
Parallel RNA and DNA analysis after Deep-sequencing (PRDD-seq) reveals cell type-1 

specific lineage patterns in human brain 2 

 3 

August Yue Huanga,b,c,1, Pengpeng Lia,b,c,1, Rachel E. Rodina,b,c,d, Sonia N. Kima,b,c,d, Yanmei 4 

Doue, Connor J. Kennya,b,c, Shyam K. Akulaa,b,c,d, Rebecca D. Hodgef, Trygve E. Bakkenf, 5 

Jeremy A. Millerf, Ed S. Leinf, Peter J. Parke, Eunjung Alice Leea,b,c, Christopher A. Walsha,b,c,d,2 6 

 7 

aDivision of Genetics and Genomics, Howard Hughes Medical Institute, and Manton Center for 8 

Orphan Disease Research, Boston Children’s Hospital, Boston, MA, USA. 9 

bDepartments of Neurology and Pediatrics, Harvard Medical School, Boston, MA, USA. 10 

cBroad Institute of MIT and Harvard, Cambridge, MA, USA. 11 

dProgram in Neuroscience and Harvard/MIT MD-PHD Program, Harvard Medical School,  12 

Boston, MA, USA. 13 

eDepartment of Biomedical Informatics and Ludwig Center at Harvard, Harvard Medical School,14 

 Boston, MA, USA. 15 

fAllen Institute for Brain Science, Seattle, WA, USA 16 

1These authors contributed equally to this work. 17 

2Corresponding Author 18 

Christopher A. Walsh, MD. PhD 19 

Division of Genetics and Genomics, Boston Children’s Hospital 20 

Center for Life Sciences 15062 21 

3 Blackfan Circle, Boston, MA 02115 22 

Phone: 617-919-2923 23 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 20, 2020. ; https://doi.org/10.1101/2020.04.19.046904doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.19.046904
http://creativecommons.org/licenses/by-nc-nd/4.0/


Email: Christopher.walsh@childrens.harvard.edu  24 

 25 

Classification 26 

Biological Sciences: Neuroscience 27 

 28 

Keywords 29 

PRDD-seq, single-cell MosaicHunter, birthdating, cortical layer, neurodevelopment 30 

 31 

Author Contributions 32 

A.Y.H. and P.L. conceived the project and C.A.W. supervised it. A.Y.H. and P.L. developed the 33 

scMH algorithm. P.L. developed PRDD-seq and performed experiments. A.Y.H. performed 34 

computational and statistical analyses. R.E.R., S.N.K., and Y.D. helped with validation of 35 

sSNVs. C.J.K. helped with and provided insight on the comparison of PRDD-seq and scWTA. 36 

S.K.A. assisted with interpretation of neurodevelopmental discoveries. R.D.H., T.E.B., J.M. and 37 

E.S.L. generated the MTG single-cell RNA sequencing data, and provided it prior to publication. 38 

E.A.L. and P.J.P. provided suggestions on computational analyses. A.Y.H. and P.L. wrote the 39 

manuscript supervised by C.A.W., with input from all other authors. 40 

 41 

This PDF file includes: 42 

Main Text 43 

Figures 1 to 5 44 

SI Appendix, Figure S1 to S5 and Tables S1 to S3 45 

  46 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 20, 2020. ; https://doi.org/10.1101/2020.04.19.046904doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.19.046904
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract 47 

Elucidating the lineage relationships among different cell types is key to understanding human 48 

brain development. Here we developed Parallel RNA and DNA analysis after Deep-sequencing 49 

(PRDD-seq), which combines RNA analysis of neuronal cell types with analysis of nested 50 

spontaneous DNA somatic mutations as cell lineage markers, identified from joint analysis of 51 

single cell and bulk DNA sequencing by single-cell MosaicHunter (scMH). PRDD-seq enables 52 

the first-ever simultaneous reconstruction of neuronal cell type, cell lineage, and sequential 53 

neuronal formation (“birthdate”) in postmortem human cerebral cortex. Analysis of two human 54 

brains showed remarkable quantitative details that relate mutation mosaic frequency to clonal 55 

patterns, confirming an early divergence of precursors for excitatory and inhibitory neurons, and 56 

an “inside-out” layer formation of excitatory neurons as seen in other species. In addition our 57 

analysis allows the first estimate of excitatory neuron-restricted precursors (about 10) that 58 

generate the excitatory neurons within a cortical column. Inhibitory neurons showed complex, 59 

subtype-specific patterns of neurogenesis, including some patterns of development conserved 60 

relative to mouse, but also some aspects of primate cortical interneuron development not seen in 61 

mouse. PRDD-seq can be broadly applied to characterize cell identity and lineage from diverse 62 

archival samples with single-cell resolution and in potentially any developmental or disease 63 

condition. 64 

  65 
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Significance Statement 66 

Stem cells and progenitors undergo a series of cell divisions to generate the neurons of the brain, 67 

and understanding this sequence is critical to studying the mechanisms that control cell division 68 

and migration in developing brain. Mutations that occur as cells divide are known as the basis of 69 

cancer, but have more recently been shown to occur with normal cell divisions, creating a 70 

permanent, forensic map of the clonal patterns that define the brain. Here we develop new 71 

technology to analyze both DNA mutations and RNA gene expression patterns in single cells 72 

from human postmortem brain, allowing us to define clonal patterns among different types of 73 

human brain neurons, gaining the first direct insight into how they form.  74 

  75 
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Introduction 76 

Although we have learned a great deal about development of the cerebral cortex from 77 

animal models, we have remarkably little direct information about how the human brain, which 78 

differs vastly in shape, size, and composition from the brains of non-primates, forms the neurons 79 

of its cerebral cortex (1-4). Recent studies defining the fundamental cell types of the adult and 80 

developing human cortex (5-7) form a foundation for understanding how these cell types develop, 81 

how the unique aspects of the human cortex come about, and how developmental brain disorders 82 

might alter patterns of cell lineage or cell type in human brain. However, whether individual 83 

neural progenitor cells (NPCs) in embryonic stages are restricted to produce certain subtypes of 84 

neurons, or multi-potential to generate all neuronal types, is still an open question even in model 85 

animal species, since making this distinction requires simultaneous identification of cell lineage 86 

and transcriptional analysis of cell type, which remains a technical challenge (8-12). 87 

Somatic genetic mutations accumulate with each cell division during early development, 88 

when spontaneous DNA damage escapes the DNA repair machinery, with single-nucleotide 89 

variants (SNVs) being the most common mutation type (13-15). The timing of somatic mutations 90 

can be inferred by either the cell fraction that carries each mutation or the co-occurrence status of 91 

multiple mutations, in which early mutations should be shared by a large fraction of cells 92 

whereas later mutations should be present in nested subpopulations of cells (16). Previous study 93 

has shown the ability to use somatic SNVs as a rich internal lineage map to birthdate the 94 

developmental timing of each neurons differentiated from neuronal progenitor cells (14) but has 95 

not combined that with direct analysis of the subtypes of neurons, defined by morphology, 96 

location, physiology, or RNA transcription pattern. 97 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 20, 2020. ; https://doi.org/10.1101/2020.04.19.046904doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.19.046904
http://creativecommons.org/licenses/by-nc-nd/4.0/


Single-cell transcriptomes provide granular information about cell identity (5-7), but it 98 

cannot provide lineage maps as it fails to capture most somatic mutations, since somatic 99 

mutations occur throughout the genome, most often in intronic or intergenic regions (16, 17). 100 

Similarly, DNA-sequencing alone fails to provide information about cell identity, and so lineage 101 

mapping using only somatic mutations from DNA sequencing is unable to address questions 102 

about the lineage of specific cell identities in neurodevelopment. Somatic mutations in 103 

mitochondrial DNA have been recently suggested as potential lineage marks as well, but the 104 

modest target size of the mitochondrial genome, and the multiple diverse mitochondrial genomes 105 

in each cell, represent challenges to the use of mitochondrial mutations as a rich source of stable 106 

lineage markers (18). 107 

To address this challenge, we developed Parallel RNA and DNA analysis after Deep-108 

sequencing (PRDD-seq) that identifies somatic SNVs (sSNVs) from single cell and bulk whole-109 

genome sequencing (WGS) data, with multiplexed detection of sSNVs and multiple RNA 110 

marker transcripts from single nuclei. We then benchmarked the performance of the DNA and 111 

RNA assays of PRDD-seq against bulk WGS and single-cell RNA sequencing (scRNAseq), 112 

respectively. Applying PRDD-seq to two postmortem brains of individuals without neurological 113 

disease allowed unprecedented quantitative analysis of cell lineage in the human brain. While 114 

revealing the expected patterns of divergence of excitatory and inhibitory lineages and “inside-115 

out” generation of excitatory neurons, our PRDD-seq data also directly suggest complex patterns 116 

of interneuron formation in the human brain.  117 
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Results 118 

Simultaneous cell type and lineage analysis of single-cells by PRDD-seq 119 

The workflow of PRDD-seq is illustrated in Figure 1. Single NeuN+ cortical neuronal 120 

nuclei from prefrontal cortex (PFC) of postmortem human brain tissue were purified by 121 

fluorescence-activated nuclear sorting (FANS) (16) (Fig. 1A), and subjected to one-step RT-122 

qPCR with target-specific primers for 1] cDNA specific for up to 30 marker genes of major 123 

neuronal cell types, and 2] specific genomic DNA (gDNA) loci representing identified somatic 124 

mutations (see below) as markers of cell lineage (Fig. 1B). Aliquots of the pre-amplified gDNA 125 

and cDNA libraries were analyzed for the presence of specific somatic mutations and transcripts 126 

by microfluidic genotyping and gene expression profiling, respectively, using the Fluidigm 127 

Biomark system (Fig. 1C). The somatic mutations used in PRDD-seq were identified by single-128 

cell MosaicHunter (scMH), described below, a new bioinformatic tool to identify lineage-129 

informative sSNVs, jointly considering WGS data from MDA-amplified single cells and 130 

matched deep (>200X) WGS from bulk DNA samples collected from the same brain region (Fig. 131 

1D).  132 

We first created a map of neuronal cell types by analyzing >25,000 single neuronal nuclei 133 

-- FANS-sorted based on NeuN immunoreactivity -- by scRNAseq from two different datasets, 134 

to create a cell type landscape onto which PRDD-seq analyzed neurons could be located. We 135 

performed 10X Genomics scRNAseq of 10,967 NeuN+ nuclei from the same PFC region of one 136 

of the brains from which DNA mutations were identified (Fig. 1E). t-SNE analysis of this dataset 137 

defined 21 transcriptionally distinct cell clusters, including 8 excitatory neuron clusters that 138 

further clustered into upper, middle, and lower layers, and 13 inhibitory neuron clusters that 139 

could be further classified into SST+, PV+, VIP+, and LAMP5+ subtypes (Fig. 1F and SI 140 
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Appendix, Fig. S1) (5, 7). A recently published scRNAseq dataset of 15,928 single neuronal 141 

nuclei from human middle temporal gyrus (MTG) (5), sorted by NeuN immunoreactivity 142 

following microdissection of cerebral cortical layers, provided additional direct information 143 

about layer location of neuronal types (Fig. 1G and SI Appendix, Fig. S2) and so was used for 144 

cell type mapping in parallel. PFC and MTG share relatively generic cerebral cortical 145 

architecture as “association” cortex, and clustering analysis of the two datasets (Fig. 1H) shows 146 

that they identified similar major cell types, with cells clustering by cell type rather than by 147 

platform, although the SMART-seq dataset from MTG defined finer subdivisions of cell type as 148 

expected because of its larger sample size and deeper sequence depth. 149 

We jointly analyzed single PRDD-seq cells and scRNAseq cells and mapped each 150 

PRDD-seq cell onto the t-SNE maps of scRNAseq based on gene expression similarity (Fig. 1I, 151 

see Methods). The cell type and cortical layer information of each PRDD-seq cell was then 152 

imputed based on its assigned cluster in scRNAseq datasets. Finally, the combination of 153 

genotype and gene expression information of PRDD-seq cells allowed lineage and birthdate 154 

analysis of particular cell types (Fig. 1J), as well as analysis of cell type differentiation of 155 

particular lineages (Fig. 1K). 156 

 157 

Discovery of lineage-informative sSNVs from bulk brain and single-neuron WGS data 158 

The resolution of lineage reconstruction is dependent on having a comprehensive list of 159 

somatic mutations identified from the specific brain under analysis. Whereas deep WGS (e.g., 160 

200-250X coverage) of “bulk” DNA, isolated from tissue, efficiently identifies sSNVs present in 161 

4% or more cells (19), it is insensitive to detecting later-occurring sSNVs that mark late cell 162 

lineage events. On the other hand, WGS of DNA amplified from single neuronal nuclei (16) 163 
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identifies later-occurring sSNVs but is limited by cost and subject to artifacts during single-cell 164 

amplification. Therefore, we developed scMH, which incorporates a Bayesian graphic model (20, 165 

21) that integrates analysis of bulk WGS and single-cell WGS data to distinguish somatic 166 

mutations from germline mutations and technical artifacts (Fig. 2A; see Methods). scMH first 167 

calculates the likelihood and mosaic fraction of candidate sSNVs from a bulk DNA sample, and 168 

then applies these values as the priors to genotype each candidate SNV across every single cell 169 

being analyzed. The shared presence of a given sSNV in bulk DNA and one or more single cells 170 

serves as validation of the sSNV. To expand the utility of scMH when a matched bulk sample is 171 

unavailable, we further designed a “bulk-free” mode that can utilize a “synthetic” bulk WGS 172 

dataset, generated by in silico merging of the many WGS datasets of multiple single-cells 173 

obtained from the same donor. We benchmarked scMH using 45X single-cell WGS of 24 174 

neurons—22 of which were sequenced in previous studies (16, 17) —as well as ~200X bulk 175 

WGS of PFC (both from the brain of the same individual, UMB1465, who died at age 17 with no 176 

neurological diagnosis), against existing single-cell sSNV callers including Monovar (22), 177 

SCcaller (23), LiRA (24), and Conbase (25). Sensitivity and false discovery rate (FDR) were 178 

estimated based on experimentally validated mutations and clade annotations identified 179 

previously (16). With either PFC bulk or synthetic bulk, scMH outperformed the other tools and 180 

achieved ~70% sensitivity to detect lineage-informative mutations with < 5% FDR; combining 181 

both the default and “bulk-free” modes improved detection sensitivity to 93% without increasing 182 

the FDR, suggesting that the “bulk-free” mode of scMH can detect sSNVs that are present in 183 

multiple single-cells but may be undetectable in the bulk 200X WGS samples because of the low 184 

mosaic fraction of these late mutations (Fig. 2B).  185 
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Applying scMH to data from brains of three normal individuals (UMB1465, UMB4638, 186 

and UMB4643 (16, 17), identified and validated 42, 19, and 22 sSNVs, respectively (Fig. 2C-E, 187 

and SI Appendix, Table S1), with an overall validation rate of 74.8% determined by Sanger 188 

sequencing of independently sorted neurons from the same brain region. The number and 189 

validation rate of lineage-informative sSNVs detected by scMH dramatically increased from 190 

previous studies (16, 17). sSNVs identified from all three brains showed an enrichment in C>T 191 

mutations, especially in CpG sites (SI Appendix, Fig. S3), a pattern observed in other studies of 192 

embryonic mutations and cancer mutations (13, 26), since such C>T mutations appear to be 193 

caused by cytosine deamination that is replicated into a fixed SNV before it can be repaired (27). 194 

Unsupervised clustering analysis grouped the 24 sequenced neurons from UMB1465 into six 195 

different clades; no cells harbored mutations of multiple clades, suggesting the high accuracy of 196 

scMH for single-cell genotyping of sSNVs (Fig. 2C). In clades C and E, we observed neurons 197 

that shared early mutations but harbored different sets of later mutations, suggesting that they 198 

were derived from different branches of the same clades (Fig. 2C). Clustering of ten and nine 199 

sequenced neurons from UMB4638 and UMB4643—respectively by their sSNVs—200 

demonstrated similar nested patterns forming three primary clades for each individual and also 201 

showed evidence for branches of these clades (Fig. 2D, E). The mosaic fraction of each sSNV in 202 

“bulk” DNA (Fig. 2C, D, E) was used as an additional indicator of the sequence in which sSNV 203 

occurred, since early sSNVs tend to be found in many single cells, as well as at higher mosaic 204 

fraction in bulk DNA, whereas later mutations appear in fewer cells and lower mosaic fraction in 205 

bulk DNA. These two findings correlated very strongly.   206 

 207 

Lineage and cell type identity of single-neurons revealed by PRDD-seq  208 
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To assess the performance of PRDD-seq in capturing lineage and cell type information 209 

from single-cells, we applied PRDD-seq to 1,710 cortical neurons from UMB1465 PFC, using 210 

probes to detect 30 out of 42 validated sSNVs in UMB1465, for which we successfully designed 211 

highly specific and sensitive probes (SI Appendix, Table S1), along with 30 marker genes whose 212 

expression levels distinguish major inhibitory and excitatory neuronal subtypes and cortical 213 

layers identified in the scRNAseq datasets (5, 7) (SI Appendix, Table S2). Overall, PRDD-seq 214 

mapped 1,112/1,710 (65%) cortical neurons from UMB1465 PFC into 20 lineage branches and 6 215 

major clades (Fig. 3A). For each major clade, birthdate-ordered lineage branches were inferred 216 

from the nested sSNVs, where earlier derived neurons contained fewer clonal mutations, and 217 

neurons generated later harbored additional mutations from subsequent cell divisions (16). The 218 

nested nature of sSNVs in clades allow cells to be placed into clades using multiple sSNVs, so 219 

that cells whose genomes were subject to allelic dropout—which is not uncommon when single 220 

cell DNA molecules are amplified—could still be placed into clades based on other sSNV from 221 

the same clade (Fig. 3A and SI Appendix, Table S1). On the other hand, only 71/1710 (4.2%) 222 

neurons contained sSNVs from multiple clades, suggesting a low rate of false positive 223 

amplification or sorting of multiple nuclei into single wells in the DNA assay of PRDD-seq (Fig. 224 

3B, upper panel). 527/1710 (30.8%) neurons showed the absence of any sSNVs from the 6 225 

clades; these neurons may be from other clades in which we did not discover sSNV markers (Fig. 226 

3B, upper panel). In PRDD-seq cells, mosaic fractions of sSNVs correlated linearly with the 227 

fractions calculated from ~200X bulk WGS, indicating generally unbiased sSNV detection (Fig. 228 

3B, lower panel and Fig. 3C), and allowing confident inference of the developmental sequence 229 

of sSNVs according to the nested pattern. 230 
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Among the 1,112 PRDD-seq cells that were successfully claded, we ran the RNA assay 231 

of PRDD-seq to measure the expression of 30 marker genes for each cell. Our evaluation using 232 

simulation data derived from our own and published scRNAseq datasets (see Methods) 233 

suggested that these 30 marker genes were sufficiently informative to infer many aspects of cell 234 

type and dissected layer annotation (Fig. 3D), with an average accuracy of 84% for cortical layer 235 

classification (within +/- one-layer difference) and 83% for inhibitory neuron subtype 236 

classification. We then utilized expression of these 30 makers to successfully classify 747/1,112 237 

PRDD-seq neurons (67.2%) from UMB1465 into 3 excitatory subgroups—corresponding to 238 

upper, middle, or lower cortical layers—and 4 inhibitory subgroups: somatostatin positive 239 

(SST+), vasoactive intestinal peptide-positive (VIP+), lysosomal associated membrane protein 5-240 

positive (LAMP5+), and putative parvalbumin-positive (putative PVALB+, or pPVALB+), since 241 

probes for PVALB were not always directly assayed (Fig. 3E). PRDD-seq cells assigned to 242 

upper, middle, and lower layers by the 10X PFC scRNAseq dataset were also enriched in L2-L3, 243 

L4-L5, and L6 markers according to the SMART-seq MTG scRNAseq dataset, respectively, 244 

indicating the similarity of the cell type compositions between PFC and MTG, the similarity of 245 

the results with the two RNAseq methods, as well as the robustness of the mapping algorithm 246 

(Fig. 3E, upper panel). Both our 10X scRNAseq dataset and PRDDseq analysis of UMB1465 247 

and UMB4638 showed higher proportions of inhibitory neurons (43-47%) than reported with 248 

other methods, however this ratio was very similar between the three experiments, suggesting 249 

that the ratio reflects our particular NeuN+ sorting protocol rather than technical aspects of the 250 

cell typing methods (Fig. 3F upper panel).  We observed remarkably similar layer and subtype 251 

distribution between PRDD-seq and scRNAseq cells for excitatory neurons (Chi-square test; Fig. 252 

3F, middle panel). Among inhibitory neurons, pPVALB+ inhibitory neurons showed a higher 253 
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proportional representation in PRDD-seq than in scRNAseq, suggesting that a few neurons in 254 

this category might reflect amplification failure of the other inhibitory probes (SST, VIP, and 255 

LAMP5). In summary, our analysis suggests that PRDD-seq captures the major aspects of cell 256 

types, without systematic loss of any given cell type.   257 

 258 

Early divergence of progenitors for excitatory and inhibitory neurons 259 

The simultaneous analysis of lineage and gene expression from the same neurons enabled 260 

us to study the change of cell type contribution during early neurogenesis. Using PRDD-seq, we 261 

profiled >2700 neurons from two brains, UMB1465 and UMB4638, and successfully captured 262 

both lineage and cell type information from 747 and 480 neurons, respectively. In both 263 

UMB4638 and UMB1465, all lineage clades showed early sSNVs in both excitatory and 264 

inhibitory neurons, reflecting mutations occurring during early embryogenesis before the 265 

divergence of these cell types, whereas late SNVs show progressive restriction to one or the 266 

other cell type (Fig. 4A, B). Among the six major clades in UMB1465, clade C contained seven 267 

nested branches with mosaic fractions diminishing from 0.33 to 0.0067 (Figure 3A and SI 268 

Appendix, Table S1), with an increasing percentage of excitatory neurons containing mutations 269 

C1 to C5, and only excitatory neurons containing mutations C6 to C7 (Fig. 4A), while clade F 270 

showed similar progressive restriction. Similarly, both clade A and B in UMB4638 showed 271 

nested mutations that became progressively limited to excitatory neurons (Fig. 4B). Interestingly, 272 

the excitatory neurons appeared exclusively in branches with mosaic fraction below ~0.04 (Fig. 273 

4A, B, and SI Appendix, Table S1), corresponding to a progenitor giving rise to about 4% of the 274 

total cells in that cortical sample. Considering that ~40% of cortical cells are excitatory neurons, 275 

with the remainder being glial cells or inhibitory neurons (28, 29), this observation suggests that 276 
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ten or more excitatory neuronal progenitor cells (NPCs) generate excitatory neurons in a given 277 

cortical area, or “column”; the fact that 6-7 (including a branched clade) excitatory precursors 278 

are explicitly marked by non-overlapping clades, and account for 60-70% of excitatory neurons 279 

in our sample, independently supports this estimate. On the other hand, two clades (clade A and 280 

B) from UMB1465 are statistically enriched for inhibitory neurons (two-sided one-proportion Z-281 

test’s P < 0.05), with the percentage of inhibitory neurons increasing from B1 to B2 (Fig. 4A). 282 

These results show that at least some human NPCs demonstrate restricted cell type output, 283 

supporting the model first established in mice (30-32) and strongly supported by conserved gene 284 

expression patterns in the ganglionic eminence between humans and non-humans (33, 34), that 285 

excitatory and inhibitory neurons are generated from distinct progenitor regions.  286 

 287 

“Inside-out” order of cortical layer formation for excitatory neurons 288 

Further sub-typing of excitatory neurons using laminar markers revealed layer-specific 289 

patterns of excitatory neuron neurogenesis. For example, in UMB1465, the percentage of lower 290 

layer neurons carrying a mutation decreased from mutations C1 to C4, and no deep-layer 291 

neurons were detected carrying C5 to C7, with the percentage of upper layer neurons increasing 292 

correspondingly from C1 to C7 (Pearson correlation’s P = 2.9×10-3; Fig. 4C, upper panel). To 293 

gain more precise layer identities of PRDD-seq cells, we mapped them to the SMART-seq MTG 294 

scRNAseq dataset obtained after layer microdissection using the same methods as earlier (5), 295 

which generated similar “birthdate” patterns in clade C, with early lineage sSNVs present in all 296 

layers, and later sSNVs restricted to middle and upper layers (Pearson correlation’s P = 1.4×10-3; 297 

Fig. 4C, lower panel). A similar trend was also observed in clades A and B in UMB4638. 298 

Mapping PRDD-seq cells of UMB4638 to both 10X PFC and SMART-seq MTG scRNAseq 299 
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datasets showed that cells with later lineage markers were restricted to middle and upper layers 300 

(Fig. 4D). These results together directly indicate that human cortical excitatory neurons are 301 

formed in “inside-out” sequence after preplate cells are born, similar to mouse and non-human 302 

primates (35-37). Furthermore, it suggests that neurons in lower cortical layers begin becoming 303 

postmitotic relatively quickly after progenitors are specialized for excitatory neuron production. 304 

 305 

Diverse spatiotemporal patterns of development of inhibitory neuron subtypes  306 

Mapping PRDD-seq cells onto two different scRNAseq datasets also allowed analysis of 307 

cortical inhibitory neurons, which originate from multiple developmentally transient structures of 308 

the ventral telencephalon, including the medial, lateral and caudal ganglionic eminences (MGE, 309 

LGE, and CGE), and migrate into dorsal cortex (30, 38). However, the highly dispersed nature of 310 

inhibitory neuron clones observed in animal models (39-41) suggests that sSNVs in the 311 

inhibitory lineage are likely to be present at exceedingly low allele frequencies in bulk DNA and 312 

tiny fractions of single cells, so that only sSNVs occurring relatively early in development have 313 

been analyzed so far. Inhibitory neurons derived from MGE and CGE can be distinguished by 314 

expression of specific markers (5, 6), and PRDD-seq analysis showed that interneurons with 315 

diverse marker genes were generated over the same developmental window (Fig. 5A, B). The 316 

analyzed sSNVs were shared by multiple inhibitory subtypes, with hints that late marks might be 317 

more limited to cell types, but no differences that reached statistical significance (FDR-adjusted 318 

Chi-square test’s P > 0.05). Previous studies cataloging interneurons in mouse and human have 319 

suggested that MGE-derived inhibitory neuron subtypes (SST+ and PVALB+) are enriched in 320 

infragranular cortical layers, while CGE-derived interneuron subtypes (LAMP5/PAX6+, VIP+) 321 

tend to occupy upper cortical layers preferentially (5, 42, 43) and thus our mapping of PRDD-seq 322 
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cells onto scRNAseq reflected these patterns. Birthdating analyses in mice and non-human 323 

primates have reached contradictory conclusions about whether inhibitory neurons follow inside-324 

out patterns of generation similar to excitatory neurons (44, 45), though recent analyses in mice 325 

suggest that previous contradictions may reflect the convolution of multiple patterns of 326 

generation that may be subtype specific (46). We found that MGE-derived pPVALB+ subtype 327 

neurons, enriched in layer IV-VI, showed if anything a trend for the latest-generated neurons to 328 

show markers of deeper layers (Fig. 5C, D). SST+ neurons, widely distributed in layer II-VI, 329 

similarly did not show an inside-out pattern detectable with the mutations and cells analyzed (Fig. 330 

5C, D). We robustly detected SST+ neurons with expression of layer I markers in human PFC 331 

(SST-like subclass) (Fig. 5C, D), consistent with observations in MTG (5, 47) and in mice, 332 

where such layer I SST+ expressing cells are rare but present (43, 47). These upper layer, CGE-333 

derived SST-like cells are a subclass of LAMP5+ interneurons that are more transcriptionally 334 

related to VIP neurons than MGE derived SST+ interneurons, though they lack VIP expression 335 

(5, 47). Our data further confirm that LAMP5+ interneurons express markers suggesting broad 336 

laminar location, but also did not reveal a simple inside-out progression of formation (5). 337 

Interestingly, we observed a substantial proportion of LAMP5+ inhibitory neurons, particularly 338 

the SST-like class, labeled by later mutations, indicating that this subtype may be generated later 339 

during development than other inhibitory cell types (Fig. 5C, D). Overall, our findings suggest 340 

little evidence of the inside-out patterns of neurogenesis demonstrated by excitatory neurons, but 341 

also show that detailed analysis of interneurons will likely require deep datasets of sSNV 342 

occurring at late stages of interneuron development, and higher-throughput methods of analysis. 343 

 344 

Discussion 345 
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We have developed scMH and PRDD-seq that allowed us, to our knowledge, the first 346 

simultaneous analysis of cell lineage and transcriptional cell type in human brain—and 347 

potentially, any mammalian brain—through improved identification of sSNVs in deep bulk and 348 

single-cell sequencing data. Our analysis of a single cortical area (PFC) in two individual brains 349 

revealed some conserved patterns of cell lineage compared to nonhumans, including that 350 

inhibitory and excitatory neurons diverge early in humans, and that excitatory neurons form 351 

following a similar “inside-out” order as seen in the animal models.  However, PRDD-seq also 352 

provides the first quantitative estimate in any species of number of progenitor cells 353 

(approximately 10) that generate the excitatory neurons in a given cortical area. Furthermore, 354 

PRDD-seq also provided some direct insight into inhibitory neuron development in humans, 355 

supporting parallel development of different subtypes of inhibitory neurons, with spatial and 356 

temporal associations specific only to some subtypes. Our data show that, as methods improve to 357 

capture sSNVs present in small numbers of cells, the natural occurrence of sSNVs with each cell 358 

division (13, 14, 17) is likely sufficient to provide a very rich map of cell lineage patterns in any 359 

given postmortem human brain. 360 

The human cerebral cortex has been thought to contain approximately 80% excitatory 361 

glutamatergic neurons and 20% GABAergic interneurons (48), although recent scRNAseq 362 

studies have reported a somewhat lower ratio of about 70% excitatory neurons (SI Appendix, 363 

Table S3) (5, 49, 50). Although our PRDD-seq analysis showed 661 excitatory versus 566 364 

inhibitory PRDD-seq cells in total for UMB1465 and UMB4638, which represents 54% 365 

excitatory neurons (SI Appendix, Table S3), this higher proportion of inhibitory neurons seems to 366 

reflect either aspects of the tissue (which was stored for long periods frozen), or our NeuN+-367 

sorting method, since similar ratios are seen in 10X scRNAseq from the one brain analyzed (SI 368 
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Appendix, Table S3). On the other hand, PRDD-seq cells are studied as containing at least one 369 

sSNV identified from scMH using a small number of deeply sequenced neuronal nuclei isolated 370 

from the same region, and so do not represent an unbiased sampling of the human brain region. 371 

Nonetheless, the fact that we can assign 60-70% of all excitatory neurons to clades in UMB1465, 372 

and that neurons with identified SNVs represent most major neuronal types in scRNAseq (Fig. 373 

3E), suggests that our sampling has captured the majority of the lineage of the cortical patch, 374 

although rare lineages are likely to be missed without much deeper sequencing. Moreover, the 375 

presence of 6-7 explicitly marked clades, and the ability to correlate the allele frequency of a 376 

sSNV to the excitatory-restriction of the cells carrying that sSNV, allows two independent 377 

quantitative assessments of how many progenitors (approximately 10) contribute to the neurons 378 

of the patch of cortex from which neurons were isolated, illustrating the remarkable quantitative 379 

potential of this approach.   380 

Since occasional dropout of DNA marks and RNA markers in PRDD-seq is unavoidable, 381 

limited by the quality of isolated nuclei, we emphasize that our results are most robust when 382 

analyzing cells positive for both. The quality of postmortem brain tissues can influence the 383 

integrity of both genomic DNA and mRNA. Regarding DNA, since no whole-genome 384 

amplification is performed prior to targeted pre-amplification, only a single molecular copy of 385 

each allele is available for genotyping of each sSNV, so occasional dropout is inevitable. 386 

However, our lineage strategy is based not only on the presence of clade-specific sSNVs but also 387 

the absence of many sSNVs from other clades (Fig. 3A), so the chance for mis-assigning cells 388 

should be relatively small. Nevertheless, mapping our sSNVs onto our scRNAseq dataset 389 

suggests that lineage marks are present in the major neuronal subtypes, although rare neuronal 390 

types are likely to be missed given our modest sample size. Regarding RNA, single nuclei from 391 
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postmortem human brain contains only a small amount of mRNAs. Fluidigm Biomark assays are 392 

microfluidics-based qPCR assays that are sensitive to subtle changes of the input or environment. 393 

As a result, we observed a 30.4% dropout rate of DNA markers and similar level of dropout of 394 

RNA marker dropout. However, since PRDD-seq analyses excluded these dropout events, and 395 

were completely based on the relative cell type proportions across different stages within one 396 

lineage, we have no reason to think that the dropouts are systematic with respect to cell type with 397 

one exception: the relatively larger proportion of pPVALB+ neurons in PRDD-seq than 398 

scRNAseq, likely reflecting the failure of some probes for SST, VIP, and LAMP5. Better and 399 

richer probe sets are likely to be able to resolve this in the future. 400 

There are limitations to our analysis, since we are analyzing a small sample of the vast 401 

size of the human brain, and PRDD-seq is relatively low-throughput and expensive, so our initial 402 

analysis only can make conclusions about relatively common cell types. The present analysis is 403 

somewhat limited in the analysis of late mutations present in 1% of cells, especially interneurons, 404 

since it is challenging to detect those mutations with great sensitivity, but will await single-cell 405 

studies on subtypes of neurons in the future. On the other hand, the combined analysis of sSNVs 406 

and cell types is archival and progressive. The vast size of the human brain means that each 407 

subsequent round of DNA sequencing—whether of bulk tissue or of single or pooled cells—adds 408 

to the total depth of sequence data, and provides progressively richer information about late 409 

sSNVs. Indeed, the likely dispersed nature of inhibitory clones suggests that analyzing one 410 

cortical region could provide sequence data useful in the analysis of a completely different 411 

cortical region for these cell types. 412 

Overall, PRDD-seq has many advantages even beyond the quantitative analysis of 413 

lineages and mosaic fractions that we begin to illustrate here. Since the method uses sSNVs as 414 
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lineage marks, it is inherently genomic and so allows correlation not only of normal 415 

developmental patterns, but would immediately capture alterations to lineage patterns caused by 416 

function-altering germline or somatic mutations. In addition, since sSNVs serve as in vivo 417 

cellular markers for drawing a developmental lineage map without any transgenic manipulation 418 

as demonstrated in this study, the method promises to be applicable in principle to any species or 419 

human disease condition for which post-mortem brain is available. 420 

 421 

Materials and Methods 422 

Human tissues whole-genome sequencing 423 

Frozen post-mortem tissues from three neurologically normal individuals, UMB1465 (a 17-year-424 

old male), UMB4638 (a 15-year-old female), and UMB4643 (a 42-year-old female), were 425 

obtained from the NIH NeuroBioBank at the University of Maryland, and prepared according to 426 

a standardized protocol (http://medschool.umaryland.edu/btbank/method2.asp) under the 427 

supervision of the NIH NeuroBioBank ethical guidelines. UMB1465 and UMB4638 died of 428 

injuries sustained in motor vehicle accidents, while UMB4643 died of cardiovascular disease. 429 

Bulk DNA samples and single neuronal nuclei amplified by multiple displacement amplification 430 

(MDA) were prepared and whole-genome sequenced by Illumina HiSeq platforms as part of 431 

previous studies in our lab (16). The average sequencing depth was about 40X for single neurons 432 

and about 200X for bulk brain samples. 433 

 434 

Estimation of cell-specific dropout rate and error rate 435 

Germline heterozygous mutations were called by GATK HaplotypeCaller (51) from the whole-436 

genome sequencing data from bulk brain DNA samples, and only common SNPs annotated in 437 
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the 1000 Genome Project (52) were considered to reduce false positive calls. To estimate cell-438 

specific allele dropout rate, we calculate the proportion of germline heterozygous sites that were 439 

genotyped as reference- or alternative-homozygous in single-cell sequencing data. One neuron of 440 

UMB4643 with significantly lower allele dropout rate (Z-score < -2) was excluded from 441 

subsequent analyses, since it likely represented a doublet from FANS sorting. Similarly, we also 442 

extracted the reference-homozygous sites at the 3’ adjacent position of each germline 443 

heterozygous mutation and calculate the proportion of heterozygous and alternative-homozygous 444 

genotypes to estimate the genome-wide error rate in each single-cell. 445 

 446 

Framework of single-cell MosaicHunter 447 

The overall framework of single-cell MosaicHunter (scMH) was illustrated in Fig. 2A. sSNV 448 

candidates were first called from the bulk sequencing data using a Bayesian graphical model (20, 449 

21), in which the likelihoods of somatic mutation and three genotypes of inherited mutation were 450 

calculated with the consideration of binomial sampling variation and base-calling errors (Fig. 2A, 451 

left panel). The presence or absence of somatic mutation in each single-cell was then inferred by 452 

adapting the likelihood and allele fraction (f) of somatic mutation estimated from bulk sample as 453 

prior probability, after controlling the cell-specific allele dropout rate (d) and error rate (e) (Fig. 454 

2A, right panel). Specifically, the transition matrix between bulk and single-cell genotypes was 455 

developed as below, 456 

1 0 0 1
P( | ) 0 1 0

0 0 1 0
sc bulk

f
G G f

− 
 =  
 
 

 457 

where each column denotes reference-homozygous, heterozygous, alternative-homozygous, and 458 

mosaic genotype for bulk sequencing, and each row denotes reference-homozygous, 459 
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heterozygous, and alternative-homozygous genotype for single-cell sequencing. The genotype 460 

likelihoods in single-cells were further adjusted for allele dropout rate (d) and error rate (e) as 461 

below, 462 

2 2

2

2 2

1 2 (1 )
P( | ) 2 (1 ) 1 2 2 2 (1 )

(1 ) 1 2
post pre

e e d d e
G G e e d d e e

e d d e e

 − + −
 

= − − + − 
 − − + 

 463 

where each column and row denotes reference-homozygous, heterozygous, and alternative-464 

homozygous genotype before and after adjustment for single-cell sequencing. Single-cell 465 

genotypes were binarized as mutant or wildtype by comparing the posterior probability of 466 

heterozygous genotype to an empirical threshold. For each candidate site, the proportion of 467 

mutant cells was calculated to further filter out germline mutations. Candidate sites with >50% 468 

cells showing aberrant single-cell allele fractions were also removed to exclude hotspots of 469 

technical artifacts. In “bulk-free” mode with synthetic bulk generated from in silico merging 470 

sequencing data from multiple single-cells, scMH would only consider sSNVs which were 471 

shared by at least two single-cells.   472 

 473 

Somatic SNV calling and performance comparison 474 

Paired-end reads from bulk and single-cell whole-genome sequencing data were aligned to the 475 

GRCh37 human reference genome by BWA (53), and then processed by GATK (51) and Picard 476 

(http://broadinstitute.github.io/picard/) for the removal of duplicated and error-prone reads, indel 477 

realignments, and base-quality recalibrations. sSNVs in neurons of UMB1465, UMB4638, and 478 

UMB4643 were called by scMH and four other tools including Monovar (22), SCcaller (23), 479 

LiRA (24), and Conbase (25). Sensitivity was estimated as the detected proportion of lineage-480 

informative sSNVs that had been previously identified and validated in these three brain samples 481 
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(16). False discovery rate (FDR) was measured as the proportion of lineage-informative 482 

mutations that were shared by cells from conflicting clades (16). 483 

 484 

Validation of somatic SNVs 485 

Validation of somatic SNVs called from scMH was performed using PCR of 200-500 bp 486 

amplicons including the mutated base, followed by Sanger sequencing. All variants were 487 

validated in independently sorted single neuronal nuclei amplified by MDA. 488 

  489 

Generation of simulated single-cell whole-genome sequencing data 490 

To estimate the sensitivity of scMH to detect lineage-informative sSNVs, bulk and single-cell 491 

sequencing data with varied somatic mutation rates was generated in silico (SI Appendix, Fig. 492 

S4A). First, we developed a simplistic model to mimic the process of early embryogenesis: 1) 493 

ten rounds of symmetric cell division was applied to generate 1024 (210) daughter cells derived 494 

from a single zygote, in which somatic mutations was randomly introduced at a rate of 1, 2, 5, or 495 

10 mutations per round; 2) each daughter cells accumulated cell-specific somatic mutations for 496 

another ten rounds with the same mutation rate. Then, for each daughter cell, sequencing reads of 497 

chromosome 1 was generated at 40X by ART (54) with default parameters for Illumina 498 

platforms, and then germline mutations identified from NA12878 and somatic mutations 499 

generated by our model was introduced to the sequencing read using BAMSurgeon (55), with an 500 

allele dropout rate of 1×10-2 per base and MDA amplification rate of 1×10-7 per base that were 501 

estimated from real single-cell sequencing data. Finally, we randomly selected 80 cells 502 

(consistent with the detection threshold of scMH in real brain bulk samples) from the 1024 503 

daughter cells and merged their sequencing data with a down-sampling of 200X to generate the 504 
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bulk sequencing data, and another 16 cells was randomly selected for benchmarking the 505 

performance of scMH. Our simulation data suggested that scMH was able to detect, on average, 506 

67% and 86% of cell-shared sSNVs with PFC bulk or synthetic bulk, respectively (SI Appendix, 507 

Fig. S4B). 508 

 509 

Design and selection of Taqman genotyping and gene expression probes 510 

Taqman genotyping probes for all validated sSNVs were designed using custom Taqman assay 511 

design tool provided Thermo Fisher Scientific. Off-the-shelf Taqman gene expression probes 512 

were ordered from Thermo Fisher Scientific. All designed probes were tested by ddPCR using 513 

human genomic DNA (Human male, Promega) as a negative control. Gene expression probes 514 

were further tested by isolated bulk brain RNA as a positive control. Genotyping probes were 515 

also tested by comparing the detected mosaic fractions and the fractions calculated from bulk 516 

sequencing (Fig. 3C, D). 517 

 518 

Parallel RNA and DNA analysis after Deep-sequencing (PRDD-seq) 519 

Single nuclei from postmortem brain samples were isolated using fluorescence-activated nuclear 520 

sorting (FANS) for NeuN as described previously (56). Isolated single neuronal nuclei were 521 

directly sorted into CellsDirect One-Step qRT-PCR (Thermo Fisher Scientific) pre-amplification 522 

buffers containing 0.14x Taqman gene expression assays and SNP genotyping assays. Pre-523 

amplification of all cDNA and genomic DNA amplicons were performed directly after the FANS 524 

sorting. Following pre-amplification, samples were diluted 10-fold and loaded onto 96.96 525 

genotyping or 192.24 gene expression dynamic assay integrated fluidic circuits for standard 526 

amplification per manufacturer’s instructions (Biomark, Fluidigm). Genotype and gene 527 
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expression were further determined by Biomark machine and analyzed by Biomark & EP1 528 

software (Fluidigm).  529 

 530 

10X Genomics preparation and sequencing 531 

Standard 10X Genomics Chromium 3’ (v2 chemistry) was carried out according to the 532 

manufacturer’s recommendation. Single nuclei from postmortem brain samples were isolated 533 

using FANS for NeuN, and were loaded onto a 10X Genomics Chromium chip. Reverse 534 

transcription and library preparation was performed using the 10X Genomics Single Cell v2 kit 535 

following the 10X Genomics protocol. The library was then sequenced on one lane of Illumina 536 

NextSeq-500 with a high-output kit. 537 

 538 

Single-cell RNA sequencing analysis 539 

The expression matrix of 10X Genomic single-cell RNA sequencing (scRNAseq) was generated 540 

by Cell Ranger following the recommended protocols. The expression matrix and cell 541 

annotations of SMART-seq-based scRNAseq for human MTG (5) was downloaded from the 542 

website (https://celltypes.brain-map.org/rnaseq/). Variance normalization, clustering and 543 

visualization were performed by Pagoda2 (57) using a similar protocol to Lake et al (7). Cell 544 

clusters containing more than 50 cells were plotted on the t-SNE map, and the annotation of 545 

cortical layer (upper, middle, lower) for excitatory neurons and subtypes for inhibitory neurons 546 

was manually curated for each cluster according to the expression level of marker genes (SI 547 

Appendix, Fig. S1 and S2). Considering that Layer 1 dissections of MTG nuclei included the 548 

upper part of Layer 2 and the absence of excitatory neurons in the Layer 1 of MTG based on in 549 

situ labeling (5), all the MTG Layer 1 excitatory neurons were re-annotated as Layer 2. To 550 
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further compare the expression profile of cells clusters between two scRNAseq datasets, we 551 

calculated the cosine similarity of average expression level for marker genes (S) between any 552 

two cell clusters. Cell clusters were then hierarchically clustered using the Ward’s method with a 553 

distance of 1 – S. 554 

 555 

Joint analysis of PRDD-seq and scRNAseq cells 556 

To understand the cell type and cell origin of PRDD-seq cells, we utilized their gene expression 557 

profiles to map them onto the t-SNE maps of scRNAseq. PRDD-seq cells were firstly separated 558 

into excitatory or inhibitory neurons according to the expression of excitatory or inhibitory 559 

marker genes (SI Appendix, Table S2), and cells with no or conflicting expression of these 560 

marker genes were excluded. For excitatory neurons, missing expression status for layer marker 561 

genes (SI Appendix, Table S2) were inferred if any layer-specific genes for a given layer were 562 

expressed. The cosine similarity matrix was then generated by comparing PRDD-seq cells 563 

against scRNAseq cells. For each PRDD-seq cell, its cell cluster was determined by the majority 564 

voting among its 25-nearest scRNAseq cells in cosine similarity (Fig. 1I), and the cell type and 565 

cortical layer information of PRDD-seq cell was further annotated based on their assigned cell 566 

cluster in scRNAseq datasets. To benchmark how accurately we could infer cell type and layer 567 

annotation from the 30 marker genes profiled in PRDD-seq cells, we randomly sampled 200 568 

scRNAseq cells from each of the seven cell types (upper, middle, lower layer excitatory neurons 569 

and VIP+, SST+, LAMP5+, pPVALB+ inhibitory neurons) from 10X Genomic dataset and each 570 

of the six dissected cortical layers from SMART-seq dataset, and only extracted the expression 571 

profiles of 30 marker genes from each scRNAseq cell. Using the same majority voting strategy, 572 

we assigned them back to cell clusters on the t-SNE map. As shown in Fig. 3D, the majority of 573 
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the randomly sampled cells can be correctly assigned to their original cell type and layer 574 

annotation, suggesting the accuracy of our mapping strategy in PRDD-seq.  575 

 576 

Quantification and statistical analysis 577 

All data are reported as mean ± 95% confident interval (CI) unless mentioned otherwise. All of 578 

the statistical details can be found in the figure legends, figures, and Results. Significance was 579 

defined for p values smaller than 0.05. All tests were performed using the R software package 580 

(version 3.5.0). 581 

 582 

Data and code availability  583 

Sequencing data was deposited in the NCBI SRA with accession numbers SRP041470 and 584 

SRP061939. MosaicHunter is publicly available at http://mosaichunter.cbi.pku.edu.cn/. Config 585 

files of single-cell MosaicHunter (scMH) and other scripts about PRDD-seq can be accessed at 586 

https://github.com/AugustHuang/PRDD-seq.  587 

  588 
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Figure 1. PRDD-seq enables simultaneous assessment of cell identity and lineage in single 727 

cells. A. Neuronal nuclei from postmortem human brain were based on NeuN+ immunoreactivity. 728 

B. Target-specific one-step RT-qPCR amplification of cDNA and gDNA fragments of interest. C. 729 

Single-cell MosaicHunter co-analysis of single-cell and bulk deep sequencing data to identify 730 

lineage-informative somatic SNVs. D. Multiplex analysis of the amplified cDNA and gDNA 731 

fragments to genotype the somatic SNVs and profile 30 cell type-specific markers of gene 732 

expression. E. 10X Genomics scRNAseq was performed on NeuN+ nuclei isolated from the 733 

same PFC region. F. 21 cell clusters were identified based on 10X Genomics gene expression 734 

data, and then divided into upper, middle, and lower layer of excitatory neurons and four 735 

subtypes of inhibitory neurons. G. A second scRNAseq dataset (5) performed on nuclei isolated 736 

from the MTG region of another post-mortem healthy human brain was also analyzed where 737 

layer information was identified based on layer micro-dissection. Cell types were identified 738 

based on gene expression data. H. Transcriptional clustering revealed similar single-cell 739 

expression profiles between 10X Genomics PFC and SMART-seq MTG scRNAseq datasets. 740 

Cell clusters were color-coded to denote different cell type annotation, and clusters derived from 741 

10X Genomics PFC (triangle) and SMART-seq MTG (circle) in general clustered by cell type 742 

but not by platform. I. Each PRDD-seq cell was mapped to the t-SNE maps by the cosine 743 

similarity of gene expression to scRNAseq cells, and then assigned cell type and dissected layer 744 

accordingly by majority voting of 25 nearest neighbors. J-K. A combination of genotype and 745 

gene expression information of PRDD-seq cells allowed lineage and birthdate analysis of 746 

particular cell types/layers (J), and cell type differentiation analysis of particular lineage 747 

reconstructed by somatic mutations (K). Colored triangles in (I) indicate PRDD-seq cells. Gray 748 
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bars in (K) indicate occurrences of somatic mutations, whereas all cells in one corresponding 749 

sub-clade share the same somatic mutation. 750 
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Figure 2.  scMH identifies lineage-informative sSNVs from the joint analysis of bulk brain 752 

and single-neurons. A. Overview of the extended Bayesian model of scMH to use bulk 753 

sequencing data to facilitate sSNV calling in single cells. G denotes the genotype state, π denotes 754 

the prior probabilities of genotype, and d, o, q denote the depth, observed bases, and their base 755 

qualities in bulk or single-cell sequencing data. B. Specificity and precision of identifying sSNVs 756 

using scMH and other published callers. scMH outcompeted other callers in both precision and 757 

sensitivity. C-E. Validated lineage-informative sSNVs identified by scMH in UMB1465 (C), 758 

UMB4638 (D), and UMB4643 (E). Heatmaps demonstrate the genotyping status of sSNVs; dark 759 

blue and white squares denote the presence or absence of sSNVs in a given cell, whereas grey 760 

squares denote unknown genotype due to locus dropout in single-cell WGS. Bar graphs show the 761 

mosaic fraction of each sSNV in WGS of bulk brain sample. Clade E in (C), and clade C in (E), 762 

represent likely branching clades where early shared mutations are present, while later sSNVs 763 

mark two branches with distinct mutations. Error bars reflect 95% confidence internals. 764 
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Figure 3. PRDD-seq profiles single-neurons with varied lineage markers and distinct cell 766 

type identity. A. Genotyping results of 30 sSNVs (by rows) from 20 lineages across PRDD-seq 767 

cells (by columns) from UMB1465. Blue and white squares represent the presence or absence of 768 

sSNV respectively, whereas light blue squares represent the sSNVs that were dropouts in PRDD-769 

seq assay but inferred by the presence of deeper mutations from the same clade. B. Clade 770 

classification of PRDD-seq cells profiled in UMB1465. In upper panel, PRDD-seq cells which 771 

contained sSNVs from multiple or no clades are labeled as “conflict” and “unknown” 772 

respectively. C. Correlation of mosaic fractions from WGS and PRDD-seq (calculated as % of 773 

assayed cells carrying a given sSNV) in UMB1465. Both methods showed significantly 774 

concordant mosaic fractions (Pearson correlation’s P < 0.001). D. Accuracy of cell type (left 775 

panel) and cortical layer (right panel) classification based on the expression profile of 30 marker 776 

genes used in PRDD-seq. scRNAseq cells from each cell type (10X Genomics) and cortical layer 777 

(SMART-seq) were randomly sampled  and then re-assigned to clusters of t-SNE map using 30 778 

marker genes under PRDD-seq mapping strategy. E. Taxonomy of 3 excitatory layers and 4 779 

inhibitory subtypes based on average expression of 30 marker genes in PRDD-seq cells. Relative 780 

density of cortical layers for each subgroup is also shown. pPVALB+ denotes PVALB+/SST-781 

VIP- LAMP5- subtype of inhibitory neurons. F. Relative ratio across different cell types of 782 

excitatory and inhibitory neurons between PRDD-seq and 10X Genomics scRNAseq.  783 
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Figure 4. PRDD-seq reveals distinct developmental sequence of excitatory neurons in 785 

different cortical layers. A-B. The total number (bar plot) and ratio (dot plot) of excitatory and 786 

inhibitory neurons in different lineage clades defined by one or more sSNVs in UMB1465 (A) 787 

and UMB4638 (B). Percentage of excitatory neurons increased in later lineage timepoints in 788 

clades C and F in UMB1465 and clades A and B in UMB4638. In Clade E of UMB1465, E1 789 

branches into two subclades E2A and E2B. Dashed line: average excitatory neuron percentage. 790 

Asterisk denotes significantly different excitatory-inhibitory ratio from the average (two-sided 791 

one-proportion Z-test’s P < 0.05). In clades C and F from UMB1465, and clades A and B from 792 

UMB4638, later mutations become progressively limited to excitatory neurons. C-D. Layer 793 

distributions of excitatory neurons in representative excitatory lineages in UMB1465 (C) and 794 

UMB4638 (D), respectively. Layers are determined by mapping PRDD-seq cells onto human 795 

PFC scRNAseq (upper panels) or human MTG scRNAseq (lower panels) based on the 796 

expression profile similarity of marker genes. In all three illustrated clades, the percentage of 797 

upper layer neurons increased while that of lower layer neurons decreased in cells containing 798 

sSNVs present at lower mosaic fraction. P-value was calculated by Pearson correlation with 799 

ordinal variables. 800 
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Figure 5. PRDD-seq reveals heterogeneous developmental process for inhibitory neurons. 802 

A-B. Distribution of different subtypes of inhibitory neurons in different lineages in UMB1465 803 

(A) and UMB4638 (B), respectively. Major subtypes of inhibitory neurons are widely distributed 804 

in different lineages. C-D. Layer distributions of inhibitory subtypes in representative lineages in 805 

UMB1465 (C) and UMB4638 (D), respectively. Bar graphs show the proportion of each subtype 806 

of neurons in different layers. MGE derived (SST+ and pPVALB+) and CGE derived (VIP+, 807 

LAMP5/PAX6+, and SST-like) interneurons showed similar mutation profiles, suggesting that 808 

the groups are produced simultaneously. pPVALB+ subtype neurons were enriched in layer IV-809 

VI, while MGE-derived SST+ interneurons showed a similar laminar distribution as pPVALB+ 810 

interneurons, with no clear evidence of an “inside-out” birth dating pattern. CGE-derived 811 

interneurons were broadly distributed across cortical layers, with SST-like cells heavily favoring 812 

supragranular layers; LAMP5+, including SST-like cells, were enriched for later lineage marks, 813 

suggesting they may be produced later in development than other subtypes. 814 
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