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ABSTRACT

Ribosome profiling (also known as Ribo-seq) has become an important technique to investigate

changes in translation across a wide variety of contexts. Ribo-seq data not only provides the

abundance of ribosomes bound to transcripts, but also positional information across transcripts

that could be indicative of differences in translation dynamics between conditions. While many

computational tools exist for the analysis of Ribo-seq data, including those that assess differences in

translational efficiency between conditions, no tool currently exists for rigorous test of the pattern

differences in ribosome footprint. In this paper we propose a novel approach together with an R

package, RiboDiPA, for Differential Pattern Analysis of Ribo-seq data. RiboDiPA allows for quick

identification of genes with statistically significant differences in ribosome occupancy patterns for

model organisms ranging from yeast to mammals. We show that differential pattern analysis reveals

information that is distinct and complimentary to the existing methods that focus on translational

efficiency analysis. Using both simulated Ribo-seq footprint data and two benchmark data sets, we

illustrate that RiboDiPA can not only uncover meaningful global translational differences between

conditions, but also the detailed differential ribosome binding patterns to a single codon resolution.

1 Introduction

Translation of mRNA messages into proteins is a fundamental process that all organisms must undergo in order to

survive. Given its importance, translation is highly regulated by organisms across all kingdoms of life to ensure proper

protein expression in the right contexts [1], while mis-translation or mis-regulation of translation has frequently been

linked to disease [2]. Protein production itself is carried out by ribosomes as well as key accessory protein complexes,

which are conserved across species. Molecular and genetic dissection of translation has revealed the details of a complex
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process consisting of multiple steps, from initiation to elongation to termination and recycling. Translation initiation is

perhaps the most-well characterized of these steps [3], although regulation at later steps has also been demonstrated

to be critical [4]. Importantly, cells have evolved strategies to adaptively regulate translation of mRNA messages in

changing environments, including under various types of cellular stress, such as oxidative stress and starvation [5].

In the past decade, a new method called ribosome profiling (or Ribo-seq) has harnessed the power of next-generation

sequencing technologies to provide a new way of quantitatively examining translation on a gene-by-gene basis [6].

Ribosome profiling not only offers quantification of translational efficiency of a gene, which is the number of ribosomes

per mRNA molecule under a given condition, but also important information about the distribution of ribosomes

across an mRNA transcript. This shape information has been used to identify upstream open reading frames (uORFs)

[7], observe stop codon read-through [8], and determine the sites of pausing during translation [9], among many

other applications. Ribosome profiling has been applied to many organisms [10] and improvements upon the original

technique have allowed for more precise targeting of translational events [11].

As the popularity of ribosome profiling as an investigative technique has increased, the computational tools and

approaches to analyze Ribo-seq data have rapidly proliferated. The purposes of these tools range from data preprocessing

, uORF discovery and annotation, quantification of translational efficiency, etc. For extensive and excellent reviews of

these tools, we refer to [11, 12, 13]. In this paper, we are particularly interested in statistical inference of translational

differences between conditions using Ribo-seq data. In this regard, there are several tools available for differentiation of

translational efficiency between conditions based on the gene-wise Ribo-seq counts [14, 15, 16, 17, 18, 19, 20, 21]. The

translational efficiency for each gene is typically quantified by Ribo-seq read count normalized by the RNA-seq gene

expression. While these approaches can provide insight into translational efficiency, the ribosome binding pattern along

the gene body, which we believe can provide a more complete picture of transcriptional and translational variations

across conditions, has been mostly ignored. For example, a given gene with similar translational efficiency quantified by

total Ribo-seq and RNA-seq counts may have differential Ribo-seq read distribution pattern along the transcript, which

may be indicative of difference in translational mechanisms of interest. Nevertheless there is yet no existing method or

tool for rigorous test of the differences of ribosome binding patterns. In this paper, we propose a novel method together

with an R package named RiboDiPA for differential pattern analysis in Ribo-seq data. We will show this approach can

uncover new mechanisms of translational regulation in Ribo-seq footprint data. The new approach will be illustrated

using a systematic simulation study and two benchmark data sets.

2 MATERIALS AND METHODS

2.1 Experimental data sets

We selected two experimental case studies to assess how our method performs. The first one is a high quality dataset

collected in yeast by [22]. This study used multiple translation inhibitors to reveal changes in ribosome occupancy

upon various cell stresses, and defined classes of RPFs with different lengths corresponding to ribosomes with open or
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occupied A-sites. In this study, we shall compare unstressed yeast to yeast challenged with three different stresses–

osmotic stress, oxidative stress, and stationary phase growth– as well as compare wild type yeast to yeast of different

genetic backgrounds, ∆eRF1 and ∆Rck2. The second data set comes from a mouse study [23] which compares mouse

embryonic stem cells with different dosages of the translational regulator Nat1: wild-type, heterozygous mutant, and

null. These data sets were selected because they represent two divergent model organisms of typical sample size (2-3

replicates per condition), and more importantly, both have relatively high read counts.

Ribo-seq Alignment
.bam File

P-site mapping

Mapped P-site data

Condition A:

Condition B:

Exon Merging

.gtf FileGenome Annotation:

Input: Input:

Data Binning 
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A:
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Figure 1: RiboDiPA package workflow. Input for the RiboDiPA package are: (a) the Genome Transfer File (GTF)

of the experimental organism and (b) Ribo-seq alignment files in BAM format with one file per replicate. All exons,

5’UTR(s), and 3’UTR(s) from the same gene are concatenated to form a total transcript. RPFs are parsed and the P-site

position is calculated for each RPF. (c) Mapped P-site data representing the P-site frequency at each nucleotide position

along the total transcript (left) and the binned P-site data with customizable bin width (right). (d) Flow of differential

pattern analysis and output of RiboDiPA including p-value, q-value and T -value for each gene under testing.

2.2 Overview of RiboDiPA flow

RiboDiPA, implemented in an R package, provides a pipeline for pattern differentiation for Ribo-seq data. Figure

1 provides a flow chart of RiboDiPA pipeline from exon concatenation, BAM file processing, P-site mapping, to

differential pattern test. The package takes the Ribo-seq alignment file (in .bam format) and Genome Transfer File

(.GTF) as inputs and outputs the differential pattern (DP) analysis results with statistical significance and supplementary

pattern dissimilarity measure (T -value). In addition, it provides additional functions for visualization of Ribo-seq

footprints with specified resolution. In terms of computing time, it takes about 10 minutes to run the entire pipeline for

the wild type vs. eRF1d comparison of yeast data (4 samples) at single-codon resolution on a 20-core node on a Linux

cluster. RiboDiPA can be downloaded at github (https://github.com/jipingw/RiboDiPA). The details of each function of

the package are described below.
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2.3 Exon concatenation, P-site mapping and data binning

Since true RPFs originate from ribosomes that are actively translating in coding regions, in cases where a gene has

multiple splicing isoforms, it is difficult to distinguish which isoform an observed Ribo-seq read comes from. Our

pattern analysis is performed on the gene-level by concatenating all exons from the same gene into a total transcript in

order to get a merged picture of translation. We first mapped all RPFs to the genome, and then identified the P-site

position of each RPF in the corresponding total transcript (see Supplementary Materials). The aggregated RPF count at

each codon was binned at specified bin width for the downstream pattern analyses.

RiboDiPA allows for differential pattern analysis of Ribo-seq data with customizable bin width. The motivation for

data binning is that the read coverage in Ribo-seq experiments tends to be sparse at invididual codons. The differential

pattern analysis to be proposed below requires testing differential mean of read counts at each location of the transcript.

Binning helps alleviate excessive statistical tests on locations with 0 or extremely low counts. More importantly, more

position-wise tests within the same gene increases the chance of type I error, and correction for which may undermine

the power (to be further discussed below). In RiboDiPA the user can specify a fixed bin width as small as a single codon

(3 nt). In addition we have implemented an adaptive bin width selection approach by Freedman and Diaconis [24]

originally proposed for histogram construction. Our simulation results suggest that Freedman-Diaconis rule empirically

outperforms several other popular approaches including Sturges’ formula [25], Doane’s formula [26], Rice Rule [27],

Scott’s normal reference rule [28] and an improved Doane’s formula using a kurtosis criterion [29, 30) (see Simulation

section]. Briefly, suppose there are m P-sites mapped at locations x1, . . . , xm of a transcript. The adaptive bin width is

calculated as follows:

h =
2IQR
m1/3

, (1)

where IQR is the interquartile range of the data. In RiboDiPA, we first calculate the average P-site frequency at each

position of the transcript across replicates. The adaptive bin width is calculated based on the average footprint using

formula (1). The common empty bins shared by all replicates are removed after binning in RiboDiPA. In the following

context, we shall refer to bin interchangeably as “position" or “location".

Lastly, we only consider genes with at least one Ribo-seq read in every replicate for illustration of differential pattern

analysis throughout this paper.

2.4 Differential pattern analysis

We begin with two examples from a yeast translation study [22] to demonstrate the necessity to develop new methods

for differential pattern analysis in Ribo-seq data. A naive test for differential translation is to test for mean or abundance

equivalence based on the gene-wise total Ribo-seq read counts (equivalent to differential expression analysis in the

RNA-seq data). To avoid confusion below, we shall refer to this test as differential abundance (DA) analysis. Figure 2

shows the ribosome footprint of two genes, plotted in the form of mapped P-site frequency at each nucleotide location

(unbinned) or at each bin (adaptively binned) along the transcript, for unstressed yeast cells and cells undergoing

oxidative stress, in blue and red respectively with two replicates per condition. Neither TCB3 (YML072C) nor ABC1

(YGR037C) gene showed significant difference in terms of overall RPF abundance between conditions (p-value = 0.995

and 0.669 respectively). In contrast, TCB3 shows similar ribosome occupancy patterns between unstressed and stressed

cells while ABC1 shows a dramatic shift in the distribution of ribosome occupancy toward the middle of the gene under
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Figure 2: Ribosome profiling data shows example genes with differences in ribosome occupancy patterns, but

similar abundance of RPFs. Plotted are the ribosome profiling data for two example genes from yeast [22], TCB3

(a) andACB1 (b) with two replicates in unstressed conditions (blue) and under oxidative stress (red). Both TCB3 and

ACB1 do not show a significant difference in the abundance of RPFs between conditions (DA test defined in text), but

ACB1 shows a clear pattern difference of ribosome occupancy near 5’ end whereas TCB3 does not. For each panel, the

distribution of ribosome unbinned P-site frequency is shown on the left and the binned data on the right.

oxidative stress. Clearly, different ribosome binding pattern cannot be necessarily inferred by differential abundance

analysis using total read counts, therefore we set out to establish a new framework for testing pattern differences in

ribosome profiling data.

To define differential pattern (DP) analysis rigorously, we propose a statistical framework as follows. Suppose we

have two conditions with n1 and n2 replicates respectively. For a given gene g of length J , denote the read count at

position j in the ith replicate of condition k as Xijk, for j = 1, ..., J , i = 1, ..., nk, k = 1, 2 (we omit the gene index in

notations for simplicity). We assume

Xijk
ind.∼ NB(µijk, ρijk),

for i = 1, ..., nk, j = 1, ..., J, k = 1, 2, where

µijk = qjksik,

and ρijk is the dispersion parameter. Note that sik is a gene- and sample-specific scale factor measuring the RPF

abundance in the ith replicate in the kth condition, and qjk is a position- and condition- specific relative abundance
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parameter measuring ribosome binding affinity. For a given gene, the scale factor sik can vary across replicates and

conditions (and hence mean µijk) due to differences in abundance level and sequencing depth. Our differential pattern

analysis for a given gene is defined for testing the following hypothesis:

H0 : qj1 = qj2, ∀ j = 1, ..., J. VS. H1 : H0 is not true. (2)

In words, the pattern equivalence can be interpreted as having parallel mean curves (µijk defined for j = 1, .., J) across

different conditions.

The null hypothesis specified in (2) can be regarded as intersection of a set of sub-hypotheses, i.e., H0 = ∩Jj=1H
j
0 where

Hj
0 : qj1 = qj2, for j = 1, ..., J . This leads us to consider a point-wise approach by first testing each sub-hypothesis

separately, i.e.,

Hj
0 : qj1 = qj2 VS. Hj

1 : qj1 6= qj2.

We convert this test into a standard differential expression analysis problem by treating sik as a sample- and gene-specific

normalizing factor. Thus the first step is to estimate the normalization factor sik for each replicate of each gene. In

RNA-seq analysis, there are many existing methods for calculation of normalization constants. For example, Anders

and Huber [31] and Love et al [32] took the median of the ratios of counts to geometric mean of counts across samples

as a normalizing constant to avoid the influence of highly and differentially expressed genes:

ŝik = median
j

xijk(∏2
k′=1

∏nk′
i′=1 xi′jk′

) 1
n1+n2

.

For the Ribo-seq data, the read count at each location for a given gene can still be very low even after binning, often

causing near 0 normalization constants ŝik. In contrast, we found the total read count is a more robust measure of the

abundance level. To exclude the bins that represent the true differential pattern, we defined an outlier bin as that whose

log2-fold change value is more than 1.5 interquartile ranges (IQRs) below the first quartile or above the third quartile.

Denote the remaining non-outlier bin set as J ′. The normalizing constant is defined based on the total read counts from

each replicate for the same gene, i.e.,

ŝik =

∑
j∈J ′ xijk

median
i′,k′

∑
j∈J ′ xi′jk′

. (3)

To perform a negative binomial test, one critical step is to estimate the dispersion parameter, typically modeled as a

function of the mean. One challenge arises due to the small sample size such that the dispersion parameter cannot be

well estimated on a gene-by-gene basis. Instead the gene specific dispersion parameter is estimated by aggregating

information from all genes. For instance, Robinson and Smyth [33] first estimated the gene-wise dispersion parameter

from the conditional maximum likelihood conditioning on the total count for that gene, and then shrunk it towards

a consensus value by an empirical Bayes model ("edgeR" R package). Anders and Huber [31] assumed a locally

linear relationship between dispersion and mean to borrow information across genes (‘"DESeq" R package). As an

update, Love et al [32] first used gene-wise maximum likelihood estimate (MLE) of the dispersion parameter to fit

a dispersion-mean curve, the fitted value of which was further used as the mean of a prior distribution to produce an

estimate of gene-specific dispersion parameter shrunk towards the mean curve ("DESeq2"). In this paper we adopt the

method in DEseq2 to estimate the bin-wise dispersion parameter for its established competitive performance. For the

same gene, the relatively small bin number (median is 14 for the yeast data) makes it impossible to robustly estimate of

gene-specific dispersion-mean function. Hence we pool all bins from all genes and feed the read count xijk together

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.050559doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.20.050559
http://creativecommons.org/licenses/by-nc-nd/4.0/


A PREPRINT - APRIL 20, 2020

with corresponding scale normalization factor ŝik into DESeq2 for estimation of the common dispersion-mean function,

and thereafter the dispersion parameter for each bin within each gene. The bin-wise test for differential mean was

subsequently carried out using DESeq2.

Let pj be the DESeq2 p-value for the jth bin of a given gene for j = 1, ..., J . The type I error for testing original

hypotheses H0 VS. H1 defined in (2) equals Prob(reject at least one Hj
0 |H0), i.e., the family-wise error rate for testing

{Hj
0 : j = 1, ..., J}. Thus to control the type I error rate for testing H0 VS. H1, we need to control family-wise type I

error rate in the point-wise approach.

The well-known but conservative Bonferroni procedure is to adjust every p-value pj to min(Jpj , 1). Here we follow a

recently proposed hybrid Hochberg-Hommel method by Gou and coauthors [34] (implemented in R package “elitism")

to calculate the adjusted p-values for each sub-hypothesis for its relatively more powerful performance. Briefly, let

p[1] ≥ · · · ≥ p[J] be the ordered p-values. The adjusted bin-level p-values is given by

p̃[j] = min
k=1,...,j

{
max

(
p[k]

ck
,
p[j]

dk

)}
,

with ck = (k + 1)/(2k) and dk = 1/k. The gene-level p-value is defined as p̃ = min
j
p̃[j].

Denote p̃g as the gene-level p-value for gene g, for g = 1, ..., G. For false discovery rate control, we input the gene-level

p-value into q-value package [35] to calculate the q-value for each gene.

2.5 A supplementary pattern dissimilarity measure by SVD

The gene level p-value from the hybrid Hochberg-Hommel procedure only reflects the statistical significance at one

individual location that achieves the the minimum p-value among J locations/bins. It is less indicative about the read

count scale at the differential bin(s) or how many bins have differential patterns. To provide a supplementary and more

direct measure of pattern dissimilarity, we consider an alternative approach based on singular value decomposition.

Let X1 = [Xij1]n1×J and X2 = [Xij2]n2×J be the count matrices from condition 1 and condition 2 respectively where

each row stands for one sample and each column for one position. It is well known that the first right singular vector

from singular value decomposition (SVD) of a matrix represents the first principal row pattern. Thus if X1 and X2

preserve the same pattern, we expect to see similar first right singular vectors. Let v1 and v′1 be the first right singular

vectors from sample X1 and X2 respectively. Define the T value as follows:

T = 1− vT
1 v
′
1.

Note that 0 ≤ T ≤ 1 . Geometrically, it equals the 1- cosine of the angle of v1 and v′1 (Figure 1d). A larger T may

provide more evidence to reject H0. There are some known results on the null distribution of T when Xijk are i.i.d.

Gaussian, which however are not applicable to non-i.i.d. count data here. In our case, T is not a pivotal quantity under

H0 and its null distribution depends on the actual values of mean and variance at each location. In the RiboDiPA

package, we output T value as a complementary statistic for users to prioritize positive genes with differential patterns

(analogous to fold change in differential expression analysis). We shall demonstrate its usefulness below from both real

and simulated data.
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3 RESULTS AND DISCUSSION
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Figure 3: Differential pattern (DP) vs. differential abundance (DA) analysis. Data throughout the figure concerns

WT unstressed yeast cells and WT cells responding to oxidative stress from yeast data set. (a) Scatter plots of average

Ribo-seq read counts for genes with DP and (b) without DP (at q-value ≤ 0.05). (c) Pie chart for genes tested

significant/insignificant in DP/DA analysis. Among 5,746 genes analyzed, 5,250 genes had no differential pattern (of

which 40 were DA negative), however 496 genes had a significant differential pattern (of which 478 were DA negative).

Panels (d) and (e) present the footprints of two genes(both unbinned and binned, unstressed in blue, stressed in red) to

show that T -value can be used as a supplementary measure to identify genes with larger pattern differences beyond

statistical significance measure p-value or q-value. Bins colored in black are those having significant adjusted p-value

≤ 0.05 in the DP test.
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3.1 Differential pattern (DP) vs. differential abundance (DA) analysis in Ribo-seq

To provide an overview of how DP analysis differs from DA analysis, we performed both analyses on WT unstressed

yeast cells versus WT cells experiencing oxidative stress from the yeast data. Both DP and non-DP groups showed

similar patterns of scatter plots of read counts (Figure 3a,b), though genes identified with DP tended to have larger

average read counts. This is not surprising as the DP test is based on bin-wise tests and fewer reads within a bin may

result in inadequate power for detection of differences due to large dispersion. We discovered that many genes showed

differential patterns in ribosome occupancy, while few of which showed differential abundance (Figure 3a,c). For

example, out of the 5,746 genes that met our criteria for analysis, 478 were significant in DP but not in DA; and only 18

were significant in both DA and DP analyses (q-value ≤ 0.05). These results suggest that DA analysis cannot be used

for pattern differentiation in the Ribo-seq data.

3.2 T -value as a supplementary measure for pattern difference

RiboDiPA outputs a list of significant genes with pattern difference. Practically, we are more interested to identify genes

with DP in more bins/positions or in bin(s) with larger read counts. The gene-wise p-value is not informative in this

regard as it is dictated by the most significant bin/position in the gene and it does not tell the read count magnitude or

how many bins are DP significant. Analogous to log fold change used in gene expression analysis, the T -value provides

a metric to prioritize investigation of genes that have more pronounced changes in ribosomal occupancy patterns. We

show two example genes from our oxidiative stress analysis that tested positive for DP between the two conditions:

MET6 (YER091C), a gene involved in methionine metabolism, and RPL39 (YJL189W), a large-subunit ribosomal

protein. Figure 3d-e show the P-site footprints before (left) or after (right) binning, with WT unstressed replicates in

blue and WT oxidative stress in red. While adjusted p-values of both genes are significant (<0.005), the T -value of

MET6 is much smaller (0.036) than RPL39 (0.265). Examining the Ribo-seq footprints of RPL39 shows a dramatic

shift in occupancy away from the 3′ end of the gene towards the interior of the gene body. Therefore, ranking genes that

test positive for DP by their T -value could be a valuable way for investigators to focus their attention on genes with the

most pronounced changes between experimental conditions.

3.3 DP analysis uncovers global translational difference

To investigate how DP analysis can help gain biological insights into global translational differences between conditions,

we examined four additional comparisons for the yeast data including: WT osmotic stress and WT starvation response

(the latter known as stationary phase growth) vs. WT unstressed cells; and a Rck2 deletion strain vs. WT cells in

both oxidative and osmotic stress. Rck2 is a critical kinase involved in stress response, which has been demonstrated

by the authors to have effects on translation in the case of osmotic but not oxidative stress. We plotted the empirical

cumulative distribution function (ECDF) of p-value for all five comparisons for the DP test and the respective number of

test-significant genes as a function of q-value threshold (Figure 4a,b). Consistent with the previous authors’ findings, we

found no significant genes with DP in the WT versus ∆Rck2 comparison for oxidative stress at q-value threshold =0.05,

while for the rest, substantial number of genes with differential occupancy patterns were identified. For example, at the

same q-value threshold the method discovers hundreds of genes for the three stress conditions compared to unstressed
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Figure 4: DP analysis shows global difference in translational activities between conditions. Plotted are (a) the

empirical cumulative distribution function (ECDF) of p-value for DP analysis for five different comparisons of yeast

stress conditions from the yeast data set, and (b) the corresponding number of discoveries under different q-value

threshold values for each comparison.

cells, and approximately 110 genes for the WT to ∆Rck2 comparison under osmotic stress (Figure 4b). These results

provide global pictures of translational difference between different biological conditions.

3.4 RiboDiPA for single-codon resolution DP analysis

RiboDiPA allows to perform DP analysis at single-codon resolution to identify fine pattern differences between

conditions. To illustrate this, we turned to a different data set from [22], which compares WT yeast cells (unstressed)

to a Eukaryotic Release Factor 1 (eRF1) deletion strain (unstressed). eRF1 is a key factor in translation termination

from all three stop codons in yeast, and the authors previously showed that eRF1 deletion causes accumulation in

ribosome occupancy at two locations near the stop codons. Consistent with the conclusions of the previous authors,

many genes showed significant pattern differences towards the 3’ end of the gene from DP analysis with adaptive

binning (see Figure S.1 in the Supplementary Materials). To pinpoint the exact location of differential patterns, we

carried out a single-codon DP analysis and examined the 50 codons down-/up-stream of the start and stop codons

respectively. Figure 5a plots the number of genes that have significant DP at each given codon (adjusted condon-level

p-value ≤ 0.05), where positive direction indicates enrichment of Ribo-seq reads in eRF1d relative to WT, and the

negative for down-regulated occupancy in eRF1d. RiboDiPA precisely identified two large spikes at the second and

twelfth codon upstream the stop codon, with all significant genes at these positions showing an increase in occupancy

in the eRF1d condition relative to wild type. The fine details of the differential patterns were further exemplified in two

genes, SUI3 and TEF2 in Figure 5b-c .
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Figure 5: RiboDiPA for single-codon resolution DP analysis (a) Comparison of WT unstressed yeast cells vs. eRF1

deletion strain (unstressed) from [22] shows significant enrichment of P-sites at the -12 and -2 codon position in the

eRF1d cells (stop codon defined as -1 position), while no significant differential pattern is present around start codon.

Plotted in vertical axis is the number of genes that have adjusted p-value ≤ 0.05 at each given codon, with positive

direction for enrichment in eRF1d, and negative direction for depletion. Panels (b) and (c) show two example genes,

SUI3, an eIF2β homolog, and TEF2, an eEF1A homolog respectively. Wild type data is shown in blue, while eRF1d

data is shown in red, with significantly different bins highlighted in black. (d) Gene Ontology (GO) enrichment analysis

was performed on all genes with significant ribosome occupancy changes at the -12 and -2 codon position, and GO

terms related to translation (red) were significantly enriched, in addition to other terms (black). Analysis was performed

with PANTHER, using Fisher’s Exact test, with a false discovery rate (FDR) correction. (e) In addition to translation

termination, the process of cytoplasmic translation initiation (GO:0001732) was highly enriched, with nine out of a

possible ten genes in yeast represented, including key members of the eIF2, eIF3, and eIF5 complexes. (f) Genes

associated with both initiation and elongation (GO:0006414) were also highly enriched (15 out of 30).
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RiboDiPA can not only identify the differential patterns of ribosome binding, but also important genes for downstream

analysis. When we analyzed the identity of the approximately 850 genes that show DP at the -12 or -2 codon position

(stop codon defined as -1 position), we found many interesting genes that are involved with the process of translation

itself. Gene ontology (GO) term enrichment analysis showed significant enrichment for terms involved in protein

translation among others (Figure 5d-e, q-value≤ 0.05). As expected, genes associated with translation termination

were highly enriched, but also cytoplasmic translation initiation, including multiple members of the eIF3 and eIF5

complexes, and translation elongation, including members of the eEF1 family. Of the ten genes in yeast associated with

cytoplasmic translation initiation, nine were pulled out in this analysis (Figure 5e), while half of genes associated with

translation elongation were also identified. Taken together, these results demonstrate that DP analysis at single-codon

resolution can discover differential patterns with fine details at the codon level, individually or collectively, as well as

uncover putative regulatory feedback relationships in translation (see Section: DISCUSSION).

3.5 DP analysis for higher organisms

RiboDiPA can be readily applied to any other genomes including mammalian genomes. To this end, we examined data

from [23] in mouse embryonic stem cells, and were able to discover many genes that showed differential patterns when

comparing Nat1 heterozygous cells to Nat1 null cells. Figure S.2 in the Supplementary Materials shows two significant

examples for Cdc20 and Gtf2f1, which are key regulators involved in cell cycle control and transcription respectively,

and are both multi-exonic genes. Lower RPF coverage can be an issue for a single-codon resolution analysis for large

genomes as too many bins may have extremely low counts. Therefore we recommend to use single-codon DP analysis

only when coverage permits, and use the default adaptive binning when coverage is sparser, as is frequently the case in

ribosome profiling experiments in mammalian systems.

3.6 Simulation Study

To further assess the performance of the proposed approach, we carried out a simulation study as follows. We constructed

a two-condition Ribo-seq comparison experiment with m = 2, 3, 4 replicates within each condition respectively. To

mimic the gene length and read count distributions observed in the real data, we selected the top 4000 genes that had

largest total read counts under comparison of WT yeast cells versus eRF1 deletion strain in yeast data as templates. We

randomly chose 3,600 genes as the null condition and the rest 400 as alternatives. For a given selected gene designated

as the template for the null gene, we generated ribosome footprint data at the codon level by simulating the read

count for each codon within each replicate using a negative binomial model NB(µijk, ρijk) where i, j, k are indices

for replicate, codon and condition respectively. To do that, we first calculated the relative mean qj for the jth codon

based on all replicates. To generate the gene- and replicate-specific abundance/sequencing depth normalizing constant

sik defined in (3) in a m vs. m comparison (i.e., i = 1, ...,m, k = 1, 2), we first generated 2m random values from

uniform[1,5] for each gene separately. Denote these random values as s′ik. The normalizing constant sik is given by

sik = s′ik/mediani,k(s′ik). In this way, we allow a possible range of abundance fluctuation between 0.2 and 5 for each

gene. The mean parameter is given by µijk = sikqj . In the second step, we generate the dispersion parameter ρijk by

plugging qj into the fitted dispersion-mean curve function obtained from the wild type vs. eRF1 deletion comparison

using DESeq2 package ( i.e., output from "estimateDispersionsFit" R function within DESeq2).
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Figure 6: Simulation results I: (a) Power comparisons between binned and unbinned data (codon-level) in the

simulation at nominal FDR level 0.05. (b) Power comparisons between groups of genes with 10% and 20% differential

codons. The log2 fold change (lfc) of relative means between conditions of the true positive set was varied from 1 to 3,

the number of biological replicates (m) was varied from 2 to 4. The presented results were averaged over ten repeated

simulations.

For the 400 alternative genes, we randomly chosen 200 genes to contain 10% of codons with differential patterns, and

the other 200 genes to bear 20% of codons with differential patterns. For a given selected template gene, we treated

qj for the jth codon of all replicates as the relative mean for the first condition, i.e., qj1. Considering that differential

codons tend to be clustered in real data, we applied a Markov Chain model to simulate a sequence of the no-change

or up-/down-regulated state path (see Supplementary Methods). If the codon is chosen to have a differential pattern

with up-regulation, the relative mean for condition 2 is given by qj2 = cqj1, where c = 2, 4, 8 (or c=1/2, 1/4, 1/8

for down-regulation) in three separate simulation settings. If a codon is chosen to have no differential pattern, then

qj2 = qj1. The dispersion parameter was generated in the same way as for the null genes.

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.050559doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.20.050559
http://creativecommons.org/licenses/by-nc-nd/4.0/


A PREPRINT - APRIL 20, 2020

In summary, our simulation is a 3 by 3 design, three different samples size (m) by three different log2-fold change with

10% true positive genes. We investigate how sample size, effect size and scale of differential patterns may affect the

performance of the proposed approach.

We performed differential pattern analysis on both adaptively binned and unbinned data. We first examine the power

achieved at nominal FDR level 0.05 of each setting (Figure 6). For both binned and un-binned data, the power

consistently improves as sample size (m) or log2-fold change increases, while the DP analysis based on binned

data achieves significantly better power than the codon-level analysis in each setting (Figure 6a). For example, the

codon-level analysis achieved 47% power when the mean difference was 4 fold (lfc = 2) with 2 replicates and 88% with

4 replicates, whereas the binned analysis achieved 70% and 92% power respectively at the same settings. While at lfc=1

and m=2, only 5% and 15% power were achieved in the un-binned and binned analyses, suggesting small difference is

difficult to decouple from the larger dispersion at small sample size and typical sequencing depth in current Ribo-seq

studies.

We further split the power curve for the alternative genes with 10% and 20% differential codons (Figure 6b). Unsurpris-

ingly genes with 20% of codons with differential patterns achieved larger power to be detected at the given sample size

at nominal FDR level 0.05. Note the gene-level p-value from the multiple comparison procedure is determined by the

minimum adjusted codon-level p-value across all codons within the same gene. In each simulation setting, regardless

that the log2-fold change of q was fixed, more differential codons tend to result in more extreme minimum adjusted

codon-level p-value and thus smaller gene-level p-value and larger power.

This simulation study provides new insights on the use of T -value as a supplementary measure for pattern differences

beyond statistical significance. A larger pattern difference could be defined as a larger change of the relative mean

qijk at one given codon/bin, or it can refer to more codons/bins/regions that had differential ribosome occupancy. The

gene-level p-value is a sensitive measure for the first situation while T -value is informative for the latter. We compared

ECDF or gene-level p-value and the T -value of the true alternative genes with 10% and 20% differential bins in all 9

settings in our simulation (Figure S.3). At lfc = 1, ECDF curve of p-value from the 20% group shows a leap over the

10% group at the left lower end (Figure S.3a,d,g), same for the T-value ECDF at larger T -value end (Figure S.3j,m,p).

While the distinction of p-value curves diminishes at lfc=2 and 3 (Figure S.3b,e,h), the T -values of the 20% group

maintain a significant gap over the 10% group. This demonstrates that T -value can be used as a supplementary measure

to identify genes that have differential patterns over relatively larger regions.

We also compared Freedman-Diaconis rule with other binning methods including Sturges’ formula, Doane’s formula,

Rice Rule, Scott’s normal reference rule, and an improved Doane’s formula. The ROC curve plots show that Freedman-

Diaconis rule consistently outperforms all other methods under consideration in all simulation settings (Figure S.4).

4 Discussion

In this paper, we have proposed a novel statistical framework for differential pattern analysis for Ribo-seq data. DP

analysis was defined for testing parallel mean curve between different conditions. This test allows for quick identification

of genes that have differential ribosome binding patterns with rigorous quantification of statistical significance. We

showed that DP analysis can effectively uncover global differences of translation between conditions, as well as discover
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fine-detail pattern differences up to single-codon resolution in genes that may play important roles in translational

regulation.

One particular challenge in DP analysis in Ribo-seq data arises due to small sample size and low read counts at

individual codons. . A typical Ribo-seq experiment often contain 1 or 2 replicates per condition. In our simulation,

we showed that with two replicates and 2 fold change of mean pattern difference, we only achieved 5% and 15%

statistical power (sensitivity) for unbinned (codon-level) and binned data when controlling the nominal FDR ≤ 0.05

(Figure 6a). There are multiple factors that may contribute to the poor power. First, the small effect size is difficult to

decouple from the large variance when the sample size is small. Second, the fitted dispersion-mean curve typically

has larger dispersion for small means, which may further exacerbate the power for genes with small read counts (even

after binning). We defined the differential pattern in terms of the relative mean at every individual codon/bin in the

entire coding region. An advantage of this framework is that it allows one to pinpoint differential patterns at any

specific bin/location. A downside is that the codon-wise/bin-wise read count can be too low to detect true difference.

Furthermore the point-wise testing procedure requires a family-wise type I error correction for gene-level p-value

calculation. The hybrid Hochberg-Hommel procedure improves over Bonferroni and some other correction methods in

power, but still tends to be conservative overall.

Ribo-DiPA provides a new angle to investigate translational regulation using Ribo-seq data. Unlike most of existing

methods that use total read counts to quantify translation efficiency, Ribo-DiPA examines the actual ribosome footprint

distribution along the transcript, which may provide additional insights into the fine-scale translational activities. When

we compared data from WT yeast cells with cells where the translation terminator eRF1 was removed, approximately

600 genes showed significant differences at -12 and -2 codons upstream of the stop codon (see Figure 5a). The ternary

complex formed by eRF1 with eRF3 and GTP which is plays an essential role for translation termination in eukaryotes,

and in yeast, eRF1 recognizes all three canonical stop codons [36]. Since the vast majority of transcripts require this

complex in order to terminate translation, a priori it was possible that the genes with DP in the eRF1d condition would

reflect the most highly translated genes in yeast, since higher translation would result in more ribosome complexes that

are unable to finish translation. Instead we found many genes with significant DP were not the most highly expressed

genes in yeast (i.e. top 600 genes by RPF abundance in wild type), although there was some overlap. This suggests that

the identity of this subset of genes is not merely a reflection of high expression.

Further, we noted a very striking enrichment of genes involved in cytoplasmic translation initiation in this condition,

as well as translation termination and elongation (Figure 5d-f). We speculate that arresting ribosomes on these genes

could serve as a mechanism to quickly reinitiate translation once the stalling stress has passed. In eukaryotes, stalled

ribosomes are recognized by the Ribosome-associated Quality Control (RQC) pathway and quickly targeted for subunit

dissociation, mRNA degradation, and nascent polypeptide degradation [37]. The recognition of stalled ribosomes is

thought to be primarily mediated by ZNF598 (Hel2 in yeast), and involve recruitment of numerous downstream factors

[38]. We speculate that in most cases, the formation of many stalled ribosomes as visualized in Figure 5a would lead to

triggering the RQC pathway and subsequent degradation, but that ribosomal proteins and translation initiation factors

might be protected from degradation and therefore are enriched in DP analysis under these conditions by being retained.

This would allow for rapid reestablishment of translation after a global stalling stress had passed, although we cannot

rule out that eRF1 depletion is an extreme perturbation that overwhelms the capacity of the RQC pathway. A recent
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paper demonstrated a link between the RQC pathway and translation initiation by showing ZNF598 collaborates with

GIGYF2 and 4EHP proteins to inhibit translation eIF4G-dependent initiation of stalled messages [39]. By extension,

we postulate that mRNAs for components of the translation machinery may be preserved from RQC in order to restart

initiation, although the mechanism as to how these messages would forestall recognition by ZNF598 and degradation

remains to be uncovered.
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