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Abstract

Translational  applications  of  cognitive  science  depend  on  having  predictive  models  at  the

individual,  or  idiographic,  level.  However,  idiographic  model  parameters,  such  as  working

memory capacity,  often need to be estimated from specific tasks, making them dependent on

task-specific assumptions. Here, we explore the possibility that idiographic parameters reflect an

individual’s  biology and can be identified from task-free neuroimaging measures.  To test  this

hypothesis, we correlated a reliable behavioral trait, the individual rate of forgetting in long-term

memory,  with  a  readily  available  task-free  neuroimaging  measure,  the  resting-state  EEG

spectrum. Using an established, adaptive fact-learning procedure, the rate of forgetting for verbal

and visual materials was measured in a sample of 50 undergraduates from whom we also collected

eyes-closed resting state  EEG data.  A statistical  analysis  revealed  that  the individual  rates  of

forgetting were significantly correlated across verbal and visual materials, in agreement previous

results. Importantly, both rates correlated with power levels in the alpha (8-13 Hz) and low beta

(13-15 Hz) frequency bands, with the correlation between verbal rate of forgetting and low beta

power  over  the  right  parietal  site  being  significant  even  when  accounting  for  multiple

comparisons.  The results  suggest that  computational  models could be individually tailored for

prediction  using  idiographic  parameter  values  derived  from  inexpensive,  task-free  imaging

recordings.

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 20, 2020. ; https://doi.org/10.1101/2020.04.18.047662doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.18.047662
http://creativecommons.org/licenses/by-nd/4.0/


1. Introduction

To provide a complete account of human behavior, psychological theories should explain

behaviors at both the  nomothetic level (that is, group aggregates and mean tendencies) and the

idiographic level  (that  is,  accurate  characterizations  of  each  individual  participant;  (Allport,

1937)), a claim that equally holds for computational cognitive models.

Although the nomothetic  approach has been historically dominant and the majority  of

published computational models are fitted to group averages, the idiographic approach has been

frequently advocated (Ritter & Gobet, 2000) and is often essential to translational applications of

cognitive research. For instance, in intelligent tutoring systems, idiographic models are critical  to

provide appropriate adaptive feedback to specific errors and knowledge of individual students

(Anderson et al., 1990).

In  the  idiographic  approach,  individuals  can  be  characterized  at  the  level  of  stable

characteristics,  or  traits,  or  contingent  situations,  or  states.  An  individual’s  working  memory

capacity,  for  example,  is  relatively  stable  over  time.  On  the  other  hand,  a  student’s  domain

knowledge is continuously expanded during studying, and is thus better characterized as a  state.

Because  they  capture  stable  characteristics,  traits  are  particularly  useful  to  predict  individual

behaviors across tasks and over extended periods of time. An intuitive conceptualization is to

think of idiographic traits as specific  values of a model’s  parameter (Collins, 2018; Daw, 2011;

Lovett et al., 2000; Ritter & Gobet, 2000; Stocco, 2018). Working memory capacity, for example,

can  be  captured  by  a  parameter  that  represents  the  number  of  free  slots  in  a  buffer,  and

idiographic traits by different values of this parameter (Collins, 2018).

Idiographic trait parameters should exhibit at least two characteristics. First, they should

have  high  test-retest  reliability.  For  instance,  Sense  et  al.  (2016) have  shown  that  long-term

memory decay is stable across sessions (r ~ 0.8) and across materials (r ~ 0.5). Second, it should

generalize across tasks: once a parameter has been estimated by fitting a model to an individual,
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the  same  parameter’s  value  should  predict  that  individual’s  performance  in  other  tasks.  For

example, Maaß and colleagues (2019) were able to estimate the variability of the internal clock

using a simple time production task (Maaß & van Rijn, 2018), and use it to predict performance

in a more elaborated temporal reproduction task in a pre-clinical population.

 We propose a third essential characteristic: trait parameters should reflect a feature of the

individual’s  neurobiology. An example of which is the correlation between  procedural learning

rate and  the density of dopamine receptors (Stocco, 2018; Stocco et al., 2017). In this paper, we

investigate  whether individual variability in long-term memory rate of forgetting is reflected in

individual variability in electrophysiological measures of brain activity.

1.1 Resting State Neuroimaging as a Window to Idiographic Parameters 

The  idea  of  correlating  model  parameters  with  brain  activity  is  hardly  new  (e.g.,

reinforcement learning rate correlates with striatal activity during a learning task  (Schönberg et

al., 2007), loss aversion parameter in prospect theory with striatal activity (Tom et al., 2007), and

the level of response caution during anticipation with activation of pre-SMA (Boehm et al., 2014).

Most of these attempts, however,  rely on  task-based  activity,  and thus suffer from a potential

circularity:  Because the model is  designed to reproduce a specific type of task, the identified

neural substrates are a function of the specific task assumptions as much as they are a function of

the specific parameter. 

This  circularity  can  be  circumvented  by  the  use  of  task-free  neuroimaging measures.

These measures are made possible by the fact that spontaneous but organized brain activity exists

even  in  the  absence  of  any  observable  behavior  (Fox  et  al.,  2005).  Task-free  measures  are

recorded during “resting-state” sessions, in which participants are requested to refrain from doing

anything: although they must remain awake, they are typically asked to just fixate a stimulus or

close their eyes for  a few minutes during which brain activity is recorded.  

Although the nature and the functional significance of brain activity at rest are debated
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(Raichle, 2006; Raichle & Snyder, 2007), it is undeniable that resting-state brain activity carries

signatures of measurable individual characteristics. For instance, resting-state fMRI can be used

to classify individuals by age (Dosenbach et al., 2010), even among toddlers (Pruett et al., 2015),

variations in resting-state correlations between regions have been linked to pathologies such as

depression  (Greicius et al., 2007) and Alzheimer’s disease  (Sorg et al., 2007), and correlations

between regions during resting-state can be used to predict behavioral performance during a task

(Cole et al., 2016).

Although resting-state research typically focuses on fMRI, other modalities can be used—

such as EEG. Instead of using correlations between time series (which are not meaningful for

oscillatory  signals),  resting-state  EEG  data  is  first  decomposed  into  different  frequency

components,  and then  the  amount  of  variance  of  the  whole  signal  that  is  explained by  each

frequency is estimated. The amount of variance is referred to as the frequency’s  power and the

power distribution over frequencies as the power spectrum. Power spectra can be used to uniquely

identify individuals, much like an electrophysiological fingerprint  (Ma et al., 2015; Mohammadi

et al.,  2006), and different features of the spectrum correlate highly with cognitive traits  like

intelligence (Doppelmayr et al., 2005) and language aptitude (Prat et al., 2016). 

1.2. Idiographic Parameters in a  Model of Long-Term Memory Forgetting Rate 

Surprisingly,  despite  previous  successes  in  identifying  correlations  between  cognitive

constructs (such as intelligence or aptitude) with resting-state EEG, no study to date has related

task-free activity with the specific parameters of a cognitive model. The goal of this study is to

demonstrate the possibility of measuring one specific and well-understood idiographic parameter

from specific signatures of EEG data. Specifically, we will focus our attention on decay rate in

long-term memory,  a  parameter  that  has  an  established  tradition  of  use  in  cognitive  models

(Anderson, 1990; Shiffrin & Steyvers, 1997) and whose test-retest and cross-task reliability has

already been previously studied (Sense et al., 2016).
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The implementation used herein was inspired by Pavlik and Anderson (2008) and rooted

in Anderson’s Bayesian account of memory  (Anderson, 1990; Anderson & Schooler, 1991). A

memory’s availability is proportional to a scalar meta-quantity, the base-level activation, which is

the sum of the decaying traces of its previous usage. The rate of decay is determined for each

memory trace separately, and is a function of the base-level activation of earlier encoded traces of

the same memory when the memory is encoded and a memory specific intercept (see Van Rijn et

al., 2009. and Sense et al., 2016, for details).  The average of this memory-specific decay rate

intercept, α, is highly stable when the same individual is tested at different moments (r ~ .80) and

even across different materials (r ~ .50), and thus meets the two first criteria for individual trait

characteristics. 

To  measure  α,  Sense  et  al.  (2016) asked participants  to  memorize  a  series  of  paired

associates relating an old, familiar item with an entirely new item using a previously developed,

adaptive memory testing procedure (Van Rijn et al., 2009). In one of their studies, the cues were

(unfamiliar) Swahili words and their (familiar) Dutch translation. 

1.3 Research Question and Considerations About Effect Sizes 

In  this  study,  we  replicated  the  experimental  setup  of  Sense  et  al.  (2016)  and  asked

participants to perform an iterative pair-associates test,  using both verbal (i.e.,  Swahili  words)

and non-verbal materials (i.e., maps of locations in the United States). The estimated mean value

of  α for  each individual  was then correlated  with  features  of  an individual  power  spectrum,

estimated from a 5-minute resting-state EEG recording collected prior to the behavioral task. We

expected to find a correlation between the value of the decay rate α and the spectral power in

frequency bands, such as the alpha and beta rhythms, that have been previously correlated with

similar memory-related constructs such as language learning rate (Prat et al., 2016).

In designing the experiment, we considered what effect sizes we expect to find. Intuitively,

it  is  easy to believe  that  neural  features,  being closer  to an individual’s  ground-truth biology,
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should yield high correlations. In this study, however, the correlation is assumed to be between

two different  measurements  of  the  same underlying  biological  process  (i.e.,  the  reduction  in

availability  of  memory  traces),  one  at  the  behavioral  level  (forgetting  rate)  and  one  at

neurophysiological level (spectral power), each with different types of noise and sources of error.

When trying to relate one quantity to another, measurement error for both is the product of the

error in each individual measurement. Sense et al. (2016) estimated that the test-retest reliability

for α is  r ~.80.  Unpublished data from our laboratory shows that  the test-retest  reliability  of

power spectra, using the specific equipment reported in this study, is approximately r ~.60 across

all channels and frequency bands (Prat et al., in preparation). Thus, the maximum reliability that

we can expect from the correlation is .8  × .6 = .48. Given these effect sizes, we estimated that

collecting data from N = 50 participants would give us sufficient power to avoid a Type II error

with probability β = 0.95 with uncorrected significance level of p < 0.05.   

2. Materials & Methods

2.1 Participants

Fifty-three native English speakers (32 females) aged between 18 to 33 years old (mean =

21) were recruited from the undergraduate population at the University of Washington, Seattle.

None of the participants reported any familiarity with the Swahili language. Only native English

speakers were selected to ensure that their performance on the Swahili vocabulary test (which

required  memorizing  pairs  of  English-Swahili  words)  was  not  confounded  by  significant

differences in English proficiency and English vocabulary exposure. Data from three participants

were excluded because of either equipment failure (one male participant) or too few data points

(< 75 artifact-free epochs in each channel: two females), leaving 50 subjects’ data (30 females) in

the final analysis.
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2.2 Materials

2.2.1 Language Background

Participants’  language  background  was  measured  using  the  Language  Experience  and

Proficiency Questionnaire (LEAP-Q: Marian, Blumenfeld, & Kaushanskaya, 2007). The LEAP-Q

reports were used to ensure that all participants were native English speakers (Average age of

English acquisition: 14 months old; 100% in self-rated English speaking proficiency; 100% in

self-rated English understanding proficiency) and none of them had been previously exposed to

Swahili. 

2.2.2 Swahili vocabulary learning task

Twenty-five Swahili-English word pairs were selected from a previous study (Van den

Broek, Segers,  Takashima,  and Verhoeven,  2014).  On the study trial,  a Swahili  word and its

corresponding English equivalent were presented simultaneously on the screen. Participants were

asked to respond by typing the corresponding English word (e.g., “fish”) after being presented

with a Swahili word as a cue (e.g., “samaki”). On test trials, only the Swahili word was presented

on screen and participants were asked to type the English word. The order of repetitions and

moment of introduction for each item were determined by the adaptive scheduling algorithm

introduced in the introduction, and described in more detail in Van Rijn et al. (2009) and Sense et

al. (2015; 2016). Participants received corrective feedback after each response. A running timer

and the ongoing response accuracy remained visible on the screen during each session. The task

lasted approximately 12 minutes.

2.2.3 Map Learning Task

In the map learning task, an outline of a US map was presented on the screen with black

dots that represent different locations. Twenty-five cities, each with a unique name, were selected

evenly  across  the  US map.  Names  were  those  of  real  but  small  cities.  On  each  study  trial,

participants were shown the map with one location highlighted in red and were instructed to learn
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the corresponding city name, which was displayed along with the map. On test trials, participants

were shown the map with a highlighted location and were asked to type in the city name.  All

other details were identical to the Swahili vocabulary task.

2.3 Procedures

Participants were asked to complete the LEAP-Q and a demographic survey before a five-

minute  eyes-closed  and  one  five-minute  eyes-open  resting  EEG  were  recorded.  Then,  they

completed both learning tasks with the order of learning tasks counterbalanced based on the parity

of participant  IDs.  At the end of the session,  participants  filled out a survey about perceived

difficulty per task, data of which are not analysed in this manuscript. 

2.3.1 Acquisition and Preprocessing of EEG data

A continuous recording of 5 minutes of eyes closed, resting state EEG data were collected

for  each  participant  using  a  wireless  16-channel  headset  (first-generation  Emotiv  EPOC,

Australia)  with  a  sampling  rate  of 128 Hz.  The reference  channels  were  the DMS and CRL

electrodes over the parietal lobe. During the eyes-closed resting-state EEG recording, participants

were instructed to close their eyes, clear their mind, and relax, all while in a dark room. During

the eyes-opened resting-state EEG recording session, the experimenter turned on the light in the

room and instructed participants to relax and look at a black fixation point on a white screen for 5

minutes while their EEG data were recorded. The eyes-opened and eyes-closed EEG data were

processed separately following the procedure below.

The  resting-state  EEG  data  were  divided  into  two-second  epochs  with  a  0.5-second

overlap.  Epochs  containing  significant  artifacts  (e.g.,  eye  blinks,  excessive  motion,  or  signal

deflections greater than 200 μV) were excluded from the analysis. All remaining 2-second epochsV) were excluded from the analysis. All remaining 2-second epochs

underwent  Fast  Fourier  Transformation  (FFT).  Because of  the segmentation  into  epochs,  the

resulting spectrum had a resolution of 0.5 Hz, and extended from 0 to 64 Hz. The spectra of each

epoch were then averaged together for each channel. Finally, the spectral  powers within each
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frequency bands were averaged to yield mean power values in the theta (4-8Hz), alpha (8-13Hz),

beta (13-30Hz), low beta (13-15Hz), mid beta (15-18Hz), and high beta (18-30Hz) bands. The

signal-to-noise ratio afforded by our equipment did not permit to reliably detect signals at higher

frequencies,  while  very  low  frequencies  tend  to  be  contaminated  by  sporadic  and  non-

physiological sources of noise (Cohen, 2014). Due to these considerations, gamma (> 30 Hz) and

delta (0-4 Hz) frequency bands were excluded from the analysis. Any channel with fewer than 75

artifacts-free epochs for each individual was excluded, resulting in the removal of one channel

(0.14% of the data) in the final  analysis.  This preprocessing pipeline was the same used in a

previous study on neural markers of language learning (Prat  et al.,  2016; 2018). The analysis

script can be found at http://github.com/UWCCDL/QEEG.

2.3.2 Analysis of Behavioral Data

The main behavioral measure that will be correlated with eyes-closed EEG activity is the

average rate of forgetting α, which was estimated separately for each learning session (maps vs.

vocabulary) of each participant. Here, we employed the same approach as in Sense et al. (2016):

The parameter  is  estimated for each item separately,  and an individual  session’s parameter  is

computed by averaging the final values of all items that have been repeated at least three times.

The aggregate value thus reflects the mean individual rate of forgetting and it reflects how quickly,

on average, each participant forgot each type of material.

3. Results

3.1 Behavioral Results

Figure 1A shows the distribution of the rates of forgetting for the two types of materials,

estimated for each participant and plotted against each other. For the Swahili items, the mean rate

of forgetting is α = 0.283 (SD = 0.062) and for the US Maps, the mean rate of forgetting is α =

0.336 (SD =  0.051).  The figure  shows that  a  participant’s  rate  of  forgetting  for  one  type  of

material is highly correlated with the rate of forgetting for the other type of material (r(50) =
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0.59;  t(48) = 5.08;  p < 0.001). This correlation is comparable to the one reported in the study

these materials were adapted from (approx. 0.50–0.55, see Table 1 in Sense et al., 2016). The

figure  also  shows  that  the  rates  of  forgetting  tend  to  fall  above  the  diagonal  equality  line,

indicating that the rates of forgetting were generally higher for the US maps (range: 0.21–0.47)

than for the Swahili words (range: 0.12–0.39; paired t(48) = 7.24, p < 0.001).

 

Figure 1: Average rates of forgetting for verbal (vocabulary) and visuospatial (US maps)

materials plotted against each other. The dashed grey line represents the identity line; the thick red

line represents the regression line, and the red shaded area represents the 95% confidence interval

around the regression estimate.    
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3.2 EEG Results

The EEG power spectrum was extracted for each channel and visually inspected to ensure

its consistency across channels and its conformity to the established distribution of power across

frequency bands. Figure 2 depicts the power spectrum over frequencies in the 0-40 Hz range in all

14 channels, with the seven relevant frequency bands marked by different background colors.

Although the gamma and delta bands were not included in the analysis,  they are depicted in

Figure 2 for completeness. As expected, all channels exhibit the same power spectral profile, with

the characteristic 1/f power distribution that is typical of electrophysiological signals  (Buzsaki,

2006;  Cohen,  2014).  The  peak  in  the  alpha  band (8-13 Hz),  known  as  the  individual  alpha

frequency (IAF), identifies the center of the alpha frequency band; although some authors prefer

to use a priori defined ranges for each frequency  (Prat et al., 2016), others prefer to define the

alpha band on the bases of the mean IAF across participants, and offset the other bands in relation

to it (Doppelmayr et al., 2002). In our data, the mean IAF was 10.5 Hz in all channels (Figure 2).

This value falls exactly at the center of the predefined range, thus making our results compatible

with both approaches and implying that the predefined frequency bands are also representative of

our sample.

3.3 Relationship Between EEG Power and Forgetting Rate

Next, we examined the correlations between the rates of forgetting and the power across

channels in each of the following frequency bands: theta (4-8 Hz), alpha (8-13 Hz), beta (13-30

Hz),  low beta  (13-15 Hz),  mid-beta (15-18 Hz),  and high beta (18-30 Hz).  In  the following

sections,  we  report  all  the  correlations  significant  at  p <  .05,  corresponding  to  a  Pearson

correlation value of r > 0.27. Because of the number of correlations that were computed, we also

applied  the  False  Discovery  Rate  procedure  (Benjamini  &  Hochberg,  1995) to  account  for

multiple comparisons, and highlight results that pass the corrected threshold of q < .05. 
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Figure 2: Mean spectrogram recorded on each channel, averaged across all participants. In

every subplot, the thick black line represents the mean power at every frequency, the shaded grey

area  represents  the  standard  deviation,  and  the  relevant  frequency  bands  are  represented  as

different background colors.    
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Figure  3:  Topological  maps  of  the  correlations  between  mean  power  in  each  relevant

frequency band (Theta,  Alpha, and Low, Upper,  and High Beta) and the individual values  of

forgetting rate for verbal (Swahili vocabulary, top) and visuospatial materials (US Maps, bottom).

3.3.1 Rates of Forgetting for Verbal Materials

The top row of  Figure  3  presents  the  correlations  between  power  at  specific  channel

locations and the rate of forgetting in the Swahili word learning task across frequency bands.

Significant  positive correlations  were found in the beta  frequencies  (13–30Hz) over the right

parietal lobe (P8 in the 10–20 system, r(50) > .24). Specifically, the largest positive correlation

(r(50) = .42, p = .002) was observed at the right parietal channel (P8 in the 10–20 system) in the

low beta band (13–15 Hz). This particular location and power band were also the only ones to

show a significant effect when correcting for multiple comparisons (q = .03; Figure 4). Significant

positive correlations that did not survive corrections for multiple comparisons were found for the

low beta band at the bilateral frontal regions (AF3, F4, F7, r(50) > .27, q > .15) and right occipital

region (O2, r(50) = .34, p = .02, q = .11), and for mid-beta power at the right parietal lobe (P8,

r(50) = .34, p = .02, q = .24).
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Figure 4: Correlation between rates of forgetting for the Swahili vocabulary task and mean low-

beta power over P8.  

3.3.2 Rates of Forgetting for Visuospatial Materials

Correlations between EEG power and rates of forgetting in the map learning task showed

a similar pattern of results (Figure 3, bottom row), albeit with overall smaller correlations. As in

the case of the vocabulary task, no negative correlation reached significance at p < .05. Significant

positive correlations between the rate of forgetting and power in the beta frequency band were

observed at right frontal site (AF4,  r(50) = .31,  p  = .03,  q = .19) and, once more, at the right

parietal  lobe (P8,  r(50) = .36,  p = .01,  q = .11).  Power in the low beta band was positively

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 20, 2020. ; https://doi.org/10.1101/2020.04.18.047662doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.18.047662
http://creativecommons.org/licenses/by-nd/4.0/


correlated with the rate of forgetting at the right parietal lobe (P8, r(50) = .30, p = .04, q = .32).

The significant positive correlation between power in the beta band and rate of forgetting was

observed distributing at bilateral frontal (AF3, AF4, F4, r(30) = .29–.34, p < .04, q < .32), right

frontal (F8, r(50) = .32, p = .02, q = .09), and right parietal regions (P8, r(50) = .36, p = .009, q

= .09). Power in the high beta (18-30Hz) was positively correlated with the rate of forgetting at

the right frontal (AF4,  r = .28,  p = .05,  q = .68) and right parietal region. (P8,  r(50) = 0.33,  p

= .02, q = .25).  However, no correlation was significant at the corrected value of q < .05.

4. Discussion

In this paper, we have provided evidence that model parameters that reliably characterize

an individual’s  performance can be observed in that  individual’s  neurophysiological activity at

rest. Importantly, the observed correlations are in the upper range of values that were expected,

given the reliability of both behavioral and EEG measures.

It should be noted that brain activity was extracted at rest before participants performed

the experimental task. Thus, this finding adds to the growing number of studies showing that task-

free  resting-state  oscillations  contain  relevant  information  about  an  individual’s  biology  and

cognition (Doppelmayr et al., 2002; Doppelmayr et al., 2005; Prat et al., 2016). Specifically, this

study is the first not only to link a feature of resting-state brain activity to cognition, but to a

specific parameter in a formal and well-established model. 

Although many locations  on the scalp were found to show mild correlations  with  our

parameter,  the strongest  results  were found for  verbal  materials  (Swahili  words) on the right

parietal cortex (channel P8) and in a specific frequency band (low beta). When estimating rates of

forgetting, verbal materials had shown better reliability than visual materials (Sense et al., 2016).

This location and frequency band, however, might be unexpected, given that one would expect the

rate of forgetting to be related to the activity of the hippocampus, which is located in the medial

temporal lobe,  and whose characteristic  frequency at  rest  is  the  theta band. This discrepancy,
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however, should not sound surprising. First, the location of an EEG signal over the scalp does not

translate directly to an underlying source. Thus, the fact that a signal is recorded over a parietal

region does not imply that its source is also parietal.  Second, signals from medial regions are

notoriously difficult to identify in EEG data, due to their greater distance from the scalp. Thus, it

is likely that the signals that mostly correlated with rates of forgetting do not reflect hippocampal

activity  per  se,  but  possibly  the  contribution  of  other  circuits  that  are  ancillary  to  memory

encoding  and  retrieval  and  might  be  indirectly  affected  by  the  intrinsic  activity  of  the

hippocampus. This idea is supported by the fact that both frontoparietal activity and low-beta

activity  have  been  reported  as  related  to  successful  memory  encoding  and  retrieval  during

memory tasks (Hanslmayr et al., 2011, 2012). Furthermore, the same location and frequency band

have been reported to be related to language learning (Prat et al., 2016, 2018), both of which are

cognitive functions that depend on the capacity to quickly and efficiently encode and retrieve

material.  Thus, our pattern of results is broadly consistent with the known neurophysiology of

memory encoding and retention. 

4.1 Limitations

When interpreting these results,  a number of limitations must be considered.  Some of

these limitations are intrinsic to the use of EEG: as noted above, it  is impossible to precisely

identify the source of (resting-state) EEG signals. For this reason, we can only speculate about the

brain regions whose activity is associated with the decay rate. By contrast, information about the

source would be valuable in understanding what type of information we are dealing with. This

limitation could be overcome by using different neuroimaging methods, such as MRI-informed

MEG.

The  EEG-specific  limitations  are  compounded,  in  our  case,  by  the  use  of  low-grade

systems.  While  they allowed us  to  record  and collect  data  quickly  and  they  have  been  used

successfully in research (Jiang et al., 2019; Prat et al., 2016, 2018), they are also characterized by
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poor  spatial  resolution,  poor  sampling  rate,  and  low  sensitivity.  Thus,  not  only  is  source

identification  practically  impossible,  but  significant  features  that  are  best  observed  in  midline

locations (not covered by our setup), or have low amplitude, or occur at higher frequency rates

would  likely  go  undetected  in  this  study.  However,  the  use  of  this  system demonstrates  that

relevant information on individual learners can be obtained using systems that might see usage in

class-room settings, opening the door to neuroscience-informed adaptive learning systems.

We restricted our analyses to bi-variate correlations, adhering to standards set in similar

studies with comparable equipment  (Prat et al., 2016, 2018). However, it should be noted that

more  sophisticated  methods,  including  machine  learning  approaches  that  take  into  account

multiple features, could be potentially employed. This would likely result in greater precision at

predicting specific values of α from EEG data alone. 

Here, we interpret the relationship between brain activity and a specific component of a

formal  model.  Although  this  model  has  been  successfully  employed  to  estimate  the  rate  of

forgetting  (Sense  et  al.,  2018;  Sense  et  al.,  2016,  2019;  Van  den  Broek  et  al.,  2019),  the

conceptual model of which the current model is an instance also contains other parameters. For

example, the probability of retrieving a memory (for example, the association “kitanda”/”couch”)

also depends on spreading activation from the cue (for example, the Swahili word “kitanda”). The

amount  of  spreading  activation  is  assumed  to  be  modulated  by  attention,  and  the  degree  of

attention allocated to cues has been found to be predictive of working memory capacity (Lovett,

2001). Thus, it is entirely possible that the high correlation found in channel P8 is partially driven

by attentional processes that interact with forgetting rate during retrieval. The fact that both the

location of the channel (right parietal lobe) and the specific band (low band) have been previously

connected to the retrieval of verbal material suggests that this might be the case. Future studies in

which both factors are parametrized and estimated for each individual would help more precisely

identify the nature of the biological processes involved. 
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4.2 Implications for Future Research

These limitations notwithstanding, our results do have significant implications for future

research.  The  first  and  most  obvious  is  that  they  outline  a  method  to  estimate  the  value  of

idiographic trait parameters in the absence of task assumptions and with a very reasonable and

cost-effective setup. In our case, for example, the collection of EEG recordings took significantly

less time than the collection of behavioral data, even accounting for set-up time. This effect is

amplified  by  the  use  of  consumer-grade  headsets,  which,  while  resulting  in  reduced  fidelity

recordings, also permit quicker and faster data collection from a larger sample than would be

allowed by research-grade equipment.  Most importantly,  while  estimating multiple  parameters

would require a combination of specific tasks, task-free brain imaging data likely contains signals

that reflect multiple parameters of interest.  Once collected,  every additional parameter can be

extracted from the data without increasing the number of sessions or their duration.

In  addition  to  its  practicality,  the  use  of  task-free  neuroimaging  data  to  estimate

idiographic parameters provides methodological and conceptual advantages. First, it provides a

direct connection to the biological interpretation of a parameter. Second, it provides a useful way

to constrain the development of computational cognitive models, as solid correlations with well-

established  biological  correlates  could  become  a  litmus  test  of  the  construct  validity  of

components/conceptual constructs of computational models. 

Of course, for these implications to be realistic, the method we have outlined here would

need  to  be  expanded  upon  and  tested  using  other  well-established  models  and  parameters.

Nonetheless, we believe in the importance of this approach for future research. As noted in the

introduction,  idiographic  models  are  necessary  for  successful  translational  applications  of

cognitive  research  in  education  and  clinical  settings,  and  task-free  measures  of  idiographic

parameters provide the most straightforward and biologically-grounded method to tailor models

to particular individuals. 
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