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Abstract The S-shaped curvature of the spine has been
hypothesized as the underlying mechanical cause of ado-

lescent idiopathic scoliosis. In earlier work we proposed
a reduced order model in which the spine was viewed
as an S-shaped elastic rod under torsion and bending.

Here, we simulate the deformation of S-shaped rods of
a wide range of curvatures and inflection points under a
fixed mechanical loading. Our analysis determines three
distinct axial projection patterns of these S-shaped rods:

two loop (in opposite directions) patterns and one lem-
niscate pattern. We further identify the curve character-
istics associated with each deformation pattern showing

that for rods deforming in a loop 1 shape the position
of the inflection point is the highest and the curvature
of the rod is smaller compared to the other two types.

For rods deforming in the loop 2 shape the position
of the inflection point is the lowest (closer to the fixed
base) and the curvatures are higher than the other two
types. These patterns matched the common clinically
observed scoliotic curves - Lenke 1 and Lenke 5. Our
elastic rod model predicts deformations that are simi-
lar to those of a pediatric spine and it can differentiate
between the clinically observed deformation patterns.
This provides validation to the hypothesis that changes
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in the sagittal profile of the spine can be a mechanical
factor in parthenogenesis of pediatric idiopathic scolio-

sis.
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1 Introduction

During the fast growth period around puberty, some
pediatric spines deform in three dimensions leading to

scoliosis[5, 6, 7, 30]. While the pathogenesis of this dis-
ease remains unknown[12, 16], the side view S-shaped
curvature of the fast growing, flexible, immature, slen-

der spines has been hypothesized as an underlying me-
chanical cause of adolescent scoliosis[8, 21, 26, 28]. It
has been clinically shown that at an early stage of scol-
iosis, the sagittal curvature of the spine is different be-
tween scoliotic and non-scoliotic subjects of similar age
and sex [29]. However, as the scoliosis changes the spinal
alignment in three-dimensions[4], even at an early stage
of the disease,it is challenging to evaluate the role of
the true sagittal alignment of the spine in induction of
scoliosis. As the idiopathic scoliotic patients are other-

wise healthy, identifying these patients before the onset
of scoliosis in order to obtain their patterns of sagit-
tal profile is difficult[7]. Hence we turn to simulations
to test the hypothesis that there is an association be-
tween the sagittal curvature and deformity patterns of
the spine[3, 14, 17].

A reduced order model of the pediatric spine for
studying scoliosis was proposed by Pasha[21]. Using fi-
nite element analysis, this model simulates the spine as

an S-shaped slender elastic rod and applies gravity to
simulate the body weight and a torsion along the spine
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to simulate the body mass asymmetry [3, 10, 13, 23].
In the current study, we wish to determine the geo-
metrical parameters that affect the deformation of such
slender elastic rods while mechanical loading remains
unchanged. One way to do this is by finite element sim-
ulation as was done previously by modeling the spine
as a linear elastic material[21]. Repeating such finite
element simulations while iterating over various initial
shapes obtained by permutation of geometric parame-
ters is computationally prohibitive. To reduce compu-
tational cost, we developed a semi-analytic model us-
ing Kirchhoff equations[18] to solve for the deformation
given the initial geometry and loading on an S-shaped
elastic rod[19]. The analytical model allows us to com-
pute the deformed configuration of a rod subject to
loads through a set of ordinary differential equations.
The reduced computational complexity allows us to it-
erate over all permutations of the geometric parameters
describing the sagittal shape of the spine.

To this end, we simulate the curvature of the spine

by two regions of constant curvatures. We define the
sagittal profile of the spine using 5 parameters shown in
fig.(1) which allows us to vary the shape of the sagittal

curve systematically. Using this simplified geometry, we
hypothesize that under the same mechanical loading
and mechanical properties, the geometric parameters

– the two curvatures of the S-shaped rod, position of
the inflection point, and the slope of the curve at the
lowest point with respect to the horizontal axis – can
significantly impact the deformation of the rod.

2 Methods

Here we describe the elastic rod model for the spine
to investigate the effects of the different geometric pa-
rameters. Since our goal is to focus on the geometric
parameters of the sagittal curvature, we we will hold
the bending modulus of our S-shaped rod fixed for all
the simulations. We present a schematic in fig.(1) to
label the geometric parameters

The spine is modeled as an S-shaped elastic rod.
The undeformed spine is assumed to rest on the y − z
plane with the base of the spine at the origin in the lab
coordinate system given by [ex ey ez]. We define an
arc length coordinate along the center-line s; a point
located at s in the reference configuration moves in the
deformed configuration to r(s) = x(s)ex + y(s)ey +
z(s)ez. The rod is then subject to a body force along
the −ve z direction which is caused due to the weight

distribution of the upper body. It is also subject to mo-
ments at the ends to simulate asymmetry in the body

Fig. 1: Schematic of the rod. α0 + θ0 = π/2 and

φ0 = π/2

mass[23].

The Frenet-Serret frame for the rod is [t(s) ν̂(s) β̂(s)].
t̂(s) is the tangent vector, t̂(s) = dr

ds . The rod is assumed

in-extensible, hence
∣∣t̂(s)

∣∣ = 1. t̂(s) can be expressed in
the lab coordinate system as:

t̂(s) = cosα(s) cosφ(s)ex + cosα(s) sinφ(s)ey

+ sinα(s)ez,
(1)

where α is the polar angle measured from the x − y
plane and φ is the azimuthal angle used in conventional
spherical polar coordinates. ν̂(s) and β̂(s) are the nor-
mal and binormal vectors, respectively, and they are
computed using the Frenet-Serret equations:

dt̂

ds
= κn̂,

dn̂

ds
= −κt̂ + τ β̂,

dβ̂

ds
= −τ n̂. (2)

The curvature κ(s) and the torsion τ(s) of the rod are

obtained from the above equations[20].This completes
the kinematic description of the rod.

2.0.1 Mechanics

Next, we present the equilibrium equations for the
rod. We begin with the conservation of linear momentum[1,
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2],

dnx
ds

= 0, (3)

dny
ds

= 0, (4)

dnz
ds

+ fz(s) = 0 (5)

where n(s) = [nx(s) ny(s) nz(s)] is the internal force
in the rod. f = fz(s)ez is the body force on the rod and
is directed only along the ez direction due to gravity.
For fz(s), we use the values found in Pasha et al.[23].
The rod is assumed in-extensible, hence there is no con-
stitutive law for n(s). n(s) must be determined as part
of the solution of the boundary value problem for the
rod. We use eq.(2) and (3) to get

nx(s) = n0x, ny(s) = n0y. (6)

Since there are no forces in the ex and ey directions,
n0x = n0y = 0. The conservation of angular momentum

of the rod states that

dmx

ds
+ (t̂× n)x + lx = 0,

dmy

ds
+ (t̂× n)y + ly = 0,

dmz

ds
+ (t̂× n)z + lz = 0,

where m(s) = [mx(s) my(s) mz(s)] is the internal

moment in the rod in the lab frame and l is the body
moment per unit length. We set l = 0 in this work.
Since nx = ny = 0, the balance of angular momentum

becomes:

dmx

ds
+ nz sinφ cos θ =0, (7)

dmy

ds
− nz cosφ cos θ =0, (8)

dmz

ds
=0 (9)

so we get mz = T from eq.(9), a constant which we com-
pute from torque boundary condition applied at s = 0.

The internal moment can be written in the Frenet
frame as m = mtt̂ +mν ν̂+mββ̂ which is convenient if
we use the following simple constitutive relation:

m = Kb(s)(κ− κ0(s))β̂ +Kt(s)(κ3 − κ03)t̂, (10)

where Kb(s) and Kt(s) are the bending and twisting
moduli of the elastic rod, respectively. The curvature
functions in the stress free state are given by κ0(s) and
κ03(s), respectively. We assume κ03 = 0. This constitu-
tive law is a special case of a general form given by

m = Kb(κ1 − κ01)d1 +Kb(κ2 − κ02)d2 +Kt(κ3 − κ03)d3

where [d1(s) d2(s) d3(s)] is a material frame that
convects with the arc-length coordinate s.

Plugging this constitutive law into the conservation of
angular momentum and considering the component along
the t̂ direction only gives[1, 2]

dKt

ds
(κ3(s)− κ03(s)) +Kt(s)(

dκ3
ds
− dκ03

ds
) = 0. (11)

If we define Kt(s)(κ3(s) − κ03(s)) = m3(s), then eqn.
(11) shows that dm3

ds = 0, or m3 = const. We also set
Kb(s) as constant since our focus is on the effects of the
geometric parameters. Then, from the constitutive law,
we can write the moment in the lab frame as

mx =Kb
κ(s)− κ0(s)

κ(s)
[−φ′ cosφ sinα cosα+ α′ sinφ]

+ m3 cosφ cosα,

(12)

my =Kb
κ(s)− κ0(s)

κ(s)
[−φ′ sinφ sinα cosα− α′ cosφ]

+ m3 sinφ cosα,

(13)

mz =Kb
κ(s)− κ0(s)

κ(s)
φ′ cos2 α.+m3 sinα (14)

The elimination Kb, κ
0(s) and κ(s) gives:

mx cosφ+my sinφ = −mz tanα+
m3

cosα
, (15)

(mx sinφ−my cosφ)φ′ =
mz −m3 sinα

cos2 α
α′. (16)

Then, we solve Eqn. (15) to get

sinα =
m3mz ± P

√
P 2 +m2

z −m2
3

P 2 +m2
z

, (17)

P =mx sinφ+my cosφ, (18)

where we determine the solution branch from α0. We
compute φ′(s) using eqn.(16) to get

φ′ =
mz −m3 sinα

Kb(s) cos2 α
±κ

0(s)

cosα

1√
1 + cos2 α

(mx sinφ−my cosφ)2

(mz−m3 sinα)2

,

(19)

where the ± sign is dependent on the sign of φ′(s).
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Finally, the deformed curve can be determined using

dx

ds
= cosφ cosα, (20)

dy

ds
= sinφ cosα, (21)

dz

ds
= sinα. , (22)

This along with eq.(5), (7), (8) and (19) form the gov-
erning equations of the system along with the boundary
conditions given by:

nz(0) = nz0 , mx(0) = mx0
, my(0) = my0 ,

φ(0) = π/2, x(0) = 0, y(0) = 0, z(0) = 0,

(23)

where nz0 is the weight of the upper body and mx0

and my0 are used to account for the loading asymmetry
experienced by a scoliotic spine.

2.1 Phase plot

Now, we will use the model above to study the
effects of the different geometrical parameters of the
curved rod. Kb is set to an arbitrary constant. We will

simplify κ0(s) using the following function:

κ0(s) =
κP + κN

2
+
κP − κN

2
tanh(

s− S
a

), (24)

where S is the point of inflection of the rod and a is the
distance over which the curvature of the rod goes from
κP to κN . κN/κP are the curvatures of the lower/upper

portion of the rod (above and below the inflection point
respectively).

We will focus on the effects of varying κP , κN , S, a
and θ0. The range of values for these parameters used
in this study are in table.(1). To reduce the data space,
we study the parameters that cause the largest change

in deformations. We restrict θ0 to the three major val-
ues found in clinical studies[24]. The range of values for
κP , κN , S and a are based on maximum and minimum
values of these parameters in Pasha et al.[25] who inves-
tigated the geometric shapes of spines of patients with
adolescent idiopathic scoliosis. For a range of a (0.01

- 0.1), we did not observe significant changes in defor-
mation when we varied a over this range. So, we keep
a fixed in all our computations and focus on the re-
maining four geometric parameters. As for the loading
and mechanical properties, since the deformation in the
axial view is dominated by mz (see the Discussion sec-
tion), we keep the ratio mz/KB in the range observed
in our previous study[19].

2.2 Uprightness

To ensure the deformed state of the rod is physi-
ologically acceptable, we restrict the values of the pa-
rameters such that the initial configuration of the spine
remains upright.The shape of the spine is assumed to
lie in the y − z plane in the absence of loads. Hence,
when φ(s) = π/2, we can compute the initial curve
from κ0(s) using the following system of ODEs

κ(s) =
dα

ds
= κ0(s), (25)

dy

ds
= cosα, (26)

dz

ds
= sinα. (27)

We limit the y displacement of the top of the spine to
20% of the z displacement in the initial configuration
to filter out unrealistic shapes where there is a large

displacement between the head-pelvis i.e. the two ends
of the rod. This constraint boils down to

|y(L)| < 0.2 |z(L)| . (28)

Now we apply the analytical model to find the de-
formation over the range of parameters. As shown pre-
viously by Pasha et al.[25], the most common curve
types in scoliosis deform in a loop or lemniscate shape in

the axial plane (x− y plane). We classify the deformed
shapes as loop or lemniscate based on the number of
points of intersection the curve in the x− y projection

has with the line-segment joining the two end points
of the curve. The curve is classified as a loop shape if
the line-segment does not intersect the curve and as a

lemniscate shape if the line-segment intersects with the
curve at least once (we exclude the intersection at the
end-points). We perform this check over the range of
parameters given in table.(1).

We create a scatter plot of points in the data space
which satisfy the lemniscate condition using κP , κN
and S as the axes of the plot. The boundary points are
filtered and surfaces are fit to the points. A polynomial
fit is used to separate the regions into loop and lemnis-
cate shapes. A similar procedure is followed for points
satisfying the upright condition and a polynomial fit is
used to create surfaces to separate regions where the
undeformed rod is upright from those where it is not.

For each θ0, we plot all the initial configurations
that deform into loop and lemniscate shapes, respec-

tively, along with the average curve for each case. The
equations of the surfaces for the lemniscate condition
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κP [m−1] κN [m−1] S [m] θ0 [o] a [m] Kb [Pa] mz [Nm] m3 [Nm] mx(0)
[Nm]

0.1 - 5 0.1 - 5 0.3 - 0.8 31◦, 37◦,
44◦

0.01 10 -2 0 -8

Table 1: Parameter values

along with the coefficient of determination of the fit
(R2) are given in table.(S1) in the supplementary ma-
terial. The resulting three surface plots at the three θ0
values appear in the results section.

3 Results

Fig.(2) presents the loop-lemniscate classification re-
gions and the condition of uprightness in the data space.

We see in fig.(2a) that two surfaces divide the volume of
interest into 3 parts comprising of two loop regions and
one lemniscate region. We label the loop region with low
κP and S as ”loop2” and the other region as ”loop1”.

Only variable ranges bounded by both uprightness sur-
faces and loop-lemniscate classification surfaces are pre-
sented in the following sections. The different regions

are classified accordingly and serve as a reference when
we consider both conditions together in the following
plots.

Next, we present the combined surface plots in fig.(3).
We present the surface plots for 3 angles - 31◦, 37◦,
44◦. The surfaces span the entire parameter space, so
that we can visualize any trends that develop in the re-
gion of interest. We have included the equations of the
surfaces and the fit information in table.(S1) of the sup-
plementary material. We have also presented the range
of values in table.(2). We also present the equations

for the uprightness check surface (yellow surface) in ta-
ble.(S2) of the supplementary material.

From fig.(2b), we see that the range of admissible κP
values that satisfy the uprightness condition is smaller
than the range of κN values for each S. Recall that the
range of a is also very small and it has minimal effect
on the classification of deformation patterns.

We present the shape of the initial configuration

that lead to loop and lemniscate shapes respectively, in
the deformed configuration in fig.(4). The initial shape

(a) loop-lemniscate classification surfaces

(b) Uprightness classification surfaces

Fig. 2: Representative classification surfaces with re-
gions marked

of curve (black line) along with the range of the curves
(shaded area) for each θ0 are shown in fig.(4). The
corresponding sagittal profile values are presented in

table.(2). As seen in both fig.(4) and table.(2), the po-
sition of the inflection point is the highest, closer to
the top, in loop 1 and decreases in lemniscate and loop
2 cases. However, the changes in the inflection point
within each case as the θ0 changes is small. Both κP
and κN are the smallest in loop 1 cases and highest in
loop 2 cases, suggesting a more flat sagittal profile in
loop 1 patients compared to the lemniscate and loop 2
cases.
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Case θ0 κP κN S

Loop1

31◦ 1.36 [0.85 : 1.60] 0.32 [0.10 : 0.85] 0.81 [0.70 : 0.80]

37◦ 1.50 [0.95 : 1.90] 0.44 [0.10 : 1.45] 0.80 [0.65 : 0.80]

44◦ 1.75 [1.20 : 2.30] 0.62 [0.10 : 2.05] 0.80 [0.60 : 0.80]

Lemniscate

31◦ 2.06 [0.75 : 5.00] 1.75 [0.10 : 5.00] 0.56 [0.30 : 0.80]

37◦ 2.71 [1.10 : 5.00] 2.50 [0.45 : 5.00] 0.55 [0.30 : 0.80]

44◦ 2.74 [1.25 : 5.00] 2.12 [0.10 : 5.00] 0.55 [0.30 : 0.80]

Loop2

31◦ 2.78 [0.85 : 5.00] 2.72 [0.10 : 5.00] 0.41 [0.30 : 0.80]

37◦ 4.35 [3.10 : 5.00] 4.19 [2.75 : 5.00] 0.40 [0.30 : 0.45]

44◦ 4.03 [2.55 : 5.00] 3.18 [1.05 : 5.00] 0.40 [0.30 : 0.50]

Table 2: Average and range of the geometrical parameter values describing the sagittal profile for Loop1, Lemnis-
cate, and Loop 2 cases. The parameter values of the average curve is in bold while the range of values is given

with [].

4 Discussion

We analyzed the deformation patterns of S-shaped
elastic rods as it pertains to the pediatric spine to in-
vestigate the role of the geometrical parameters of the

sagittal spine in induction of scoliosis. Our results de-
termined, under physiological conditions, an S-shaped
elastic rod deforms in three distinct configurations (de-
formation modes), presented as Loop 1, Lemniscate,
and Loop 2 (fig.(2)). We also determined specific ge-
ometrical characteristics of these S-shaped rods leading
to these three deformation patterns (table.(2)). This

analysis quantitatively determined how specific geomet-
rical parameters of the sagittal spine lead to different
deformation patterns of a curved rod, which supported
the hypothesis that the variations in the sagittal spinal
alignment can a plausible cause of spinal deformity de-
velopment in adolescent idiopathic scoliosis

The sagittal curvature of the spine in idiopathic sco-
liosis has been hypothesized to be a mechanical factor
leading to the spinal deformity development [27, 28].
However, specific characteristics of the sagittal curve
that determines the deformity patterns of the spine are
not known. Here, our analysis of S-shaped elastic rods
showed that without any assumption about the me-

chanical properties of the different sections of the spine,
geometrical details of the vertebral body or properties

of the intervertebral disc, three distinct modes of de-

formation can be identified for a curved elastic rod un-
der bending and torsion: two loops and one lemniscate.
These deformation modes, which are related to the geo-

metrical parameter of the rod (table.(2)), were also ob-
served in the most common scoliotic curve types (Lenke
1 and Lenke 5)[11, 25]. Lenke 1 scoliosis, which man-

ifests as a deformity in the thoracic spine was shown
to have axial deformation patterns as seen in Loop
1 and lemniscate. On the other hand Lenke 5 scolio-
sis had loop shaped deformity patterns as was seen in
loop 2 cases. Moreover, the Lenke 1 cases with loop
shaped axial projection were shown to have a higher
inflection point compared to the Lenke 1 with lem-

niscate axial projection and Lenke 5 patients[25] (as
shown in fig.(5)). This clinical observation matched the
simulation results as seen in table.(2). Our reduced or-
der model was able to differentiate between these curve
types providing evidence that the elastic rod model as
presented here closely reflects the behaviour of the pe-
diatric spine at the onset of scoliosis development.
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(a) θ0=31◦

(b) θ0=37◦

(c) θ0=44◦

Fig. 3: The loop and lemniscate regions for each case of
θ0.

Lenke1 Types  Lenke5   

Loop projection (Loop 1) Lemniscate projection  Loop projection (Loop 2) 

Fig. 5: the schematics of the sagittal profiles in Lenke
1 scoliosis with loop (A) and lemniscate (B) axial pro-
jection and Lenke 5 scoliosis with loop shaped axial
projection.

Fig.(4) and table.(2) show that the average initial
configuration is different for the loop and lemniscate
cases. κP and κN increase with increase in θ0 in most
cases; exceptions are κN in lemniscate and Loop2. We
see that κP ≈ κN in the three cases. The parame-
ter values are different for the two loop regions. From
table.(2), we see that intermediate values of κP , κN and
S lead to the top view of the deformation being lem-
niscate shape. Low or high values of these parameters
leads to the loop shape. Our results show that we can
predict the deformation case based on a limited number
of geometrical parameters.

Our analysis further investigate the mechanical load-
ing of the spine in different deformation modes. As
shown in fig.(6),(7), although the external loading (grav-
ity and torsion), and mechanical properties of the rods
are the same, the moment distribution along the rod
varies in the y-z and x-z planes resulting in different
deformation patterns as seen in fig. (8). The geometry
affects the final deformations because the moments in

the rod depend on α and φ as seen in eq.(7) and (8).
my causes primarily bending deformations in the x-z
plane, while mz causes twisting deformations, bring-
ing the rod out of the x-y plane . We see that mx(s)

is negative and the rod bends towards +ve y-axis in
all three cases. mx changes along the spine in Loop 1,
but does not seem to affect the other cases as the de-

formation in the y-z projection can be explained by
the effects of mx(s). The reason mz does not affect the
deformation y-z projection is due to the difference in

magnitude between mx(s) and mz(s).However, when
both of these moments are non-zero it is difficult to
qualitatively explain the deformation of the rod from
a knowledge of their magnitudes. However, as seen in
from fig.(6), the shape in the x-y projection is predomi-
nantly determined by mz. Note that my(s) is positive in
all three cases of fig.(6), and the axial projection of the

three cases follows the same qualitative trend. In par-
ticular, the rod deflects towards the -ve x-axis for small
s, and then bend towards the +ve x-axis for larger s
(in the Loop1 case this trend is not as obvious as the
other two cases, but the rod begins to bend towards
the +ve x-axis for larger s). Thus, the sign of the my

moment and the deformation are correlated. The de-

formed shaped of the sagittal curves are presented in
the supplementary materials. It can be seen the rela-
tive position of the inflection point between the groups,
i.e. loop 1 being the highest and loop 2 the lowest with
respect to the horizontal axis as was seen prior to the
deformation, holds true in the deformed shape of the
spine (Supplementary material fig.(S1))
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(a) Loop1 θ0=31◦ (b) Loop1 θ0=37◦ (c) Loop1 θ0=44◦

(d) Lemniscate θ0=31◦ (e) Lemniscate θ0=37◦ (f) Lemniscate θ0=44◦

(g) Loop2 θ0=31◦ (h) Loop2 θ0 = 37◦ (i) Loop2 θ0=44◦

Fig. 4: The initial configuration to get loop and lemniscate shapes for each case of θ0. The line is the average curve
and the grey region corresponds to the range.
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An analysis of the scoliosis deformity patterns, i.e.,
loop versus lemniscate, are particularly important be-
cause they not only help to better understand the patho-
genesis of the spinal deformity development in adoles-
cent idiopathic scoliosis but also are shown to impact
the clinical management of the disease. In a 3D clas-
sification of the spine that aimed to study the brac-
ing effectiveness, a common conservative treatment for
small pediatric spinal deformities, it was shown that
patients with loop and lemniscate deformation patterns
respond differently to bracing[22]. In surgical treatment
of idiopathic scoliosis, it was also shown as the lemnis-
cate shape curves consist of two 3D curves as opposed
to the loop shaped cases that consist of one 3D curve,
the surgical planning of the disease should also distin-
guish between these curve types [24]. As the presented
rod model could determine the loop versus lemniscate
shape patterns, future applications of this model in pre-
dicting the conservative treatment outcomes or surgical
planning of the pediatric spine are warranted.

5 Conclusion

By changing the geometry of an S-shaped elastic

rod, we determined three different deformation pat-
terns. The deformation patterns were related to the po-
sition of the inflection point of the S-shaped rod, and

the curvature of the rod above and below the inflection
point. These parameters change slightly as the base an-
gle of the rod changes within each deformity pattern
group. These curve characteristics relate to the sagit-

tal curvature of the spine in the most common scoli-
otic curve types. This analysis provided evidence that
changes in the sagittal curvature of the spine can be
responsible for different deformation patterns in idio-
pathic scoliosis.

Acknowledgements

Sunder Neelakantan and Prashant K. Purohit ac-
knowledge partial support for this work through an

NSF grant NSF CMMI 1662101.

Conflict of interest

The authors declare that they have no conflict of
interest.

References

1. Antman, S.. Nonlinear Problems of Elasticity. Ap-
plied Mathematical Sciences. Springer New York,
2006.

2. Audoly, B. and Pomeau, Y.. Elasticity and Geom-
etry: From hair curls to the non-linear response of
shells. OUP Oxford, 2010.

3. Belytschko, T., Andriacchi, T., Schultz, A., and
Galante, J. Analog studies of forces in the human
spine: Computational techniques. Journal of Biome-
chanics , 6(4):361 – 371, 1973.
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Fig. 6: Sagittal view of the initial configuration of the 37◦ average curve in fig.(4). (my(s) plotted as red vectors)

(a) Loop1 (b) Lemniscate (c) Loop2

Fig. 7: Frontal view of the initial configuration of the 37◦ average curve in fig.(4). (mx(s) plotted as red vectors)

(a) Loop1 (b) Lemniscate (c) Loop2

Fig. 8: Axial view of the deformed configuration of the 37◦ average curve in fig.(4). Red line-segment connects end
points to show loop/lemniscate classification.
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28. Schlösser, T. P., Shah, S. A., Reichard, S. J.,
Rogers, K., Vincken, K. L., and Castelein, R. M.
Differences in early sagittal plane alignment between
thoracic and lumbar adolescent idiopathic scoliosis.
The Spine Journal, 14(2):282 – 290, 2014.
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