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Abstract 

Aberrant social behavior is a core feature of many neuropsychiatric disorders, yet the study of complex social 
behavior in freely moving rodents is relatively infrequently incorporated into preclinical models. This likely 
contributes to limited translational impact. A major bottleneck for the adoption of socially complex, ethology-rich, 
preclinical procedures are the technical limitations for consistently annotating detailed behavioral repertoires of 
rodent social behavior. Manual annotation is subjective, prone to observer drift, and extremely time-intensive. 
Commercial approaches are expensive and inferior to manual annotation. Open-source alternatives often require 
significant investments in specialized hardware and significant computational and programming knowledge. By 
combining recent computational advances in convolutional neural networks and pose-estimation with further 
machine learning analysis, complex rodent social behavior is primed for inclusion under the umbrella of 
computational neuroethology.  

Here we present an open-source package with graphical interface and workflow (Simple Behavioral Analysis, 
SimBA) that uses pose-estimation to create supervised machine learning predictive classifiers of rodent social 
behavior, with millisecond resolution and accuracies that can out-perform human observers. SimBA does not 
require specialized video acquisition hardware nor extensive computational background. Standard descriptive 
statistical analysis, along with graphical region of interest annotation, are provided in addition to predictive 
classifier generation. To increase ease-of-use for behavioural neuroscientists, we designed SimBA with 
accessible menus for pre-processing videos, annotating behavioural training datasets, selecting advanced 
machine learning options, robust classifier validation functions and flexible visualizations tools. This allows for 
predictive classifier transparency, explainability and tunability prior to, and during, experimental use. We 
demonstrate that this approach is flexible and robust in both mice and rats by classifying social behaviors that are 
commonly central to the study of brain function and social motivation. Finally, we provide a library of pose-
estimation weights and behavioral predictive classifiers for resident-intruder behaviors in mice and rats. All code 
and data, together with detailed tutorials and documentation, are available on the SimBA GitHub repository.  
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Graphical abstract 

SimBA graphical 
interface (GUI) for 
creating supervised 
machine learning 
classifiers of rodent 
social behavior.  

(a) Pre-process videos. 
SimBA supports common 
video pre-processing 
functions (e.g., cropping, 
clipping, sampling, format 
conversion, etc.) that can 
be performed either on 
single videos, or as a 
batch. 

(b) Managing pose-
estimation data and 
creating classification 
projects. Pose-estimation 
tracking projects in 
DeepLabCut and 
DeepPoseKit can be either 
imported or created and 
managed within the SimBA 
graphical user interface, 
and the tracking results are 
imported into SimBA 
classification projects.  

SimBA also supports user-
drawn region-of-interests 
(ROIs) for descriptive 
statistics of animal 
movements, or as features 
in machine learning 
classification projects. 

 (c) Create classifiers, 
perform classifications, and 
analyze classification data. 
SimBA has graphical tools 
for correcting pose-
estimation tracking 
inaccuracies when multiple 
subjects are within a single 
frame, annotating behavioral events from videos, and optimizing machine learning hyperparameters and 
discrimination thresholds. A number of validation checkpoints and logs are included for increased classifier 
explainability and tunability prior to, and during, experimental use. Both detailed and summary data are provided 
at the end of classifier analysis. SimBA accepts behavioral annotations generated elsewhere (such as through 
JWatcher) that can be imported into SimBA classification projects.  

(d) Visualize classification results. SimBA has several options for visualizing machine learning classifications, 
animal movements and ROI data, and analyzing the durations and frequencies of classified behaviors.  

See the SimBA GitHub repository for a comprehensive documentation and user tutorials.  
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Introduction 

Maladaptive social behaviours are theorised as both a cause and consequence of many neuropsychiatric 
disorders including depression1,2, substance abuse3 and PTSD4–7. Such social impairments can result from 
compromised reward evaluations where the motivation for maintaining healthy relationships are persistently 
diminished8. As such, the treatment of maladaptive social behaviour presents an important strategy for improving 
mental health9–12. However, despite the established role of social behaviour in psychiatric disorders and 
treatments, it remains unclear how social context interact with biological functions to produce protracted and 
chronic sequalae10. These insights depend on experimental animal model systems where detailed behavioral 
ethograms can be combined with precise manipulations of brain functions to reveal biological causes12–14. 

Unfortunately, the preclinical study of complex social behavior is impeded by the difficulties associated with 
reliably scoring complex social interactions. Analyses are typically performed by a trained individual, or 
preferably several trained individuals for appropriate inter-rater-reliability validation, observing social behaviors 
and manually scoring previously defined events and their durations. The approach is arduous, non-standardized 
and susceptible to confounds produced by observer drift, long analysis times, and poor inter-rater-reliability. 
These confounds often prevent the detailed study of complex social repertoires in larger datasets, and notably 
provide far lower temporal resolution than most modern methodologies such a in vivo electrophysiological 
recording, fiber photometry recording and single-cell calcium endomicroscopy15–18. These important omissions 
may contribute to our limited biological understanding of maladaptive social behavior and their neurobiological 
underpinnings. 

To overcome this, a range of elegant open-source tools (Table 1) that use various forms of computer vision with 
synchronized RFID-tracking data and/or depth camera or multi-camera 3D systems have been developed for 
automated and precise classifications of animal behaviour19–24. Such methods can permit online classifications in 
semi-natural environments and are a foundation for impending closed-loop monitoring and forecasting systems25 
in behavioural neuroscience, but do require significant investment in specialized hardware and a working 
knowledge of computer science approaches. Parallel advances in animal tracking have produced accessible 
open-source pose-estimation tools for accurate tracking of experimenter-defined body-parts in noisy and variable 
environments26–29 (Table 1). These open-source initiatives have proven to be both far less expensive to execute, 
and provide better animal tracking outcomes, than currently available commercial products30. The collective 
developments promise decreased workload and reduced experimenter interference while introducing sampling 
frequencies and scoring accuracies that are compatible with other modern neuroscience techniques. Automated 
classification techniques may also reduce confounds and increase replicability through computer models based 
on standardized cross-laboratory definitions of behavioral repertoires, made available in libraries for the scientific 
community. Together, these approaches may solidify the study of rodent social behavioral under the umbrella of 
the recently-reinvigorated field of computational neuroethology31–36 and increase our understanding of naturalistic 
unrestrained behavior within the context of neural function.  

However - despite these developments - manual experimenter annotations persist as the conventional approach 
for studying social behavior in experimental animals. We have identified a number of interrelated obstacles that 
prevent widespread implementation of machine learning techniques for behavioral neuroscience, and we are 
presenting this perspective in an upcoming in-depth review37. Now briefly, and most importantly, these include (i) 
the moderate to advanced computational/engineering skills and significant time investments that are necessary to 
implement most machine learning approaches, and (ii) the “black-box” nature and lack of explainability38,39 and 
validation that current approaches are often paired with. Put simply, the learning curves for novice users are steep 
and often dependent on skill-sets not commonly taught within behavioral neuroscience curricula, and the 
interpretation of their outcomes can be ethereal. 

Here we present an open-source method and graphical user-interface (GUI) called SimBA (Simple Behavioral 
Analysis; Fig. 1) that is used to generate supervised decision ensembles of complex social behaviors from basic 
video recordings of mouse and rat dyadic encounters. SimBA uses features generated from pose-estimation 
tracking data together with experimenter-made annotations to generate random forests algorithms that accurately 
classify behavioral patterns in experimental videos. We package SimBA with a range of accessible tools for 
processing video data and advanced functions for validating and evaluating predictive classifiers and visualizing 
machine classifications. SimBA has been developed for analysing complex social interactions but has been 
adopted for a variety of non-social behavioral protocols at other labs and institutes. We show that the method is 
flexible by accurately predicting an extensive set of behaviours relevant for studying the neural mechanisms 
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underlying social motivations in mice and rats. All methods, code, and data together with detailed tutorials are 
available on the SimBA GitHub repository.  

Figure 1. Flowchart depicting the SimBA workflow for creating supervised machine learning classifiers. 
An active-link version of this figure is found on the SimBA GitHub repository. (a) Pre-process videos. SimBA 
provided built-in pre-processing options (trim, crop, enhance, down-sample) that can be applied to either single 
or multiple videos prior to pose-estimation body-part tracking. Videos are CLAHE (Contrast Limited Adaptive 
Histogram Equalization) enhanced if recorded in greyscale and/or deficient resolution. (b) Animal tracking. The 
pre-processed videos are analyzed using the appropriate DeepLabCut/DeepPoseKit pose-estimation model. Pre-
trained pose-estimation model weights for a variety of experimental protocols are available to download from the 
SimBA OSF repository. (c) Building classifiers. Gross inaccuracies in pose-estimation tracking are corrected, and 
machine learning features (e.g., movements, distances etc.) are calculated from the corrected tracking data. The 
videos are annotated for the behaviors of interest using the SimBA event-logger, and the annotated events are 
concatenated with the corrected pose-estimation tracking data. Random forest hyperparameters and 
discrimination thresholds are tuned, and classifier performances are evaluated. Our random forest classifiers for 
resident-intruder protocols can be imported into SimBA projects and are available to download from the SimBA 
OSF repository. (d) Analysis and visualizations. The patterns of the classified behaviors, and critical machine 
learning features (velocities, total movements etc.), are analyzed and visualized. See SimBA on YouTube for 
visualization examples.  
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Methods 

SimBA workflow overview 

A flowchart depicting the workflow of SimBA is shown in Fig. 1, with links to access online tutorials for the specific 
SimBA modules. An active-link version of Fig. 1 is found on the SimBA GitHub repository. 

Hardware requirements. The recommended system requirements and detailed installation instructions can be 
found on the SimBA GitHub repository. Briefly, the minimum specifications are an i7 CPU, 16GB RAM, and SSD 
hard drive. The recommended specifications are an i9 CPU, 32GB RAM, an SSD hard drive, and NVIDEA 
RTX2080Ti GPU. Animal pose-estimation tracking (i.e., DeepLabCut27 / DeepPoseKit26), component of the 
SimBA pipeline, requires GPU support. Importantly, SimBA can accept imported pose-estimation data that has 
been previously generated or generated on a separate system. The visualization steps of SimBA rely on basic 
functions in the OpenCV and FFmpeg libraries, with are free software suits for video editing and computer vision, 
and benefit from higher-end CPUs and SSDs. 

Installation options.  Two supported versions of SimBA (Fig. 2) are available to download from the SimBA 
GitHub repository: SimBAxTF and SimBA. The SimBAxTF version requires TensorFlow40, local GPU-support, and 
has integrated graphical menus for creating convolutional neural networks through the DeepLabCut27 and 
DeepPoseKit26 packages. Conversely, the self-contained SimBA version does not require TensorFlow, or local 
GPU-support, and accepts imported pose-estimation tracking data generated separately within the DeepLabCut 
or DeepPoseKit notebooks and interfaces.  

Software. SimBA is written for Windows compatibility using only open-source software. The code was written in 
python341. The GUI was written in tkinter42. The GUI uses DeepLabCut27 or DeepPoseKit26 for body-part labeling 
and body-part pose-estimation. The SimBA code for generating machine learning behavior classifiers and 
visualizations rely primarily on scikit-learn43, OpenCV44, FFmpeg45, and imblearn46. A list of SimBA package 
dependencies and detailed installation instructions can be found on the SimBA GitHub repository.  

Datasets. We used SimBA to create social predictive classifiers from three experimental protocols (Table 2): 
mouse resident-intruder, rat resident-intruder, and the Caltech Resident-Intruder Mouse dataset (CRIM13)19,47. 

Figure 2. The SimBA open-source code-base and folder structure of the open-access datasets for 
creating social behavior predictive classifiers. Two supported versions of SimBA are available to download 
from the SimBA GitHub repository; SimBA with (SimBA×TF) and without (SimBA) integrated TensorFlow-support 
for convolutional neural networks and pose-estimation animal tracking through DeepLabCut and DeepPoseKit. 
Support is available through the SimBA Gitter instant messaging service and chat room. Go to the SimBA Open 
Science Framework (OSF) repository to download the annotations, videos, random forest models, and tracking 
weights within predictive classification projects. The SimBA OSF repository also contains image annotations and 
network weights for tracking white and black coat-colored animals using alternative neural network architectures 
(e.g., mask RCNN and YOLO). 
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Mouse and rat resident-intruder videos were recorded and annotated at the University of Washington and 
Washington State University, respectively. CRIM13 is an extensive open-access online catalogue of resident-
intruder videos accompanied by detailed annotations of different social and non-social behaviors. The mouse and 
rat resident-intruder datasets are available to download from the SimBA OSF repository. See the SimBA GitHub 
repository or the SimBA OSF repository for a detailed depiction of the folder structure and data that is available 
for download (Fig. 2).  

Video pre-processing. Video recordings were pre-processed using tools available in SimBA. We shortened, 
cropped, and saved videos and frames in RGB, greyscale and CLAHE (Contrast-limited adaptive histogram 
equalization)48 enhanced formats at variable frame rates. The CRIM13 dataset was recorded in SEQ file format 
and converted to MP4 format using SimBA. We also used SimBA to extract frames at specific time-periods, down-
sample video resolutions, generate gifs and videos. An exhaustive list of SimBA video pre-processing tools and 
tutorials is available on the SimBA GitHub repository. We used the SimBA to crop, clip, CLAHE enhance, and 
convert 232 videos in the CRIM13 database19,47.  

Classifier operational definitions. We created a detailed operational definition for each classified behavior. The 
operational definition described the behavior and its characteristic initiation, duration and end. For the mouse-
resident intruder protocol (Table 3), we created operational definitions for 10 predictive classifiers: attack, pursuit, 
lateral threat, anogenital sniffing, allogrooming normal, allogrooming vigorous, mounting, scramble, flee, and 
upright submissive. For the rat resident-intruder protocol (Table 4), we created operational definitions for 7 
predictive classifiers: attack, anogenital sniffing, lateral threat, approach, boxing, avoidance, and submission. The 
CRIM13 dataset was previously annotated for 11 different behaviors: approach, attack, chase, circle, copulation, 
drink, eat, sniff, up, clean, and walk away. For further information, see the CRIM13 website.   

Resident-intruder protocol. For the mouse resident-intruder protocol, we recorded dyadic encounters between 
two male mice (cage size: 28x17x14cm) or two female mice (cage size: 28x19x12cm) in clear polycarbonate 
home-cages with fresh bedding, or two male mice in Med-Associates operant chambers (chamber size: 
21x18x13cm) using protocols detailed elsewhere49,50. The intruder was a black coat-coloured C57BL/6J mouse 
(Jackson Labs, #000664), and the resident was a white coat-coloured CD-1 mouse (Charles River, #022). For the 
rat resident-intruder protocol, we recorded resident-intruder dyadic encounters between a male intruder Sprague 
Dawley rat (Simonsen Laboratories) and male resident Long-Evans rat (Simonsen Laboratories) in clear 
polycarbonate cages with fresh bedding (cage size: 33x46x19cm) using a previously detailed protocol51.  

Video recordings. Male mice in were recorded at 30-80fps with USB3.0 cameras (acA2040-120uc - Basler ace, 
Basler) using fixed-focal length lenses (Edmund Optics, NJ, 16mm/F1.4) from a 90° angle at variable resolutions 
(W:1000-1200px, H:1255-2056px) using the pylon camera software (Basler). Male rats were recorded at 60fps 
and 1280x720 resolution at a 90° angle from above using a Logitech C922 USB web-camera. Importantly, all 
recorded videos used to build behavioral classifiers were re-sampled in SimBA to 30fps before being used to 
generate machine learning classifiers. All video recordings can be found on the SimBA OSF repository. The 
Caltech Resident-Intruder Mouse (CRIM13) dataset was recorded at 25fps and 640x480 resolution from a 90° 
angle.  

Project management. SimBA has separate drop-down toolbar menus for creating and loading animal tracking 
projects and predictive behavior classification projects. Animal tracking data is generated within animal tracking 
projects and subsequently exported to predictive classification projects. The tracking data is used to create 
predictive classifiers or analyzed using previously generated predictive classifiers. Within the classification project 
menus, the user can also analyze animal movements and behavioral patterns based on user-drawn region-of-
interests (ROIs).  

Animal pose-estimation tracking. DeepLabCut and DeepPoseKit projects were accessed and managed 
through the TRACKING▷DEEPLABCUT and TRACKING▷DEEPPOSEKIT toolbars of SimBA. We used the DeepLabCut 
and DeepPoseKit labeling interfaces to annotate eight body-parts on each of the two animals (Fig. 3a). For 
alternative protocols, SimBA supports any body labeling schematic if first defined by the user in the CREATE 

PROJECT menu of SimBA (Fig. 3c-d). All generated tracking models, together with the annotated images, are 
available for download on the SimBA OSF repository. The SimBA OSF repository also contains annotations and 
models for detecting black and white coat-colored mice through alternative convolutional learning architectures 
(e.g., mask RCNN52, YOLO53). 
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Behavior classifications. 

Social classifiers. We created and managed machine classification projects using the FILE▷ CREATE PROJECT 

menu and FILE▷LOAD PROJECT menu in SimBA. We imported the pose-estimation tracking data in CSV file format 
together with the accompanying videos into each project. We used SimBA to extract the individual frames for 
each of the videos in the projects (note: extraction of frames is a CPU-intensive and time-consuming process that 
depend on the frame-rate, length, and resolution of the videos). Creating frames for individual videos, however, is 
only necessary for annotating behaviors and creating new classifiers in SimBA and is not necessary for 
visualizing and analyzing videos. See the SimBA GitHub repository for tutorials and recommended approaches 
for extracting frames in different use-case scenarios.  

Time and distance standardization. We used SimBA to standardize distance (pixel/mm) and time (frames per 
second) measures across different video recordings. SimBA allows the user to define and draw a known distance 
in the video (for example, the arena length or the arena width) and this distance is used to convert Euclidean pixel 
distances to millimeter distances. Furthermore, SimBA automatically registers the frame rate of each video, and 
this information is was used to standardize calculations across rolling time windows. 

Correcting inaccurate tracking. We designed two outlier correction tools that identify and correct gross pose-
estimation tracking inaccuracies by detecting outliers based on movements and locations of body-parts in relation 
to the animal body-length (Fig. 4a). To compute an initial reference value, SimBA first calculates the mean 
Euclidian millimeter distance between two user-defined body-parts across the entire recording (L). We set the 
body-parts to be the nose and the tail-base. We also set two criterion values, one criterion value for ‘movement 
outliers’ (V1) and one criterion value for ‘location outliers’ (V2). A body-part coordinate was first corrected as a 
‘movement outlier’ if the movement in Euclidean pixels of the body-part, across two sequential frames, was equal 
or more than L × V1 (Fig. 4b, top). If a body-part was found to be a movement outlier in six consecutive frames a 

Figure 3. Animal pose-estimation body-part tracking. (a) Schematic representation of the 16 body-parts 
annotated and tracked in the resident-intruder protocols using DeepLabCut and DeepPoseKit. The adjacent 
numbers represent the order which the body-parts were annotated in the DeepLabCut and DeepPoseKit 
annotation interfaces. (b) The mean millimeter tracking errors for the body-parts in the mouse RGB resident-
intruder model. (c) The SimBA flexible annotation module for creating and importing user-defined body-part 
tracking schemas for generation of supervised machine learning classifiers. (d) Examples of body-part 
tracking schemas created in SimBA for pose-estimation and supervised machine learning classifiers.  
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new ground truth value was sampled. Second, a body-part coordinate was corrected as a ‘location outlier’ if the 
distance in Euclidian millimeters of that body-part, to at least two other body-parts belonging to the same animal 
(excluding the tail-end), was equal or more than L × V2 (Fig. 4b, bottom). Body-parts detected as outliers were 
corrected to their last reliable coordinate. The SimBA outlier correction tools generate logs of the total number of 
corrected body-parts, and ratio of corrected body-parts, in each video of the project. 

Decision tree features. SimBA combines the registered distance (pixels/mm) and time (frames per second) 
variables for each video with the corrected tracking data to calculate an exhaustive list of distance, movement, 
angles, areas, and paths metrics and their deviations and rank for individual frames and across rolling windows24. 

Figure 4. Tools in SimBA for removing inaccuracies of pose-estimation body-part tracking. (a) SimBA 
calculates the mean or median distance between two user-defined body-parts across the frames of each video. 
We set the user-defined body-parts to be the nose and the tail-base of each animal. The user also defines a 
movement criterion value, and a location criterion value. We set the movement criterion to 0.7, and location criterion 
to 1.5. Two different outlier criteria are then calculated by SimBA. These criteria are the mean length between the 
two user-defined body parts in all frames of the video, multiplied by the either user-defined movement criterion 
value or location criterion value. SimBA corrects movement outliers prior to correcting location outliers. (b) 
Schematic representations of a pose-estimation body-part ‘movement outlier’ (top) and a ‘location outlier’ (bottom). 
A body-part violates the movement criterion when the movement of the body-part across sequential frames is 
greater than the movement outlier criterion. A body-part violates the location criteria when its distance to more than 
one other body-part in the animals’ hull (except the tail-end) is greater than the location outlier criterion. Any body 
part that violates either the movement or location criterion is corrected by placing the body-part at its last reliable 
coordinate. (c) The ratio of body-part movements (top) and body-part locations (bottom) detected as outliers and 
corrected by SimBA in the RGB-format mouse resident-intruder data-set. For the outlier corrected in rat and the 
CRIM13 datasets, see the SimBA GitHub repository.  
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The features calculated by SimBA, and how many features that are calculated, depend on the body-parts tracked 
during pose-estimation. When using a 16-body-part tracking schematic on two animals, SimBA extracts a set of 
498 different metrics relevant for classifying social and non-social behaviors in the mouse and rat resident 
datasets. When using other pre-defined body-part configurations, or user-defined body-part configuration, SimBA 
calculates a reduced and/or generic feature set based on all individual body-parts and their relationships and 
movements. Lists and descriptions of the different features calculated in different use-case scenarios are 
available on the SimBA GitHub repository.  

Behavior annotations. SimBA has an in-built event logger that displays individual frames alongside the video. 
Within the event logger interface, the user selects the behavioral events (defined during project creation) that are 
occurring in the displayed frames, and SimBA concatenates the logged events with the features calculated from 
the corrected pose-estimation tracking data. We used the SimBA event logger to annotate frames as containing, 
or not containing, the behaviors of interest in the mouse and rat resident-intruder videos. A tutorial for using the 
SimBA event logger is available on the SimBA GitHub repository. In many alternative scenarios, the behavioral 
events may have already been logged through alternative software tools (e.g., JWatcher, Noldus Observer). In 
these scenarios it is preferable to build predictive classifiers from previously generated event logs without 
performing further annotations in SimBA. The exact code will depend on the structure of the previously generated 
event logs. For example, the CRIM13 dataset was annotated using a MATLAB annotation tool54. We 
concatenated the CRIM13 annotations to the CRIM13 tracking data using a modifiable script that can be 
downloaded from the SimBA GitHub repository. We request that individuals with already-annotated datasets 
contact us for developing scripts to easily import annotations into SimBA.  

Classification ensembles. Random forest classifiers are intuitive algorithms generated by majority verdicts from 
decision trees that split the data along feature values to separate distinct classes (e.g., attack or not attack)55. We 
used SimBA to create random forest classifiers, with one classifier for each of the behaviors of interest. Each 
classifier contained 2k decision trees. The number of trees was chosen as a large, computationally feasible, 
amount56. Random forest classifiers accept a range of hyperparameters that specify how the decision trees 
should be generated. SimBA accepts a range of different random forest hyperparameter settings, but users 
unfamiliar with the available parameters can import recommended or previously successful settings based on 
classifiers of behaviors with similar frequency and salience. Hyperparameter meta files, that can be imported into 
SimBA and contain the hyperparameters used to generate the current classifiers, can be downloaded from the 
SimBA OSF repository. We evaluated each classifier by calculating its precision, recall, and F1-scores after 5-fold 
shuffle cross-validations on 20% of the datasets annotated in the SimBA event logger. Precision was calculated 
as  

 

 

and denotes the proportion of frames correctly classified as displaying the behavior of all the frames classified as 
containing the behavior. Recall was calculated as  

 

 

and denotes the proportion of all the frames containing the behavior that were correctly classified as containing 
the behavior. F1 was calculated as 

 

 

and is the harmonic mean of the precision and recall scores.  

Random forest classifiers - as other classification techniques - are sensitive to class imbalances. Class 
imbalances are prevalent in most datasets and occur when observations of the majority class (i.e., observations 
of the absence of the classified behavior) substantially outweigh observations of the minority class (i.e., 
observations of the presence of the classified behavior). For example, in the current mouse resident intruder 
dataset flee events were present in 1% of the annotated frames (Table 2). In this scenario the random forest 
decision trees can classify most flee observations correctly by disregarding the presence of flee events. To 
prevent this, SimBA supports several class re-balancing methods, including random under-sampling of the 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
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majority class, and over-sampling of the majority class using SMOTE57 or SMOTE-EEN58. We maximized the F1-
score of the classifiers by random under-sampling the majority class (i.e., observations of the absence of the 
classified behavior) at ratios up to 1:46. See Table 2 for the random under-sampling ratios used for each 
classifier. 

Classifier evaluations. We used SimBA to generate classifier learning curves. In these learning curves we 
evaluated F1-scores after performing 5-fold cross-validations using 1, 25, 50, 75 and 100% of the shuffled data 
sets to predict the classified behaviors on 20% of the datasets. Learning curves indicate how inclusion of further 
logged behavioral events affect classifier performance. Furthermore, we used SimBA to generate precision-recall 
curves59, that visualize how classifiers can be titrated to balance the sensitivity versus the specificity of the 
classifications60 through different discrimination thresholds. We also used SimBA to calculate mean decrease gini 
impurity and permutation importance scores which gauge the importance of individual features for correctly 
classifying individual behaviors55. Mean decrease gini impurity score or impurity importance represents the 
average gain in purity of a decision tree when the feature is included. Feature permutation importance represents 
the loss of predictive power when the feature, and no other feature, is scrambled. Lastly, we evaluated the F1 
scores of each classifier through 5-fold cross-validations after shuffling the behavioral event annotations made by 
the experimenter in the training set, and testing the classifier on the un-shuffled, correctly annotated behavioral 
data61.  The final random forest classifiers for mouse and rat resident-intruder protocols, and the CRIM13 dataset, 
can be downloaded through the SimBA OSF repository accessible through the SimBA GitHub repository.  

Procedural runtimes. We used the python TIMEIT module to measure the execution time of six important SimBA 
scripts on two computers with different hardware specifications (Fig. 5). We also measured the mean time to 
extract 1k individual image frames from a video recorded at six different resolutions on the two computers. We 
executed each script was five times and recorded the mean execution time.  

RESULTS 

Animal tracking.  

We used the DeepLabCut27 interface to label 16 body-parts on a male CD-1 and C57BL/6J mouse in 6765 frames 
from 50 videos in the resident-intruder protocol recorded in RGB format (Fig. 3a). We labeled a further 1550 
frames of female mice in the resident-intruder protocol (kindly shared by Emily Newman, Tufts). The total number 
of frames annotated was 8315. The mean tracking error in millimeters for each of the 16 body-parts in the mouse 
home-cage resident intruder protocol, recorded in RGB format, is shown in Fig. 3b. For most body-parts the mean 

Figure 5. Approximate procedural runtimes for processing different sized data-sets in SimBA. (a) an 8-
core Intel i9 CPU and (b) a 12-core Xeon Gold CPU. Time in seconds to perform outlier corrections, feature 
extraction using 16 body-parts, generating a random forest with 2k trees, performing / saving machine learning 
classifications, calculating descriptive statistics of machine classifications, generating a validation video, and 
extracting individual image frames from a video recorded at six different resolutions (videos recorded at 975kbps 
bitrate). Note: only runtimes for creating a validation video and extracting frames depend on the resolution of the 
videos. See the SimBA GitHub repository for more information.  
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Euclidean tracking error was around 1 mm. The tail-ends were associated with larger mean tracking errors 
between 4-5 mm.  

We used the network weights generated from the 8315 annotated images to create additional body-part tracking 
models for alternative experimental protocols. For these additional tracking models, we labelled a further 800 
frames from home-cage environments with male rats, and 3200 CLAHE enhanced images from the Caltech 
Resident-Intruder Mouse (CRIM13) dataset19,47. All annotations were converted to greyscale and CLAHE 
enhanced formats, and models were generated based on these annotations. All annotated images, and tracking 
models, can be downloaded from the SimBA OSF repository.  

Procedural Runtime Performance of SimBA functions 

The computation speed of several important SimBA functions are shown in Fig. 5. For 1-80k frames on the 8-core 
Intel i9 CPU-supported computer, pose-estimation outlier correction was performed in 10-465s, feature extraction 
5-367s, random forest generation 0-68s, running/saving classifications 4-222s, calculating descriptive statistics 0-
67s, and creating a validation video took 11-906s (Fig. 5a). For 1-80k frames on the 12-core Intel Xeon Gold 

Figure 6. Evaluations of mouse resident-intruder predictive classifiers. (a) Learning curves were 
created using 2k trees, 5 data splits (1-100%), and with shuffled 5-fold cross-validation at each data 
split. Errors represent ± SEM. (b) Classification precision, recall, and F1 scores at different discrimination 
thresholds. The dotted line represents the discrimination threshold at maximal F1 score. See Table 1 for 
the optimal thresholds for each classifier. (c) Mean classifier precision, recall, and F1 score evaluated 
by shuffled 5-fold shuffle cross-validation. See Methods for equations and detailed descriptions of 
precision, recall, and f1 metrics. 
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CPU-supported computer, pose-estimation outlier correction was performed in 4-394s, feature extraction 6-504s, 
random forest generation 0-53s, running/saving classifications 3-90s, calculating descriptive statistics 0-89s, and 
creating a validation video took 22-1804s (Fig. 5b). Current SimBA efforts are focused on accessible creation of 
social behavior machine learning classifiers, and future efforts will optimize execution runtimes.  

Social Classifiers  

Outlier corrections. We used SimBA to correct gross pose-estimation tracking inaccuracies based on impossible 
locations and movements of animal body-parts (Fig 4a-b). In accordance with the tracking data, the tail-ends 
represented most of the corrected body-parts based on body-part movements (Fig. 4c). The tail-bases and snouts 
represented most of the corrected body-parts based on body-part locations. In total, 0.013% of all body-parts 
were corrected following the movements outlier correction, and a further 0.006% of the body parts were corrected 
following the location correction. For tracking inaccuracies corrected in other data-sets, see the SimBA GitHub 
repository. 

Classifier datasets. We used the SimBA event logger to annotate video frames as containing, or not containing, 
the behavior. The number of annotated video frames and the percent of video frames that were annotated as 
containing the behavior are shown in Table 2. For the classifiers in the mouse resident-intruder dataset, we 
annotated between 103k and 472k frames. The classified behaviors were annotated as present in 0.73-6.57 % of 
the video frames. For the predictive classifiers in the rat resident-intruder dataset, we annotated 136k frames and 
the classified behaviors were annotated as present in 2.48-16.40 % of the frames. Of the original 232 videos in 
the CRIM13 dataset, we identified 67 videos and 842k frames that contained social-interactions between non-
anesthetized black and white coat-colored animals without the presence of a human. We used 64 of the videos 
and 757k in the training and test sets and saved three videos for validation. The classified behaviors had been 
annotated as present in 0.36-14.94 % of the video frames. 

Figure 7. Evaluations of rat resident-
intruder predictive classifiers. (a) 
Learning curves were created using 2k 
trees, 5 data splits (1-100%) and with 
shuffled 5-fold cross-validation at each data 
split. Errors represent ± SEM. (b) 
Classification precision, recall, and F1 
scores at different discrimination 
thresholds. The dotted line represents the 
discrimination threshold at maximal F1 
score. See Table 3 for the optimal threshold 
for each classifier. (c) Mean classifier 
precision, recall, and F1 score evaluated by 
shuffled 5-fold shuffle cross-validation. See 
Method for equations and descriptions of 
precision, recall, and F1 metrics.  
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Mouse resident-intruder classifier performances. Mean precision, recall and F1-scores for the presence and 
absence of the behaviors following 5-fold shuffle cross-validation of the final classifiers in the mouse resident-
intruder protocol is shown in Fig. 6. Frame-wise classification performance for the presence of the behaviors as 
measured by F1 were 0.778-0.983, precision between 0.899-0.997, and recall between 0.685-0.972. Frame-wise 
classification performance scores for the absence of the behaviors were 0.982 or higher (Fig. 6c). Five-fold cross 
validation learning curves using 1-100% of the annotated data (Fig. 6a) showed that the number of annotated 
images positively correlate with F1 score. Precision-recall curves (Fig. 6b) indicated optimal classifier 
performance as measured by F1 at discrimination thresholds between 0.41-0.79. 

Rat resident-intruder classifier performances. Mean precision, recall and F1-scores for the presence and 
absence of the behaviors following 5-fold shuffle cross-validation of the final classifiers in the mouse resident-
intruder protocol is shown in Fig. 7. Frame-wise classification performance for the presence of the behaviors as 

Figure 8. Evaluations of CRIM13 mouse resident-intruder predictive classifiers. (a) Learning curves were 
created using 2k trees, 5 data splits (1-100%), and with shuffled 5-fold cross-validation at each data split. Errors 
represent ± SEM. (b) Classification precision, recall, and F1 scores at different discrimination thresholds. The 
dotted line represents the discrimination threshold at maximal F1 score. See Table 3 for the optimal threshold for 
each classifier. (c) Mean classifier precision, recall, and F1 evaluated by shuffled 5-fold shuffle cross-validation. 
See Method for equations and descriptions of precision, recall, and F1 metrics.  
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measured by f1 were 0.918-0.985, precision between 0.990-0.997, and recall between 0.855-0.987. Frame-wise 
classification performance scores for the absence of the behaviors were 0.994 or higher (Fig. 7c). Five-fold cross 
validation learning curves using 1-100% of the annotated data (Fig. 7a) showed that the number of annotated 
images positively correlate with f1-score. Precision-recall curves (Fig. 7b) indicated optimal classifier performance 
as measured by f1 at discrimination thresholds between 0.45-0.55. 

CRIM resident-intruder classifier performances. Mean precision, recall and F1-scores for the presence and 
absence of the behaviors following 5-fold cross-validation of the final classifiers in the mouse resident-intruder 

Figure 9. The four most significant features as measured by permutation importances for the classifiers. 
(a) mouse resident intruder and (b) rat resident-intruder data-sets. Feature permutation importance represents 
the performance classification degradation when the specific feature, and no other feature, is scrambled. A 
complete list of feature permutation and gini importance’s are available through the SimBA OSF repository.  
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protocol is shown in Fig. 8. Frame-wise classification performance for the presence of the behaviors as measured 
by F1 were 0.739-0.957, precision between 0.910-0.997, and recall between 0.639-0.919. Frame-wise 
classification performance scores for the absence of the behaviors were 0.991 or higher (Fig. 8c). Five-fold cross 
validation learning curves using 1-100% of the annotated data (Fig. 8a) showed that the number of annotated 
images positively correlate with F1-score. Precision-recall curves (Fig. 8b) indicated optimal classifier 
performance as measured by F1 at discrimination thresholds between 0.40-0.58. 

Feature permutation importances. The four most significant features for each classified behavior, as measured 
by permutation importance’s, are shown in Fig. 9. Feature permutation importances represents the performance 
loss when the specific feature is scrambled. Greater permutation importance values represent a higher feature 
significance for correct classifications. For complete lists of feature significances for each classified behavior as 
measured by mean decrease gini impurity and permutation importance’s, see the SimBA OSF repository. For 
example, attacks in the mouse resident- intruder dataset (Fig. 9a) were classified - in part - based on the amount 
of movements, the percentile rank of movements / deviation of movements relative to the mean movements in the 
video. Attack classifications in the rat resident-intruder dataset were also, in part, based on amount of 
movements, but also the presence of reduced pose-estimation detection probabilities and decreased metric 
distances between the body-parts in the animal hulls. This can be explained by rats, but not mice, typically 
assuming stable close-contact rearing postures during attack bouts that decrease pixel distances between body-
parts and may cause occlusion of individual body-parts.  

Annotation scrambling. We performed 5-fold cross-validations where we randomly shuffled the human-made 
behavior annotations in the training set, before testing the classifier generated from the shuffled data on the 
correctly annotated, non-shuffled, training set61. Shuffling the annotations in the training sets to 0.00-0.0036 
decreased F1-scores (Fig. 10).  

Figure 10. Classifier performance after randomly scrambling the human-made annotations in the training 
set. Performance was evaluated as F1-score for the presence of the target behavior, measured by shuffled 5-fold 
cross-fold validation after randomly scrambling the human annotations in the training set. The classifiers were 
tested using the un-scrambled, correctly annotated, test sets. The green circles represent the performance of the 
classifiers when trained using un-scrambled annotations. Errors represent ± SEM (note: error bars are present but 
not discernible in the graph). 
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Discussion 

Open-source machine learning tools for behavioral neuroscience are being released at an intensifying pace31. We 
have identified, and attempted to solve, several issues that prevent a general adoption of machine learning 
techniques within the field. In many scenarios the required hardware, programming and computational familiarity, 
and the sensitivity of methods to the experimental conditions, may result in experimenters persisting with manual 
annotation methods. To advance access to machine learning methods we built SimBA, a software interface that 
can be used on standard computers by individuals with limited coding experience to implement and generate 
supervised machine learning algorithms for complex social behavior. We have conscientiously selected a 
supervised approach, and incorporated a number of explainability and validation checkpoints38,39, to ensure that 
researchers unfamiliar with these approaches are confident in the accuracy and validity of the classifiers they 
generate. We have supplied extensive documentation and use-case scenarios to simplify the iterative process of 
tuning supervised predictive classifiers to researcher expectations. 

Here we use SimBA to create a battery of 28 predictive classifiers for behavioral repertoires relevant for studying 
social motivations in rats and mice62,63. We make SimBA, together with the generated classifiers and detailed 
tutorials, available online to expedite implementation of machine scoring complex behaviors within labs that have 
limited prior programming experience. Social classifications are readily consolidated with the analysis of calcium 
indicators or electrophysiological responses and we aim to integrate such alignment options for prevalent neural 
recording systems within the SimBA graphical interface (Fig. 11). 

We make the methods accessible by incorporating video pre-processing options, software support for importing 
pre-defined machine learning hyperparameters, performing common model evaluation techniques, and tools for 
visualizing the machine learning classifications. We demonstrate that SimBA is flexible by generating social 
predictive classifiers across multiple labs for both mice and rats, and by creating accurate classifiers from a third-
party dataset available online19,47.   

We used SimBA to create classification performance learning curves, where different percentages of the total 
behavioral annotations are used to create the random forest classifiers (Figs. 5-7). The learning curves show that, 
for most classifiers, significant improvements can be achieved by adding further experimenter-made behavioral 
annotations. Many labs working with social behavior already possess video data with accompanying annotations, 
and this data can be used to both expand the battery of classifiers and sharpen the performance of the classifiers 
generated here. We have made the datasets used to create our current classifiers available online, and we hope 
that others will consider further data sharing efforts that increase the scope and accuracy of social machine 
classifications.  

Figure 11. SimBA-generated social predictive classifications aligned with nucleus accumbens (NAc) fiber 
photometry traces. (a) The mouse resident-intruder protocol within an operant chamber, using a black CD-1 x 
C57 hybrid resident mouse expressing GRABDA in the NAc and a white BALB/c intruder mouse. (b) Gantt-plots 
created in SimBA that display the duration and frequency of classified social behaviors. (c)  Z-scored fiber 
photometry traces (500-550nm) within a 70s-time window. Inset color bars represent classified bouts of attacks 
(red) and face / body sniffs (green).   
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Classifier performance improvements can also be achieved through statistical techniques. Accurate prediction of 
behavior requires handling class imbalances64. Datasets in biomedical and behavioral sciences will, in nearly all 
scenarios, be imbalanced such that observations of the majority class (e.g., observations of the absence of the 
behavior of interest) will substantially outweigh observations of the minority class (e.g., observations of the 
presence of the behavior of interest). In our datasets, rare events introduce class imbalances of approximately 
1:85 and it is reasonable to assume that alternative behaviors present similar or higher imbalance ratios. SimBA 
includes a variety of statistical re-balancing tools that address class imbalances65–68. The parameters of these re-
balancing tools can be user-defined or imported from similar and previously successfully generated classifiers. 
Balancing parameters for all 28 classifiers are shown in Table 1, as representative starting points. 

The classifiers generated for this manuscript use the DeepLabCut27 default network architectures for pose-
estimation positional data, which the subsequent machine learning features are derived from. There are, however, 
many other effective open-source solutions for animal tracking and pose-estimation20,22,69 and SimBA is agnostic 
to the tools used to extrapolate positional coordinates. SimBA also has an interface for DeepPoseKit26 that 
permits a range of alternative neural network architectures for pose-estimation that may offer speed and accuracy 
advantages70. Others have also successfully implemented YOLO-based approaches71. Forthcoming releases of 
tracking packages promises individual identification of similarly coat-colored animals interacting in groups and we 
look forward to incorporating such significant developments into SimBA as they are released. 

Social interactions - even between differently coat-coloured animals – introduce tracking and pose-estimation 
challenges that become aggregated by the turbulent interactions and substantial occlusion present in social 
behavior protocols. For example, DeepLabCut and DeepPoseKit occasionally attribute body-parts to the incorrect 
animal despite extensive annotation data. We approached the issue post-hoc and designed body-part correction 
tools that identify and correct movements and distances that are unrealistic based on experimenter-defined 
criteria. Although the two correction tools eliminate unambiguous outliers, further performance improvements may 
be obtained by more refined and flexible machine learning methods72–74 and/or data cleaning techniques that 
incorporates variable criteria for the different body-parts. We are currently working on evaluating such techniques 
and their potential benefits for generating random forest and other decision ensembles for rodent social behavior.  

Future directions and challenges 

There are some important caveats to be aware of, or account for, during the creation of predictive classifiers with 
SimBA. Although SimBA can analyze two animals of different coat colors, or a single animal of any coat color, our 
method does not currently transfer to two or more animals of the same coat color. Current gold-standard methods 
for performing individual identifications in groups of similarly coat-colored individuals use RFID-data and depth 
camera systems21,22. Additional advances in machine vision has also addressed identification issues through dual 
segmentation/identification networks75,76 or by including measures of optical flow77 and part affinity fields73. 
Accurate mask-RCNNs78 and YOLO-based approaches71 may also be promising platforms for calculating the rich 
and relevant feature space that is required for individual identification in social behavior protocols. Identification 
issues could also be circumvented by adjusting experimental protocols and using differently coat colored mice of 
the same strain when possible50. 

SimBA uses comprehensive and generic feature sets (e.g., movements and distances) in random forest designs 
to permit accurate classifications of variable user-defined target animal behaviors while avoiding critical multi-
collinearity issues79. In some use-cases, however, random forest designs may not be optimal, and non-
specialized feature sets may introduce decision ensemble noise which can negatively affect runtime and the 
interpretability of feature importance calculations. Commercial alternatives for generating predictive classifiers80–82 
typically offer exhaustive automated feature engineering/selection methods and evaluate or combine larger 
batteries of classification techniques when searching for the best alternative. Such tools are also accessible 
through open-source packages83–86 and should be available in future SimBA releases to expedite processing, 
decrease algorithm complexity, and increase the flexibility of the toolkit. We have nevertheless found random 
forest designs to be the most robust for classifying the most typically scored aspects of aggression behavior.   

A limit to accessibility is that body-part tracking and pose-estimation requires GPU processing. Cloud-based GPU 
solutions, such as Google Colaboratory / Microsoft Azure / Amazon Web Services, are promoted as alternatives 
to dedicated GPUs, but this can still be a challenging process. Providing pre-trained network weights only goes so 
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far in addressing accessibility as users typically must add images representing their environment to the original 
neural network weights, as well as analyze their own new experimental videos. It is feasible that less complicated 
classifiers, such as with attack predictions that predominately rely on speed and distance metrics, can be 
accurately predicted (potentially in real-time) by combination of advanced computational methods such as optical 
flow77 and pretrained YOLO models53.  

Conclusions 

We demonstrate that SimBA flexibly and simply creates accurate supervised machine learning classifiers using 
feature sets engineered from open-source pose-estimation tracking data. We demonstrate that the approach is 
robust by creating social classifiers for both rats and mice across multiple labs, and further by creating classifiers 
from a previously released public datasets available online19. We built a GUI that makes our method accessible to 
experimenters regardless of previous programming experience. This is a step towards generating a standardized 
toolbox of computational models for scoring complex social behaviors in preclinical neuroscience.   
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Name Validated 
Species 

Multiple 
animals? 

Main output Behavioral classifiers validated in original 
publication 

Mechanism 

Ctrax87 Drosophila Yes Behavior Walk, stop, sharp turn, crabwalk, backup, touch, chase Computer vision 
CADABRA88  Drosophila Yes Behavior Lunging, tussling, wing threat/extension, circling, chasing, 

copulation 
Supervised 

Autotyping89 Mice No Behavior Home-cage behaviors: drink, eat, groom, hang, 
micromovement, rear, rest, walk 

Supervised 

JAABA24 Drosophila, 
mice 

Yes Behavior Flies: walk, stop, crabwalk, backup, touch, chase, jump, 
copulation, wing flick/grooming/extension, righting, center 

pivot, tail pivot. Mice: follow, walk. 

Supervised 

MiceProfiler90 Mice Yes, if no 
obstruction 

Behavior Head-head contact, anogenital contact, side by side, 
approach, leave, follow, chase 

Physics engine 

Unnamed*91 Mice Yes Behavior Approach, walk away, circle, chase, attack, copulation, 
drink, eat, clean, sniff, rear 

Supervised 

Unnamed*92 Rats Yes Behavior Rearing, head-head and head – hip contact, approach, 
leave, follow, mount, intromission, ejaculation 

Physics engine 

MotionMapper93 Flies Yes Behavior Grooming: wing, leg, abdomen, head. Wing waggle, running Unsupervised 
Unnamed*94 Mice Yes, if distinct Behavior Attack, close investigation, mounting Supervised 
MoSeq*95 Mice No Behavior Dart, micromovement, pause, rear, walk Unsupervised 
Unnamed96 Mice Yes Behavior Direct contact, nose to nose, anogenital sniffing, following, 

mating, self-grooming 
Unsupervised 

DuoMouse97 Mice Yes Behavior Sniffing, following, indifferent Unsupervised 
Stytra98 Zebrafish 

larvae 
No Closed loop tracking & 

stimulus admin. (real 
time) 

 Computer vision 

ToxID / ToxTrac99,100 Fish, ants, 
mice 

Yes Individual tracking in 
groups (real time) 

 Computer vision 

MoST101 Mice Yes Individual tracking in 
groups 

 Computer vision 

idtracker75,76 Drosophila, 
fish, ants, mice 

Yes Individual tracking in 
groups 

 Unsupervised 

LocoMouse*102 Mice No Kinematics  Supervised 
DeepLabCut27 Drosophila, 

mice, horses, 
humans, fish 

Expected soon Pose  Supervised 

LEAP28 Drosophila, 
mice 

sLEAP 
expected soon 

Pose  Supervised 

DeepFly3d* 103  Drosophila, 
humans 

No Pose  Unsupervised 

DeepPoseKit70 Drosophila, 
locusts, zebras 

Yes, if distinct Pose (real time)  Supervised 

Sensory Orientation Software104 Drosophila, 
mice, fish 

No Posture & trajectory (real 
time) 

 Computer vision 

MOTR105 Mice Yes, if distinct Trajectory  Computer vision 
Mouse Behavior Tracker106 Mice No Trajectory  Computer vision 

Table 1. Open-source computational packages for animal tracking and/or behavioral classification (not comprehensive) 

Asterisk denotes requirement of multiple cameras or special equipment 
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Table 2. Predictive classifier datasets        
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