However, assemblies constructed from Ion

Torrent short read data (LC01) generally had a much higher number of allele 

differences, than those constructed from Illumina short reads. For easy comparison, we 

calculated the ‘median cgMLST distance’ for each assembly, by computing the medium 

of all allele differences to a specific assembly (compare Figure 7).

Figure 8 shows the median cgMLST distance for all assemblies. As mentioned the 

highest number of allele differences were calculated for the assemblies of laboratory 

LC01 (using an Ion Torrent instrument). However, allele differences for the Ion Torrent 

assemblies varied dependent on the species of the sample. The smallest number of 

cgMLST allele differences were obtained for Listeria monocytogenes samples (LC01: ~ 

7.1), followed by Campylobacter jejuni samples (LC01: ~ 11.1) and Salmonella enterica 

samples (LC01: ~ 26.1). Illumina assembly generally had much lower allele differences. 

Median cgMLST allele differences for the assemblies of the laboratories LC02a, LC02b, 

LC02c, LC03, LC04, and LC010 were zero for all samples. Median allele differences for 

assemblies of the laboratories LC05, LC06, LC07, LC08, and LC09 were between zero 

and three, often slightly higher for laboratories LC05 and LC08. Interestingly, the 

assembly of sample 19-RV1-P64-6 produced in run A by LC05 featured a median 

number of 10 alleles, while the assembly produced in the independent run B by LC05 

had a median number of zero allele differences. 

We further compared the effect of the assembly algorithm on the cgMLST calling by 

assembling trimmed Illumina reads with SPAdes (as opposed to shovill) prior to cgMLST

calling. However, no significant difference was found in the number of allele differences 

(data not shown).

3.4. SNP calling
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SNP calling was conducted to detect sequencing errors. The assembled PacBio 

sequences were used as reference sequences. All SNP distance allele matrices are 

presented in Supplementary File 6. No SNPs were detected within the data sets. 

Equally, all data sets featured zero SNPs to the reference sequence, with the exception 

of the PacBio reference for sample 19-RV1-P64-5, to which all data sets had 2 SNPs.

Discussion

We conducted an interlaboratory study for the investigation of the reproducibility and 

consistency of bacterial whole-genome sequencing. Ten participants were instructed to 

sequence six DNA samples in duplicate according to their in-house standard procedure 

protocol. We were interested to see, how the quality of sequencing data varied across 

different sequencing instruments, library preparation kits, sequencing kits and individual 

expertise of the participating laboratories. Overall, we were able to compare 12 Illumina 

sequencing instruments and one Ion Torrent instrument. 

It is well known that different sequencing technologies vary in their average error rates, 

with Ion Torrent data generally having higher error rates compared to Illumina (Quail et 

al., 2012; Fox et al., 2014; Salipante et al., 2014; Kwong et al., 2015; Escalona et al., 

2016). Indeed, we assessed that Ion Torrent bases achieved much lower quality scores 

than Illumina bases (Ion Torrent Q30: ~ 35-50 %, Illumina Q30: ~ 80 – 95 %). 

Interestingly, we found the four different Illumina sequencing instruments types involved 

in our study (iSeq, MiSeq, NextSeq, NovaSeq) to be very similar in terms of base 

quality, suggesting that the underlying sequencing technology is very similar, despite the

different color chemistry used.

There was a great variety in the number of total bases that participants obtained for 

their data sets, resulting in great fluctuations for the coverage depth (ranging from 26x 

to 1200x). Although no widely accepted minimal coverage depth for bacterial whole-

genome sequencing is established yet, most studies recommended coverage depths 

ranging from ≥30x to ≥50x (Chun et al., 2018). Positively, most data sets submitted by 

the participants in our study had coverage depths well above 30x, demonstrating that 

insufficient coverage depth is not usually a concern. However, coverage depths 
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frequently fell short of the intended coverage depths stated by participants in the 

accompanying questionnaire, indicating that this parameter is not always well controlled

for. For example, while laboratory LC02_b aimed for a coverage depth of ≥60x, the 

majority of data sets submitted by this laboratory had a much lower coverage depth (30-

50x). Similarly, laboratory LC01, LC02a, LC05 and LC08 frequently obtained lower than 

intended coverage depths. 

Resulting from experience and producer instructions, users generally know the number 

of reads / total bases that their sequencing instrument is capable of producing in one 

sequencing run. By pooling DNA libraries relative to genome sizes (provided the 

species of the isolates is known), users can influence the number of reads / bases and 

therefore the coverage depth for each isolate. As was shown in this study, participants 

that pooled DNA libraries prior to sequencing relative to genome sizes achieved more 

consistent coverage depths across the three species (e.g. LC06), while participants that

pooled all DNA libraries equally, obtained sequencing data with predictable fluctuation in

coverage depth (i.e. LC10), depending on the genome size of the organism.

Both, too low (problematic for variance calling / fragmented assembly) and too high 

(increased ‘noisiness’ of the data since the number of sequencing errors increases with 

the read number / the assembly graph is too complex and cannot be resolved) coverage

depths can have negative effects on downstream analysis. For this reason, updated 

assembly algorithm, such as shovill, ‘down sample’ data to a moderate coverage prior to

assembly (e.g. shovill down samples to 100x). Indeed, we did not find a linear 

correlation between coverage depth and N50 (i.e. the very high coverage depths 

observed for some data sets had neither positive nor negative effects on assembly 

quality). Nevertheless, we recommend that sequencing laboratories pool DNA libraries 

by genome sizes prior to sequencing in order to produce sequencing data with 

consistent coverage depth for optimal downstream analysis. This has the additional 

benefit that smart pooling strategies decrease the sequencing costs, as a greater 

number of samples can be sequenced in one run.

We employed SNP calling for the detection of potential sequencing errors in the 

trimmed sequence reads, as well as for assessing the utility of a SNP calling approach 

for an integrated outbreak analysis with data from different sequencing platforms. Given
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that participants were provided with purified DNA samples, thereby eliminating the 

potential for the development of mutations during cultivation, any SNP potentially flags a

sequencing error. Positively, we detected zero SNPs within the data sets. The fact that 

all data sets of sample 19-RV1-P64-5 differed in two SNPs from the respective PacBio 

reference, either points to a sequence error within the PacBio reference, or might 

indicate that the strain underwent mutations between the independent cultivations for 

short read and long read sequencing DNA isolation.

We further constructed de novo assemblies from the short read sequence data to 

assess the influence of variations in sequence data quality on assembly-based 

downstream analysis. To eliminate assembler specific effects we strove to construct all 

assemblies in an equal manner. Naturally, single-end Ion Torrent data requires different 

assembly algorithm, than those employed for paired-end Illumina data, which hampers 

a direct comparison.

Nevertheless, we found that all assemblies were overall very similar, with respect to 

assembly length, N50, GC and the number of CDSs, with a few notable exceptions. In 

particular, assemblies constructed from short read data of laboratories LC06 and LC08 

(both using a MiSeq Illumina instrument) had much lower N50 values and a greater 

number of contigs, probably due their use of the Nextera XT DNA Library Preparation 

Kit, which was recently shown to have a strong GC bias (Grützke et al., 2019; Sato et 

al., 2019; Uelze et al., 2019) (also compare Supplementary File 7). This is a concern 

since a high number of contigs in a genome assembly may cause a fragmentation of 

genes at the contigs borders, thereby affecting gene annotation and multilocus 

sequence typing. Furthermore we found that Ion Torrent assemblies differed from 

Illumina assemblies in length (slightly shorter), N50 (slightly lower), GC (slightly lower) 

and number of CDSs (slightly increased). 

Complementary to SNP calling, we employed a cgMLST approach to compare genome 

assemblies in a simulated outbreak analysis. Noteworthy, cgMLST revealed a major 

distinction between Illumina and Ion Torrent data with assemblies constructed from Ion 

Torrent reads generally computing a much greater number of allele differences 

(Illumina: ~ 0-3 allele differences, Ion Torrent: ~10-30 allele differences). We suspect 

that this increased number of allele differences is caused by frame shifts in the Ion 
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Torrent assemblies. While the typical error type associated with Illumina reads are 

randomly distributed incorrect bases (substitution error) which do not cause frame 

shifts, Ion Torrent reads are prone to systematic insertions and deletions errors which 

lead to frame shifts in coding sequences (Buermans and den Dunnen, 2014; Escalona 

et al., 2016). Given that the cgMLST method employed in this study identifies coding 

frames based on their start and stop codons (as opposed to methods which implement 

a similarity based BLASTn search against a set of reference loci for allele identification),

frame shifts will have a major effect on allele detection, thereby likely causing the 

observed increased number of allele differences. This is further supported by the low 

reproducibility of the Ion Torrent assemblies with up to 24 allele differences between two

independent sequencing runs for the same sample. 

From our results, SNP calling seems to be the method of choice for a combined 

outbreak analysis which integrates Illumina and Ion Torrent data sets in concordance 

with earlier studies (Kaas et al., 2014), due to the fact that Ion Torrent typical indels, as 

well as heterozygous or low quality sites are excluded from SNP calling. Through SNP 

calling it was possible to correctly identify the clonality between data sets for the same 

sample (i.e. there were zero SNPs between the Illumina and the Ion Torrent data sets 

for all samples). CgMLST calling, on the other hand would have produced much 

confusion in a real outbreak study, by suggesting that DNA samples sequenced with Ion

Torrent were obtained from isolates relatively unrelated from those sequenced with 

Illumina. 

These seemingly contradictory results can be explained by the stringent variant filtering 

prior to SNP calling, which eliminates the effect of Ion Torrent typical insertion and 

deletion errors. However, masking of indels and other low quality sites might also 

decrease the number of SNPs detected in total, thus leading to a lower resolution.

SNP calling further has the advantage that no assembling step is required, for which 

currently no optimized assembly algorithm is available for Ion Torrent, thereby avoiding 

the introduction of assembly biases. Although we additionally assembled Illumina reads 

with SPAdes to increase the comparability to Ion Torrent assemblies (currently shovill is 

unable to assemble Ion Torrent reads), SPAdes remains inherently tailored for Illumina 

reads and cgMLST calling was not improved with all SPAdes assemblies. Given that 
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many surveillance platforms perform cgMLST or wgMLST for (pre-)clustering (Uelze et 

al., 2020) the observed differences between Illumina and Ion Torrent assemblies might 

potentially lead to erroneous clustering results and disrupt outbreak studies. 

Conclusion

We found that seven of nine participants with Illumina sequencing instruments were 

able to obtain reproducible sequence data with consistent high quality. Two participants 

with Illumina instruments submitted data with lower quality, probably due to the use of a 

library preparation kit, which shows difficulty in sequencing low GC genome regions. 

The only Ion Torrent instrument included in our study was inferior in terms of sequence 

data quality and assembly accuracy. We found a SNP calling approach to be more 

suitable for an integrated data and outbreak analysis of Ion Torrent and Illumina data 

than a cgMLST calling approach.

In the future, sequencing laboratories will continue to adapt and modify their laboratory 

protocols in order to optimize sequencing data quality, throughput and user-friendliness,

while striving for the most cost and time-effective procedure. We welcome these efforts 

by innovative and thoughtful staff, which should not be unnecessarily hampered by 

overly rigid procedural protocols. Instead, a set of widely accepted, scientifically based 

and sensible minimal sequencing quality parameters, together with good standard 

practice protocols are urgently needed to ensure a consistent high quality of sequencing

data for comparative data analysis.

Continuous interlaboratory testing, such as the one employed in this study and external 

PTs, will play an important role in ensuring that laboratories of the diverse public health 

setting adhere to these standards, while providing important feedback to participants on 

their competency level. Open or anonymous sharing of sequencing parameters allows 

an assessment of the utility of different sequencing approaches and helps to identify 

potential user issues. In the best case, interlaboratory studies promote knowledge and 

expertise sharing, enabling laboratories to adopt the sequencing procedures best suited

for their unique setting, while simultaneously contributing to a standardization of the 
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technology, which will greatly improve the efficacy of sequencing data for surveillance, 

outbreak analyses and comparative studies. 

Abbreviations

BLAST basic local alignment search tool

cgMLST core genome multilocus sequence typing

DNA deoxyribonucleic acid

MLST multilocus sequence typing

NGS next-generation sequencing

SNP single-nucleotide polymorphism

ST sequence type

PT Proficiency testing

wgMLST whole-genome MLST

WGS whole genome sequencing

Data Availability

Sequencing data for all data sets analysed in this study has been deposited in the 

European Nucleotide Archive (ENA) under the study accession number PRJEB37768.
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Tables and Figures

Table 1:  Strain characteristics of analysed DNA samples (species, serovar, MLST, 

size and GC content) used in the interlaboratory study.

Sample Species Serovar MLST
Size 

(Mbp)

GC 

(%)

19-RV1-P64-1 Campylobacter jejuni 4774 1.6 30.5

19-RV1-P64-2 Campylobacter jejuni 21 1.7 30.5

19-RV1-P64-3 Listeria monocytogenes IIc 9 3.0 38.0

19-RV1-P64-4 Listeria monocytogenes IIb 59 3.0 37.9

19-RV1-P64-5 Salmonella enterica subsp. enterica Infantis 32 5.1 52.0

19-RV1-P64-6 Salmonella enterica subsp. enterica
Paratyphi 

B var. Java
28 4.8 52.2

Figure 1:  

The bar plot shows the mean percentage of total bases with a phred score above or 

equal to Q30 grouped by laboratories and samples. Line-connected points indicate the 

variance between sequencing runs (run A / run B), with the exception of laboratories 

L02 and LC08 (single sequencing run). Fill colours identify the sequencing instrument. 

The species of the samples is indicated. The dotted line marks a Q30 of 80%. 

Figure 2:  

The bar plot shows the mean total number of bases encompassed by the raw reads 

grouped by laboratories and samples. Line-connected points indicate the variance 
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between sequencing runs (run A / run B), with the exception of laboratories L02 and 

LC08 (single sequencing run). Fill colours identify the sequencing instrument. The 

species of the samples is indicated. The y-axis is squared. 

Figure 3:  

The bar plot shows the mean coverage depth grouped by laboratories and samples. 

Line-connected points indicate the variance between sequencing runs (run A / run B), 

with the exception of laboratories L02 and LC08 (single sequencing run). The coverage 

depth was defined as the sum of the length of all raw reads divided by the length of the 

respective PacBio reference sequence. Fill colours identify the sequencing instrument. 

The species of the samples is indicated. The y-axis is squared. The dotted line marks a 

coverage depth of 30x. 

Figure 4:  

The bar plot (left y-axis) shows the mean normalized coverage depth grouped by 

laboratories and species of the samples with error bar. The coverage depth was 

normalized for each laboratory to the coverage depth for sample 19-RV1-P64-1, 

sequencing run A, which was assigned a value of 1. The coverage depth was defined 

as the sum of the length of all raw reads divided by the length of the respective PacBio 

reference sequence. Fill colours identify, whether DNA libraries were pooled relative to 

genome sizes prior to sequencing or whether DNA libraries were pooled equally. The 

brown line graph in the background (right y-axis) indicates the average genome size of 

the species. 

Figure 5:  

The bar plot shows the mean N50 determined for the short-read genome assemblies 

grouped by laboratories and samples. Line-connected points indicate the variance 

between sequencing runs (run A / run B), with the exception of laboratories L02 and 

LC08 (single sequencing run). Fill colours identify the sequencing instrument. The 

species of the samples is indicated. 
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Figure 6:  

The dot plot shows the correlation between N50 and coverage depth for the short-read 

genome assemblies / sequence data sets. Fill colours indicate the sequencing 

instrument. 

Figure 7:  

The figure shows the cgMLST distance matrix for sample 19-RV1-P64-1. Laboratories 

(LC01-LC10) and respective sequencing runs (run A / run B) are identified. The red box,

arrow and text demonstrate how the median cgMLST distance was determined. 

Figure 8:  

The bar plot shows the mean median cgMLST distance grouped by laboratories and 

samples. Line-connected points indicate the variance between sequencing runs (run A / 

run B), with the exception of laboratories L02 and LC08 (single sequencing run). Fill 

colours identify the sequencing instrument. The species of the samples is indicated. 

Supplementary Files

Supplementary File 1:  

Table S1: General information about the strains used for the interlaboratory study.

Table S2: Information about the uncirculated PacBio sequences used as reference 

sequences for SNP calling.

Table S3: Antimicrobial resistance genes and plasmid markers identified from the 

uncirculated PacBio sequences.

Supplementary File 2:

The questionnaire template in German language.

Supplementary File 3:

Summarized results from the questionnaire.
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Supplementary File 4:

Sequence quality parameters for all sample sets.

Supplementary File 5:

CgMLST distance allele matrices for all samples. 

Supplementary File 6:

SNP distance allele matrices for all samples. 

Supplementary File 7: Figures show the global GC-bias across the whole genome 

calculated using Benjamini’s method (Benjamini and Speed, 2012) with the 

computeGCBias function of the deepTools package (Ramírez et al., 2016) for all sample

sets. The function counts the number of reads per GC fraction and compares them to 

the expected GC profile, calculated by counting the number of DNA fragments per GC 

fraction in a reference genome. In an ideal experiment, the observed GC profile would 

match the expected profile, producing a flat line at 0. The fluctuations to both ends of 

the x-axis are due to the fact that only a small number of genome regions have extreme 

GC fractions.
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