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Abstract 
Plasmids are extrachromosomal genetic elements replicating independently of the chromosome          
which play a vital role in the environmental adaptation of bacteria. Due to potential mobilization               
or conjugation capabilities, plasmids are important genetic vehicles for antimicrobial resistance           
genes and virulence factors with huge and increasing clinical implications. They are therefore             
subject to large genomic studies within the scientific community worldwide. As a result of rapidly               
improving next generation sequencing methods, the amount of sequenced bacterial genomes is            
constantly increasing, in turn raising the need for specialized tools to (i) extract plasmid              
sequences from draft assemblies, (ii) derive their origin and distribution, and (iii) further             
investigate their genetic repertoire. Recently, several bioinformatic methods and tools have           
emerged to tackle this issue; however, a combination of both high sensitivity and specificity in               
plasmid sequence identification is rarely achieved in a taxon-independent manner. In addition,            
many software tools are not appropriate for large high-throughput analyses or cannot be             
included into existing software pipelines due to their technical design or software            
implementation. In this study, we investigated differences in the replicon distributions of            
protein-coding genes on a large scale as a new approach to distinguish plasmid-borne from              
chromosome-borne contigs. We defined and computed statistical discrimination thresholds for a           
new metric: the replicon distribution score (RDS) which achieved an accuracy of 96.6%. The              
final performance was further improved by the combination of the RDS metric with heuristics              
exploiting several plasmid specific higher-level contig characterizations. We implemented this          
workflow in a new high-throughput taxon-independent bioinformatics software tool called Platon           
for the recruitment and characterization of plasmid-borne contigs from short-read draft           
assemblies. Compared to PlasFlow, Platon achieved a higher accuracy (97.5%) and more            
balanced predictions (F1=82.6%) tested on a broad range of bacterial taxa and better or equal               
performance against the targeted tools PlasmidFinder and PlaScope on sequenced E. coli            
isolates. Platon is available at: platon.computational.bio 
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Introduction 
Plasmids are bacterial extrachromosomal DNA elements, which replicate independently of the           
chromosome. They are mostly circular, have characteristic copy numbers per cell and carry             
genes that are usually not essential under normal conditions but rather allow bacteria to adapt               
to specific environments and conditions [1]. These genes, for instance, provide antibiotic or             
heavy metal resistances, are involved in alternative metabolic pathways or encode for virulence             
factors [2]. As plasmids are not only inherited by daughter cells, but can also be dispersed by                 
horizontal gene transfer, they can spread rapidly within and between bacterial populations [3–5].             
For example, identical antibiotic resistance plasmids have already been isolated from humans            
and animals [6]. Thus, plasmids are important mediators of antibiotic resistance spread and             
recent findings confirm they frequently play a major role in clinical outbreaks [7, 8]. Therefore, it                
is of huge importance to properly identify and analyze plasmids. 
 
Such analysis can be performed by plasmid DNA isolation followed by sequencing [9]. However,              
due to decreased sequencing costs, nowadays it is affordable and often easier to sequence the               
entire genome of bacterial organisms by next-generation whole-genome shotgun sequencing          
[10]. Furthermore, this approach allows the re-analysis of already sequenced genomes to            
identify plasmids which have not been detected before. Unfortunately, this introduces a new             
issue which needs to be addressed: Plasmid and chromosomal contigs are both mixed in draft               
assemblies and have to be distinguished from each other. 
 
This task, however, is hard to achieve due to biological and technical reasons [11]. Plasmids               
often contain mobile genetic elements, e.g. transposons and integrons, which are drivers for the              
genetic exchange between different DNA replicons and regions [12, 13]. Hence, these genetic             
elements are often encoded on both replicon types and thus, the origin of DNA fragments               
encoding such elements is hard to predict. Modern short-read assemblers pose an additional             
intricacy further aggravating these issues as they are notoriously hard pressed to correctly             
assemble repetitive regions such as aforementioned DNA elements [14]. To tackle this issue,             
many new bioinformatic tools have recently been developed, following different approaches: (i)            
Recycler and plasmidSPAdes [15, 16] exploit coverage variations of sequenced DNA fragments            
within a genome; (ii) PLACNET investigates paired-end reads linking contig ends [17]; (iii)             
PlasmidFinder searches for plasmid specific motifs, i.e. incompatibility groups [18]; (iv) cBar,            
PlasFlow and mlPlasmids use machine learning methods to classify k-mer frequencies [19–21];            
(v) PlaScope and PlasmidSeeker perform fast k-mer-based database searches of known           
plasmid sequences [22, 23]; Recycler additionally exploits information on circularization [15].           
Overall, each approach provides unique advantages and drawbacks. For example, approaches           
based on sequencing coverage variations are unable to detect plasmids with copy numbers             
equal to the chromosome whereas sequence motif and k-mer-based methods tend to identify             
only known plasmids. This often leads to distinct profiles in terms of sensitivity and specificity               
which are often biased towards one of both metrics and as this impacts on the conducted                
analysis a choice must be made between conservative or more aggressive classifications [11].  
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A further aspect of growing importance is Big Data awareness. Due to increasing amounts of               
generated sequence data [24], there is a rising need for automated high-throughput analysis             
tools. Unfortunately, not all currently available bioinformatics software tools are suitable for            
high-throughput analysis, let alone the technical integration into larger analysis pipelines [25–27]            
due to interactive designs or web-based implementations [17, 18, 21, 28]. Taxon-specific            
database designs also pose additional barriers as users might not have sufficient computational             
resources or bioinformatics support to build customized or large multi-taxon databases [20, 22].             
Furthermore, dependence on raw or intermediate data such as sequence reads and assembly             
graphs might impede analyses as such data might not be available [15, 16]. In order to allow for                  
Big Data scaling necessities, bioinformatic tools should therefore be designed and implemented            
in a high-throughput savvy manner, including: (i) where possible a taxon-independent database            
design; (ii) a non-interactive command line implementation; (iii) an actionable classification           
output, i.e. a true binary classification. 
 
To address these issues we present Platon, a new bioinformatics software tool to distinguish              
and characterize plasmid contigs from chromosome contigs in bacterial draft assemblies           
following a new approach: analysis of replicon distribution differences of protein-coding genes,            
i.e. frequency differences of being encoded on plasmid or chromosome contigs. The rationale             
behind this protein sequence-based replicon, i.e. chromosome vs. plasmid, classification is a            
natural distribution bias of certain protein-coding genes. For instance, essential housekeeping           
genes mandatory for bacterial organisms are mostly encoded on chromosomes [2]. In contrast,             
genes providing an evolutionary advantage under distinct situations are rather widespread on            
plasmids, e.g. antibiotic resistance and virulence genes. Here, we introduce “replicon           
distribution scores” (RDS), a new metric to express the measured bias of protein-coding genes’              
replicon distributions to distinguish plasmid from chromosome related contigs. 
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Methods and Implementation 

Marker protein sequences and computation of replicon distribution        
scores 
To build a database of marker protein sequences (MPS) we collected all bacterial             
representative sequences of UniProt’s UniRef90 protein clusters (n=69,803,841) [29] and          
analyzed their replicon distributions, i.e. the normalized plasmid vs. chromosome abundance           
ratios. Therefore, we conducted a homology search via Diamond [30] of all MPS against coding               
sequences (CDS) predicted via Prodigal [29] on two reference replicon sets, i.e. all NCBI              
plasmid sequences from the bacterial NCBI Genomes plasmid section (n=17,369)          
(ftp://ftp.ncbi.nlm.nih.gov/genomes/GENOME_REPORTS/plasmids.txt) and chromosomes of all     
complete bacterial NCBI RefSeq release 98 genomes. To prevent potential plasmid           
contamination in the chromosome set, all replicons shorter than 100 kbp were excluded             
resulting in 17,430 chromosome sequences. Resulting alignment hit counts (A) of the single             
best hit per sequence with a sequence coverage larger than or equal to 80% and a sequence                 
identity of at least 90% as well as the number of replicons (R) for both plasmids (p) and                  
chromosomes (c) were integrated into a normalized, transformed and scaled replicon           
distribution score RDS for each cluster defined by: 

DS .5) 1 )R = 2 * (
Fp

(Fp+Fc) − 0 * φ
F −F| p c|

* ( − pval  

with , , , N the number of elements of the MPS databaseF p =
Ap
Rp

F c = Rc

Ac φ = N

F −F∑
N

i=1
| p,i c,i|

 

and p val  the p value of a two-sided Fisher’s exact test using a contingency table of hit and no-hit 
counts for both replicon types. 

 
Thus, the RDS value of a protein sequence represents its replicon distribution bias as both ratio                
and absolute difference of hit count frequencies as well as its statistical power, i.e. 1 - p value.                  

As a first factor of the formula, the hit count frequency ratio ( ) is transformed by the            
Fp

(Fp+Fc)      

minuend -0.5 and the factor 2 to the range [-1,1] and hence, shifts RDS values of chromosomal                 
proteins to a negative range [-1,0] and to a positive value range [0,1] for proteins with a positive                  
plasmid bias. To integrate the scale of the difference in the hit count frequencies we added the                 
absolute difference of replicon hit count frequencies ( ) normalized to the mean       F p − F c      
difference of hit count frequencies of all MPS (φ) as a second factor. In order to also include a                   
measure of statistical confidence into the new RDS metric a third factor ( ) was added,            1 − pval    
taking the p value of a two-sided Fisher’s exact test using a contingency table of hit and non-hit                  
counts of both replicon types under the assumption that these are not equally distributed - the                
main idea behind the RDS metric. Thus, RDS values resulting from statistically insignificant hit              
count numbers get minimized towards zero. In order to finally classify entire contigs, the mean               
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RDS of all per-protein-sequence RDS values of each contig is calculated and then tested              
against defined thresholds. Predicted CDS, for which no MPS can be identified get assigned the               
neutral default RDS value of zero. 
 

Evaluation of replicon distribution scores 
In order to assess the discriminative power of protein sequence based RDS, we created 10               
random fragments of each sequence in the reference replicon sets for each of the following               
lengths: 1 kbp, 5 kbp, 10 kbp, 20 kbp and 50 kbp. For each random fragment, a mean RDS was                    
computed and tested against a range of discrimination thresholds between -50 and 10 with a               
0.1 step size. For each discrimination threshold a confusion matrix was set up upon which               
sensitivity (tp/(tp+fn)), specificity (tn/(tn+fp)) and accuracy ((tp+tn)/(tp+tn+fp+fn))       
metrics were calculated, where tp, tn, fp and fn is the number of true positives, true negatives,                 
false positives and false negatives, respectively. 
 

Higher-level contig characterization 
The comprehensive characterization of contigs by higher-level plasmid-related sequence         
analysis often requires many specialized command line and web-based tools and thus is a              
time-consuming task. In order to streamline this process, we implemented and included many             
higher-level sequence analyses in the workflow. Hence, Platon provides valuable contig           
information and is able to take advantage thereof by integrating applied heuristics into the              
classification process. Contigs are comprehensively characterized comprising different        
approaches: (i) test for circularization; (ii) detection of incompatibility groups; (iii) detection of             
rRNA genes; (iv) detection of antimicrobial resistance genes; (v) homology search against            
reference plasmid sequences; (vi) detection of oriT sequences; (vii) detection of plasmid            
replication genes; (viii) detection of mobilization genes; (ix) detection of conjugation genes. 
 
Contigs are tested for circularization by aligning subsequences from both ends against each             
other using nucmer from the MUMmer package [31]. Contig ends with overlaps larger than or               
equal to 100 bp and an identity larger than 95% are considered circularizable. To detect               
incompatibility groups, Platon conducts a homology search using the PlasmidFinder database           
(n=273) [18] via BLAST+ [32] against contigs filtering for query coverages larger than or equal               
to 60% and percent sequence identities larger than 90%. Although there are rare exceptional              
cases described in the literature [33], the majority of ribosomal genes are encoded on              
chromosomes [33]. In order to exploit this distribution bias, ribosomal genes are detected via              
Rfam and Infernal [34]. As antimicrobial resistance genes are often encoded on mobile genetic              
elements as for instance plasmids, Platon uses the NCBI ResFam hidden markov models             
(HMM) database [35] and HMMER [36] to detect potential antimicrobial resistance genes. In             
order to detect contigs as subsequences of larger plasmids or entire plasmids with known              
sequences, Platon conducts a homology search via BLAST+ [30] against the RefSeq plasmid             
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sequence database [37] filtering for query coverages and percent sequence identities larger            
than or equal to 80% setting a dynamic -word_size parameter to 1% of the query contig length.                 
To detect oriT sequences, Platon conducts a BLAST+ [32] homology search against oriT             
sequences of the MOB-suite [38] database filtering for both 90% sequence coverage and             
identity.  
Depending on its genetic backbone, plasmids can be mobilizable or conjugative [4]. The             
presence or absence of specialized proteins involved in the replication, mobilization and            
conjugation processes play important roles as determinants for the classification of plasmids.            
Platon takes advantage of the highly plasmid-specific nature of these proteins by scanning             
predicted CDS against a custom HMM database. Therefore, we extracted relevant RefSeq            
PCLA protein clusters via text-mining and subsequently built HMM models on aligned protein             
sequences per cluster (S1 Table), creating two distinct HMM databases: replication and            
conjugation comprising 257 and 1,663 HMM models, respectively. To take advantage of the             
expert knowledge and manual efforts which led to the high-quality relaxase HMM profiles of the               
MOBscan [39] database, these were incorporated into this workflow. A scan against each HMM              
database is integrated into the classification process. 
 

Platon analysis workflow 
Platon combines the analysis of the replicon distribution bias of protein sequences with a set of                
higher-level contig characterizations in order to predict the replicon origin of contigs (Fig 1). In a                
first step, Platon classifies all contigs with a length smaller than 1 kbp or larger than 500 kbp as                   
chromosomal. The rationale behind this heuristic is that sequences with less than 1 kbp seldom               
host either a CDS or other exploitable information which would permit reliable classifications. On              
the other hand, from our experience contigs larger than 500 kbp rarely or never originate from                
plasmids as those often encode genetic features hindering the assembly of larger sequences             
such as for example transposons and integrons. Thus, this heuristic enhances the overall             
analysis runtime performance without unduly sacrificing classification performance.  
In a second step, CDS are predicted via Prodigal [40] and searched against a database of MPS                 
via Diamond [30] applying rigorous detection cutoffs in line with the cluster specifications of the               
underlying UniRef90 clusters, i.e. a coverage of at least 80% and a sequence identity of at least                 
90%. For each contig, the mean RDS of all detected MPS is computed. Contigs with a mean                 
RDS lower than a sensitivity threshold (SNT) are classified as chromosomal sequences.            
Remaining contigs are then comprehensively characterized as described in the former section.  
 
Contigs are subsequently classified as plasmid sequences if one or more of the following              
conditions are met: the contig (i) has a mean RDS larger than a specificity threshold (SPT); (ii)                 
can be circularized; (iii) provides at least one replication or mobilization protein; (iv) contains an               
incompatibility factor; (v) contains an oriT sequence; (vi) has a mean RDS larger than a               
conservative threshold (CT) and a BLAST+ [32] hit against the RefSeq plasmid database             
without encoding ribosomal genes. 
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Fig. 1.  Flowchart describing the workflow implemented in Platon. ORF: open reading frames; 
MPS: marker protein sequences; RDS: replicon distribution score; SNT: sensitivity threshold; 
SPT: specificity threshold; incomp. groups: incompatibility groups; CT: conservative threshold. 
 
 

Performance benchmarks 
The overall replicon classification performance of Platon v1.2.0 was benchmarked against           
PlaScope 1.3.1, PlasFlow 1.1.0 and the PlasmidFinder database (version 2018-11-20) in two            
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setups: a targeted benchmark comparing Platon against PlaScope and PlasmidFinder on           
sequenced Escherichia coli isolates and an untargeted benchmark comparing Platon against           
PlasFlow on simulated short-read assemblies of all complete RefSeq genomes. PlaScope and            
PlasFlow were used with default parameters and publicly provided pre-built databases. As            
PlasmidFinder is currently only available as a web tool or via Docker which is not eligible on our                  
HPC cluster setup, its workflow was reimplemented in bash using equal BLAST+ parameters             
(-perc_identity 90; query coverage>=60%). As both PlaScope and PlasFlow allow a third             
classification label, i.e. unclassified and thus, are not true binary classifiers, replicon            
fragments were treated as being classified as chromosomes as long as they were not explicitly               
classified as plasmid for the sake of comparability. For each benchmark, we calculated             
sensitivity, specificity and accuracy metrics as described above. To also include statistically            
balanced metrics, we calculated the positive predictive power (PPV) (tp/(tp+fp)), the negative            
predictive power (NPP) (tn/(tn+fn)) as well as F1 score and Matthews correlation coefficient             
(MCC) using the SciKit-learn Python package. For the simulated benchmark dataset, we used             
all bacterial NCBI RefSeq genomes (release 98) at the assembly level Complete Genome              
(n=13,930) to generate artificial short reads via ART (2.5.8) [41] with read lengths of 150 bp, 40                 
fold coverage, 500 bp mean insert size and 10 bp insert size standard deviation. Simulated               
reads were then assembled with SPAdes (3.12.0) [42] using the --careful and            
--cov-cutoff auto parameters. Resulting contigs (n=820,932) were aligned against original           
genomes with BLAST+ (2.7.1) [32] and finally labeled either as chromosome or plasmid             
according to the single best BLAST+ hit. 
To benchmark on real data we isolated 24 multidrug-resistant Escherichia coli genomes in             
Germany from humans, dogs and horses [43] (Supplementary Table S2). Isolates were            
sequenced on the Illumina MiSeq platform using the Nextera XT sequencing kit (2x250 or              
2x300nt) as well as the Oxford Nanopore GridION platform using a SpotON Mk I R9 Version                
flow Cell (FLO-MIN106), native barcoding kit (EXP-NBD103) and 1D chemistry (SQK-LSK108).           
Oxford Nanopore raw data (fast5) were basecalled using Albacore (1.11.8)          
(https://community.nanoporetech.com). For each isolate two assemblies were performed: (i) a          
hybrid assembly using Unicycler v0.4.6 [44] and (ii) a short read-only assembly with SPAdes.              
For 21 isolates, the hybrid assembly resulted in circular chromosomes which were used as the               
benchmarking ground truth as the majority of remaining contigs thus originate from unclosed             
plasmids. The remaining 3 isolates with unclosed chromosomes were excluded from the            
benchmark data set, as the former requirement was not fulfilled. Short read contigs shorter than               
1 kbp were discarded. The remaining contigs (n=1,337) were then aligned against closed hybrid              
assemblies as described above. Raw sequencing data of these 21 isolates is available as NCBI               
BioProjects (PRJNA505407, PRJNA387731). 
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Results and Discussion 

Creation of the MPS database and RDS-based inference of contig 
origins 
The proposed new metric RDS exploits the natural distribution biases of protein coding genes              
between chromosomes and plasmids to classify the origin of contigs from short-read            
assemblies. In order to investigate and test this rationale, we aligned a broad range of bacterial                
protein sequences (n=69,803,841) from UniProt’s UniRef90 protein cluster representative         
sequences against a set of known chromosome and plasmid reference replicons from the NCBI              
RefSeq and NCBI Genomes databases. 12,795,544 of these protein sequences could be            
aligned to at least one replicon. For each of these protein sequences a two-sided Fisher’s exact                
test was conducted and sequences with a p value of 1 were excluded. The remaining protein                
sequences (n=4,108,727) along with their RDS values, product description and sequence           
lengths were then used to compile the final MPS database. For 99.5% of these protein               
sequences (n=4,089,068) a transformed hit count ratio smaller than -0.5 (n=3,600,927) or larger             
than 0.5 (n=488,141) was computed, indicating a rather unequal distribution between           
chromosomes and plasmids (Fig. 2). However, only a minor fraction of 7.8% (n=322,151) of all               
MPS had a normalized alignment hit count sum regarding both replicon types larger than 0.001.               
Hence, the majority of MPS database sequences was relatively rarely detected on average.             
These findings endorse the incorporation of the statistical significance of each MPS replicon             
distribution as well as the scaling by the absolute difference of replicon hit count frequencies in                
order to raise the contribution of abundant protein sequences and decrease the contribution of              
rare protein sequences for which insufficient data is available in the reference replicon sets.  
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Fig. 2.  Replicon distribution and alignment hit frequencies of marker protein sequences. 
Shown here are summed plasmid and chromosome alignment hit frequencies per marker            
protein sequence plotted against plasmid/chromosome hit count ratios scaled to [-1, 1]; Hue:             
normalized replicon distribution score values (min=-100, max=100), hit count outliers below 10 -4            
and above 1 are discarded for the sake of readability. 
 
 
In order to assess the discriminative performance of RDS regarding the replicon origin of              
contigs, we tested a broad range of thresholds computing sensitivity, specificity and accuracy             
metrics. Sensitivity, specificity and accuracy values for a range of RDS thresholds are plotted in               
Fig. 3 . The sensitivity and specificity curves follow a sharp inflection point near the default RDS                
value, i.e. 0. We attribute this behavior to contigs enharboring protein sequences which are not               
covered by the MPS database. To overcome this limitation and achieve both sensitive and              
specific classifications, we defined three distinct thresholds: (i) an SNT; (ii) an SPT; (iii) a CT set                 
to 95% sensitivity, 99.9% specificity and the highest accuracy, respectively. Thus, contigs with             
an RDS smaller than the SNT can be classified as chromosomal while still retaining 95% of all                 
plasmid contigs. Correspondingly, contigs with an RDS larger than the SPT can be classified as               
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plasmid fragments achieving a specificity equal to or larger than 99.9%. To compute actual              
values for these thresholds, we conducted classifications of Monte Carlo replicon fragment            
simulations (n=1,564,639) by which the following values were established: SNT=-7.7, SPT=0.4           
and CT=0.1 at a maximal accuracy of 84.1%. These values surround the inflection point near 0                
and were henceforth used as the final discrimination thresholds in the Platon implementation. 
 
 

Fig. 3.  Evaluation statistics of replicon distribution score thresholds. 
Sensitivity, specificity and accuracy values are plotted against replicon distribution score           
threshold ranges; (A): overview threshold range [-50,10]; (B): detailed threshold range [-1, 1];             
sensitivity in black, specificity in brown and accuracy in blue; red vertical lines from left to right:                 
sensitivity threshold (-7.7), conservative threshold (0.1) and specificity threshold (0.4). 
 
 
To finally assess the RDS based contig classification, a comprehensive performance           
benchmark was conducted. Therefore, we created simulated short reads based on all complete             
NCBI RefSeq genomes (n=13,930) covering a broad range of bacterial taxa. Resulting short             
reads were then reassembled into contigs (n=820,392) which were aligned back to the original              
genomes thus creating our ground truth. This benchmark dataset comprised a total of 63,107              
true plasmid contigs. All contigs were classified by their mean RDS value applying the              
computed SNT and SPT thresholds. This RDS workflow correctly classified 38,197 plasmid            
contigs and 754,082 chromosomal contigs, thus achieving an accuracy of 0.966 and a             
sensitivity of 0.605 as well as an F1 score of 0.731 and an MCC of 0.732 calculated upon the                   
following confusion matrix: tp=38,197, tn=754,082, fp=3,203, fn=24,910. 
 
Although the RDS approach achieved an accuracy of 0.966, it still misclassified 24,910 true              
plasmid contigs and 3,203 true chromosomal contigs. It is common knowledge that certain             
proteins are encoded on both replicon types as for instance relaxases and type4-coupling             
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proteins (T4CP) - key proteins of integrative conjugative elements [45]. To assess the             
discriminative power of the RDS metric on these widespread protein classes we extracted a set               
of 4,683 relaxase and 2,151 T4CP clusters from the MPS database by MOBscan [39] and               
TXSscan [46] HMM profile searches and investigated the range of related RDS values (Fig. S1).               
73% and 66% from the relaxase (n=3,321) and T4CP (n=1,436) protein clusters had an RDS               
between -0.5 and 0.5 and thus, can be considered as rather equally distributed. Small contigs               
solely or mainly encoding these protein sequences could therefore be especially hard to classify              
by the RDS metric. However, we also found 817 and 411 protein clusters which were rather                
chromosomally biased with a related RDS below -0.5 with extremes reaching values of -64.96              
and -37.47 for the relaxases and T4CP, respectively. In addition, 445 and 304 protein clusters               
were rather plasmid biased with a related RDS above 0.5 with extremes reaching values of               
even 109.60 and 79.76 for the relaxases and T4CP, respectively. The latter protein clusters              
constitute about a fourth and a third of all relaxase and T4CP MPS subsets and have highly                 
discriminative related RDS values. Hence, though there are protein classes harboring many            
fairly equally distributed protein clusters, e.g. the analyzed relaxases and T4CP which are often              
encoded in very hard to classify integrative conjugative elements, we still found MPS with a               
strong predictive power regarding the replicon origin of a contig. 
 

Performance of the entire Platon workflow 
As shown in the simulated short-read benchmark the RDS metric achieved a high accuracy              
(ac=0.966) but rather moderate sensitivity (sn=0.605) due to the high number of false-negatives             
(fn=24,910). In order to increase the detection rate of true plasmid contigs, the Platon workflow               
additionally comprises higher-level plasmid related contig characterizations which serve as a           
basis for several heuristics. As both the protein homology search and the contig             
characterizations of large plasmids are computationally expensive, contigs larger than 500 kbp            
are automatically assigned to the chromosome. To assess the potentially negative impact of this              
heuristic on the classification performance, contig length distributions for both replicon types            
within the simulated short-read dataset (Fig. S2) were investigated. In line with the smaller              
plasmid contig length on average, only 119 of 63,107 plasmid contigs were actually larger than               
500 kbp compared to 15,750 of 757,285 chromosome contigs. Hence, only 0.19% of all plasmid               
contigs were erroneously assigned to the chromosome but 99.25% of all contigs larger than 500               
kbp were correctly classified by this heuristic, which thus qualifies as an eligible tradeoff              
between sensitivity and runtime. 
To measure and assess the overall classification performance of the entire implemented            
workflow (Fig. 1), we conducted two benchmarks against contemporary command line tools: an             
untargeted benchmark against PlasFlow on the aforementioned simulated short-read dataset as           
well as a targeted benchmark against PlaScope and PlasmidFinder on sequenced Escherichia            
coli isolates. 
 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.21.053082doi: bioRxiv preprint 

https://paperpile.com/c/gwkeqR/Ps8i
https://paperpile.com/c/gwkeqR/IZ20
https://paperpile.com/c/gwkeqR/jQEc
https://doi.org/10.1101/2020.04.21.053082
http://creativecommons.org/licenses/by/4.0/


Page 14 of 24 

Performance benchmark on taxonomically diverse simulated short-read 
assemblies 
To assess the performance of the extended Platon workflow in an untargeted, i.e. taxon-              
independent setup, we conducted a comprehensive benchmark against PlasFlow, a          
contemporary plasmid prediction tool for metagenomics that was presented to be also eligible             
for the recruitment of plasmid contigs from isolates. For this benchmark all complete bacterial              
NCBI RefSeq genomes (n=13,930) covering a broad range of bacterial taxa were used to              
simulate short reads which were de-novo assembled. Resulting contigs were then aligned back             
onto original genomes. A confusion matrix as well as common classifier performance metrics             
aggregated for all contigs (n=820,392) are shown in Table 1. In this benchmark Platon recruited               
48,112 and PlasFlow 45,999 true plasmid contigs resulting in comparable sensitivity and            
negative predictive values (NPV) of 0.762 and 0.729 and 0.98 and 0.975, respectively.             
However, PlasFlow predicted 17 times more false positives (fp=88,712) than Platon (fp=5,205).            
Due to the significantly lower number of false positives, Platon clearly outperformed PlasFlow in              
terms of accuracy, specificity, positive predictive value (PPV) as well as the balanced metrics F1               
score and Matthew’s correlation coefficient (MCC). 
 
 
Table 1. Performance benchmark results computed contig-wise on simulated short-read data. 

Metric PlasFlow Platon 

Accuracy 0.871 0.975 

Sensitivity 0.729 0.762 

Specificity 0.883 0.993 

PPV 0.341 0.902 

NPV 0.975 0.980 

F1 0.465 0.826 

MCC 0.440 0.817 

   

TP 45,999 48,112 

TN 668,573 752,080 

FP 88,712 5,205 

FN 17,108 14,995 
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Due to different contig lengths, the mere number of correctly classified contigs might not always               
be congruent with the recruited plasmid content, which might play a vital role in downstream               
analyses, e.g. the recruitment of plasmid-borne genes or sequence motifs, as for instance oriT              
and oriV. Hence, benchmarks only measuring the number of classified contigs might, to some              
extent, be misleading wherefore we complemented the former benchmark with a genomic            
content-based view calculating an additional confusion matrix based on classified DNA           
nucleotides (Table S3). Figure 4 provides a combined view on both benchmark setups. In this               
complementary benchmark specificity values for PlasFlow increased from 0.883 contig-wise to           
0.979 nucleotide-wise compared to stable and higher values for Platon (contig-wise=0.993;           
nucleotide-wise=0.995). Accuracy values also increased from 0.871 contig-wise to 0.974          
nucleotide-wise for PlasFlow whereas accuracy values achieved by Platon only slightly           
improved (contig-wise=0.975; nucleotide-wise=0.99). Taking into account the genomic content         
of classified contigs revealed a performance improvement of PlasFlow in terms of accuracy and              
specificity but it still fell slightly behind Platon. However, PlasFlow predicted 4.3 times more false               
positive plasmid nucleotides (fp=1,115.3 mbp) than Platon (fp=259.9 mbp) in line with the             
contig-wise benchmark. 
 
 

Fig. 4.  Performance benchmark metrics on simulated short read data. 
A performance benchmark was conducted on all complete bacterial genomes of the NCBI             
RefSeq database assembling simulated short reads and subsequently realigning them onto           
original genomes. For scaling reasons and the sake of readability, true negatives were             
discarded. (A) Benchmark results calculated contig-wise; Horizontal red line: total number of            
true plasmid contigs. (B) Benchmark results calculated nucleotide-wise; Horizontal red line: total            
number of true plasmid DNA nucleotides. 
 
 
The taxonomic compositions of training datasets for machine-learning approaches and pre-built           
databases can have a severe impact on benchmark performances and the results of conducted              
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analyses. To assess a potential bias towards certain taxa we additionally analyzed the             
taxonomic distribution of the recruited plasmid contigs of the simulated short-read dataset            
binned to the genus level (Fig. 5). The underlying benchmark dataset contained true plasmid              
contigs from 469 distinct genera and 1,234 species. From these, Platon recruited plasmid             
contigs from 434 genera whereas PlasFlow recruited plasmid contigs from 384 genera (Table             
S4). For both tools, the three taxa Escherichia, Klebsiella and Enterococcus accounted for             
nearly 40 % of the recruited sequences likewise the taxonomic profile of the underlying              
benchmark dataset in which aforementioned taxa accounted for 26%. On a species level, Platon              
and PlasFlow recruited plasmid contigs from 1,126 and 1,014 distinct species, respectively in             
line with aforementioned genus-level results. Although PlasFlow was developed as an           
untargeted tool for metagenomics, Platon recruited plasmid contigs from a larger taxonomic            
range, thus demonstrating the competitive edge of the taxon-independent RDS approach           
complemented by contig characterization heuristics. 
 
 

Fig. 5.  Taxonomic distribution of recruited plasmid contigs. 
The taxonomic distribution of recruited plasmid contigs for the simulated benchmark dataset are             
shown binned to the genus level. Taxa accounting for less than 2 % are grouped as “others”. (A)                  
PlasFlow; (B) Platon. 
 
 

Targeted performance benchmark on sequenced Escherichia coli isolates 
Simulated data seldom reflect the existing biological and technical complexity and the plethora             
of potential pitfalls. Hence, we additionally benchmarked the Platon workflow on real data in a               
targeted setup. We compared the performance of Platon against PlaScope and PlasmidFinder            
which were both published as targeted approaches for the plasmid prediction within            
whole-genome sequencing data. PlaScope provides a pre-compiled E. coli database for           
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download which was used in this benchmark and PlasmidFinder was specifically designed for             
the analysis of Enterobacteriaceae genomes. As the PlasmidFinder database is part of Platon’s             
contig characterization we assessed its performance in order to transparently compare both            
tools side by side. For this benchmark the genomes of 24 E. coli isolates were sequenced using                 
both Illumina short-read and Oxford Nanopore long-read technologies. For 21 isolates the            
hybrid assemblies resulted in closed chromosomes which were used as the ground truth data.              
Contigs from short read-only assemblies (n=1,337) were aligned to the closed assemblies and             
used as the actual benchmark data. Table 2 shows the confusion matrix as well as computed                
benchmark metrics. PlasmidFinder achieved the lowest false positive rate (fp=14) resulting in            
the highest specificity of 0.987 closely followed by Platon (sp=0.966) and PlaScope (sp=0.952)             
but showed the lowest true positive rate (tp=57) and sensitivity (sn=0.223), thus significantly             
performing worse than Platon (sn=0.691) and PlaScope (sn=0.684). Regarding accuracy, PPV,           
NPV, F1 score and MCC metrics Platon and PlaScope performed nearly on par, though Platon               
was slightly ahead on each. Both tools performed better than PlasmidFinder on these metrics.              
This was especially true for the balanced metrics F1 score and MCC for which Platon and                
Plascope clearly outperformed PlasmidFinder. 
 
 
Table 2. Performance benchmark results contig-wise on sequenced isolate short read data. 

Metric PlaScope PlasmidFinder Platon 

Accuracy 0.901 0.841 0,913 

Sensitivity 0.684 0.223 0,691 

Specificity 0.952 0.987 0.966 

PPV 0.771 0.803 0.827 

NPV 0.927 0.843 0.930 

F1 0.725 0.349 0.753 

MCC 0.666 0.368 0.705 

    

TP 175 57 177 

TN 1,029 1,067 1,044 

FP 52 14 37 

FN 81 199 79 

 
 
Analogically with the simulated short-read benchmark we also compared the performances of            
Platon, PlaScope and PlasmidFinder taking into account the amount of genomic content (Fig. 6)              
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computed on a nucleotide-wise confusion matrix (Table S5). Nucleotide-wise results were in line             
with those calculated contig-wise: PlasmidFinder had the lowest number of false positives but             
also detected significantly fewer plasmid nucleotides than PlaScope and Platon. The latter two             
detected a nearly equal amount of plasmid content with Platon predicting significantly fewer             
false positives than PlaScope. 
 
 

Fig. 6.  Performance benchmark metrics on real short read data. 
A performance benchmark was conducted on 21 Escherichia coli genomes for which both short              
read draft assemblies and complete genomes via hybrid assemblies were available. For scaling             
reasons and the sake of readability, true negatives were discarded. (A) Benchmark results             
calculated contig-wise; Horizontal red line: total number of true plasmid contigs. (B) Benchmark             
results calculated nucleotide-wise; Horizontal red line: total number of true plasmid DNA            
nucleotides.  
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Conclusion 
Due to the complex nature of plasmid fragments, the replicon type classification, i.e. prediction              
of origin, for contigs resulting from short-read draft assemblies is a difficult task. Many different               
methods and tools have recently been published, though few work on draft assemblies only, are               
implemented in a high-throughput savvy manner or provide statistically balanced predictions in            
an untargeted, i.e. taxon-independent manner. 
To tackle this issue, we investigated the natural distribution biases of protein-coding genes             
between chromosomes and plasmids for a large set of protein sequences in bacteria. In this               
study, we defined, computed and tested statistical discrimination thresholds for the introduced            
new metric RDS and showed that it is a feasible approach to the problem. However, small                
contigs without sufficient protein sequences or contigs encoding for protein sequences which            
were either not covered by the MPS database or equally distributed between chromosomes and              
plasmids remained hard to classify correctly. However, even for relaxases and T4CP which are              
often found on notoriously hard to classify integrative conjugative elements we found protein             
sequences with a strong predictive power. To mitigate these drawbacks and to improve the              
overall sensitivity, we complemented this approach with several heuristics exploiting higher-level           
plasmid-related sequence characterizations. We implemented this new workflow in a software           
tool called Platon and conducted benchmarks against three contemporary software tools, i.e.            
PlaScope, PlasFlow and PlasmidFinder on both simulated short-read data and sequenced           
isolates.  
Analyzing a large set of diverse bacterial species Platon achieved equal sensitivity but higher              
accuracy and specificity than PlasFlow while the predictions made by Platon were significantly             
more balanced in terms of F1 score and MCC due to a low number of false-positives. 
Even though the underlying MPS database follows an untargeted approach, i.e. it is not              
restricted to or focused on certain taxa, Platon achieved competitive results compared to the              
targeted tools PlaScope and PlasmidFinder in a benchmark using real sequencing data of E.              
coli isolates. In both benchmarks Platon achieved the highest sensitivity and accuracy, thus             
endorsing the exploitation of the natural replicon distribution biases of protein-coding genes as             
an eligible method for the large-scale, high-throughput, taxon-independent prediction of          
plasmid-borne contigs from short-read draft assemblies. 
Implemented as a multithreaded, locally-executable Linux command line application in Python 3            
we also envision it as an appropriate fit for the integration into larger analysis pipelines as well                 
as an upfront tool for subsequent plasmid specific analyses. For the sake of a streamlined               
integration and installation, all necessary third party executables are bundled with the software.             
All source code and documentation is freely available under a GPL3 license and hosted at               
GitHub (https://github.com/oschwengers/platon ) and platon.computational.bio . For further      
convenience, Platon is also available as a BioConda package (platon) and via PyPI             
(cb-platon). A prebuilt database is hosted at Zenodo (DOI: 10.5281/zenodo.3349652 ). 
Future developments will include the addition of new higher-level contig characterizations as            
well as further enhancements of applied heuristics. 
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Data bibliography 
1. Platon was developed as a Python 3 command line application for Linux. 
2. The complete source code and documentation is available on GitHub under a GPL3             

license: https://github.com/oschwengers/platon  and platon.computational.bio . 
3. All database versions are hosted at Zenodo: DOI 10.5281/zenodo.3349651 . 
4. Platon is available via bioconda package platon  
5. Platon is available via PyPI package cb-platon 
6. Bacterial representative sequences for UniProt’s UniRef90 protein clusters, complete         

bacterial genome sequences from the NCBI RefSeq database, complete plasmid          
sequences from the NCBI genomes plasmid section, created artificial contigs, RDS           
threshold metrics and raw protein replicon hit counts used to create and evaluate the              
marker protein sequence database are hosted at Zenodo: DOI 10.5281/zenodo.3759169 

7. 24 Escherichia coli isolates sequenced with short read (Illumina MiSeq) and long read             
sequencing technologies (Oxford Nanopore Technology GridION platform) used for real          
data benchmarks are available under the following NCBI BioProjects: PRJNA505407,          
PRJNA387731 
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