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Abstract

High-throughput immunosequencing allows re-
constructing the immune repertoire of an individ-
ual, which is an exceptional opportunity for new
immunotherapies, immunodiagnostics, and vac-
cine design. Such immune repertoires are shaped
by past and current immune events, for example
infection and disease, and thus record an indi-
vidual’s state of health. Consequently, immune
repertoire sequencing data may enable the predic-
tion of health and disease using machine learning.
However, finding the connections between an in-
dividual’s repertoire and the individual’s disease
class, with potentially hundreds of thousands to
millions of short sequences per individual, poses
a difficult and unique challenge for machine learn-
ing methods. In this work, we present our method
DeepRC that combines a Deep Learning architec-
ture with attention-based multiple instance learn-
ing. To validate that DeepRC accurately predicts
an individual’s disease class based on its immune
repertoire and determines the associated class-
specific sequence motifs, we applied DeepRC
in four large-scale experiments encompassing
ground-truth simulated as well as real-world virus
infection data. We demonstrate that DeepRC out-
performs all tested methods with respect to pre-
dictive performance and enables the extraction
of those sequence motifs that are connected to a
given disease class.

1Institute for Machine Learning, Johannes Kepler University
Linz, Austria 2LIT AI Lab, Johannes Kepler University Linz, Aus-
tria 3Department of Immunology, University of Oslo, Oslo, Nor-
way 4Department of Informatics, University of Oslo, Oslo, Norway
5Institute of Advanced Research in Artificial Intelligence (IARAI).
Correspondence to: Günter Klambauer <klambauer@ml.jku.at>.

Pre-print.

1. Introduction
Immune receptors enable the immune system to specifi-
cally recognize disease agents or pathogens. Each immune
encounter is recorded as an immune event into immune
memory by preserving and amplifying immune receptors in
the repertoire used to fight a given disease. This is, for ex-
ample, the principle of vaccination. Each human has about
107–108 unique immune receptors with low overlap across
individuals and sampled from a potential diversity of> 1014

receptors (Mora & Walczak, 2019). The ability to sequence
and analyze human immune receptors at large scale has led
to fundamental and mechanistic insight into the adaptive
immune system and has also opened the opportunity for the
development of novel diagnostics and therapy approaches
(Georgiou et al., 2014; Brown et al., 2019).

Each individual is uniquely characterized by their immune
repertoire, which is acquired and changed during life. This
repertoire may be influenced by all diseases that an individ-
ual is exposed to during their lives and hence contains highly
valuable information about those diseases. As a prominent
example, Emerson et al. (2017) were able to discriminate
between cytomegalovirus (CMV) positive and negative in-
dividuals based solely on the presence of CMV-associated
immune receptor T-cell receptor (TCR) sequences and could
identify receptor sequences associated with the immune sta-
tus. In a similar approach, Ostmeyer et al. (2019) have
identified motifs in TCR sequence repertoires that distin-
guish between tumor-infiltrating lymphocyte and adjacent
healthy tissues. Those studies established that the sequenced
immune repertoire is a highly complex data type, which can
be tackled by a large variety of computational methods. It
is envisioned that the analysis of such immune repertoires
at large scale could bring insights into diseases that are
currently difficult to treat, such as autoimmune diseases
(Bashford-Rogers et al., 2019; Liu et al., 2019).

Immune repertoire classification, i.e. classifying the im-
mune status based on the immune repertoire sequences, is
essentially a text-book example for a multiple instance learn-
ing problem (Dietterich et al., 1997; Maron & Lozano-Pérez,
1998; Wang et al., 2018). Briefly, the immune repertoire of
an individual consists of an immensely large bag of immune
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Figure 1. Schematic representation of the DeepRC approach. a) An immune repertoire X is represented by large bags of immune
receptor sequences (colored). A neural network (NN) h serves to recognize patterns in each of the sequences sk and maps them to
sequence-representations zk. A pooling function f is used to obtain a repertoire-representation z for the input object. Finally, an output
network o predicts the class label ŷ. b) DeepRC uses stacked 1D convolutions for a parameterized function h due to their computational
efficiency. Potentially, millions of sequences have to be processed for each input object. In principle, also RNNs, such as LSTMs
(Hochreiter et al., 2007), or Transformer networks (Vaswani et al., 2017c) may be used but are currently computationally too costly.
c) Attention-pooling is used to obtain a repertoire-representation z for each input object, where DeepRC uses weighted averages of
sequence-representations. The weight values are predicted by a Transformer-like attention mechanism.

receptors, represented as biological sequences. Usually the
presence of only a small fraction of particular receptor deter-
mines the immune status with respect to a particular disease
(Christophersen et al., 2014; Emerson et al., 2017). This
situation is exactly described by multiple instance learning
(MIL), in which the presence of a single instance in a bag
can determine the class of the whole bag. Attention-based
MIL has been successfully used for image data, for example
to identify tiny objects in large images (Ilse et al., 2018;
Pawlowski et al., 2019; Tomita et al., 2019; Kimeswenger
et al., 2019). MIL problems are typically the more difficult,
the larger the bag of instances and the fewer the instances
that cause the label are. Therefore, classification of immune
repertoires bears a high difficulty since each immune reper-
toire can contain millions of sequences as instances and
only few indicate the class. Further properties of the data
that complicate the problem are (a) the overlap of immune
repertoires of different individuals is low (in most cases,
maximally low single-digit percentage values) (Greiff et al.,
2017; Elhanati et al., 2018), (b) multiple different sequences

can bind to the same pathogen (Wucherpfennig et al., 2007),
and (c) only subsequences within the sequences determines
whether binding to an pathogen is possible (Dash et al.,
2017; Glanville et al., 2017; Akbar et al., 2019; Springer
et al., 2020; Fischer et al., 2019). In summary, immune reper-
toire classification can be formulated as multiple instance
learning with sparse signals and large numbers of instances,
which represents a challenge for currently available machine
learning methods. Additionally, ideally, methods should be
interpretable, since the extraction of class-associated se-
quence motifs is desired to gain crucial biological insight.

In this work, we contribute the following:

• We propose a deep attention-based multiple-instance
learning method for large bags of complex sequences,
as they occur in immune-repertoire classification.

• We conduct a large comparative study of machine learn-
ing approaches for the classification of immune reper-
toires.
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• We suggest an interpretation method for our approach
to identify those sequence motifs that are associated
with a given class.

2. Related work
Immunosequencing data has been analyzed with computa-
tional methods for a variety of different tasks (Greiff et al.,
2015; Shugay et al., 2015; Miho et al., 2018; Yaari & Kle-
instein, 2015; Wardemann & Busse, 2017). A large part of
the currently available machine learning methods for imm-
mune receptor data have focused on the individual immune
receptors in a repertoire, with the aim to, for example, pre-
dict the antigen or antigen portion (epitope) to which these
sequences bind or to predict sharing of receptors across in-
dividuals (Gielis et al., 2019; Springer et al., 2020; Jurtz
et al., 2018; Moris et al., 2019; Fischer et al., 2019; Greiff
et al., 2017; Sidhom et al., 2019; Elhanati et al., 2018). Re-
cently, Jurtz et al. (2018) used 1D convolutional neural net-
works (CNNs) to predict antigen binding of TCR sequences
(specifically, binding of TCR sequences to peptide-MHC
complexes) and demonstrated that motifs can be extracted
from these models. This result has motivated our approach
to use 1D CNNs at the sequence level. Similarly, Konishi
et al. (2019) use CNNs, Gradient Boosting, and other ML
techniques on B-cell receptor (BCR) sequences to classify
tumor tissue from normal tissue. However, the methods
presented so far are working on individual sequences, which
is a supervised machine learning task, in which a particular
class, the epitope, has to be predicted based on a single input
sequence.

Immune repertoire classification has been considered as
multiple instance learning (MIL) problem in the follow-
ing works. A Deep Learning framework called DeepTCR
(Sidhom et al., 2019) implements several Deep Learning
approaches for immunosequencing data. The computational
framework, inter alia, allows for attention-based MIL reper-
toire classifiers and implements a basic form of attention-
based averaging. Ostmeyer et al. (2019) already suggested
a MIL method for immune repertoire classification. This
method considers 4-mers, fixed sub-sequences of length
4, as instances of an input object and trained a logistic
regression model with these 4-mers as input. The predic-
tions of the logistic regression model for each 4-mer were
max-pooled to obtain one prediction per input object. This
approach is characterized by (a) the rigidity of the k-mer
features as compared to convolutional kernels (Alipanahi
et al., 2015; Zhou & Troyanskaya, 2015; Zeng et al., 2016),
(b) the max-pooling operation, which constrains the network
to learn from a single, top-ranked k-mer for each iteration
over the input object, and (c) the pooling of predictions
scores rather than representations (Wang et al., 2018). Our
experiments also support that these choices in the design of

the method can lead to constraints on the predictive perfor-
mance (see Section 5).

Our DeepRC method also uses a multiple-instance learning
approach but considers sequences rather than k-mers as in-
stances within an input object and uses a transformer-like at-
tention mechanism. DeepRC sets out to avoid the the above-
mentioned constraints of current methods by (a) using 1D
convolutions as feature extractors, (b) applying transformer-
like attention-based pooling instead of max-pooling and
learning a classifier on the repertoire-representation rather
than a classifier on the sequence-representation, and (c)
pooling learned representations rather than predictions.

3. Problem setting and notation
We consider a multiple-instance learning (MIL) problem,
in which an input object X is a bag of K instances X =
{s1, . . . , sdk

}, which do not have dependencies nor order-
ings between them and K can be different for every object.
We assume that each instance sk is associated with a la-
bel yk ∈ {0, 1}, assuming a binary classification task, to
which we do not have access. We only have access to a
label Y = maxk yk for an input object or bag. Note that
this poses a credit assignment problem, since the sequences
that are responsible for the label Y have to be identified.

A model ŷ = g(X) should be (a) invariant to permutations
of the instances and (b) able to cope with the fact that K
varies across input objects (Ilse et al., 2018), which is a
problem also posed by point sets (Qi et al., 2017). Two
principled approaches exist. The first approach is to learn
an instance-level scoring function h : S 7→ [0, 1], which
is then pooled across instances with a pooling function
f , for example by average-pooling or max-pooling (see
below). The second approach is to construct an instance
representation zk of each instance by h : S 7→ Rdv and then
code the bag, or the input object, by pooling these instance
representations (Wang et al., 2018) via a function f . An
output function o : Rdv 7→ [0, 1] subsequently classifies
the bag. The second approach, in which representations
rather than scoring functions are pooled, is currently best
performing (Wang et al., 2018). This approach is enhanced
by an attention-mechanisms for pooling.

In the problem at hand, the input object X is the immune
repertoire of an individual that consists of a large set of
immune receptor sequences (T-cell receptors or antibodies).
Immune receptors are primarily represented as sequences sk
from a space sk ∈ S. These sequences act as the instances
in the MIL problem. An immune repertoire X is a bag of
a large number of sequences X = {s1, . . . , sdk

}, which
corresponds to an input object.

Although immune repertoire classification can readily be
formulated as multiple-instance learning problem, it is yet
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unclear how well machine learning methods solve the above-
described problem with a large number of instances dk �
10, 000 and with instances sk being complex sequences. We
next describe currently used pooling functions for multiple-
instance learning problems.

Pooling functions for MIL problems. Different pooling
functions equip a model g with the property to be invariant
to permutations of instances and with the ability to process
different numbers of instances. Typically, a neural network
hθ with parameters θ is trained to obtain a function that
maps each instance onto a representation: zk = hθ(sk).
A representation of the input object X = {s1, . . . , sdk

} is
constructed via one of the following pooling functions:

• Average-pooling:

z =
1

dk

dk∑
k=1

zk (1)

• Max-pooling:

z =

dv∑
m=1

em( max
k,1≤k≤dk

{zkm}), (2)

where em = (0, . . . , 1︸︷︷︸
m-th position

, . . .).

• Attention-pooling:

z =

dk∑
k=1

akzk, (3)

where ak are non-negative (ak ≥ 0), sum to one
(
∑dk

k=1 ak = 1), and are determined by an attention
mechanism.

These pooling-functions are invariant to permutations of
{1, . . . , dk} and are differentiable. Therefore, they are
suited as building blocks for Deep Learning architectures.
Other types of pooling functions, that operate on predictions
rather than representations, have also been suggested, for
example the noisy-AND function (Kraus et al., 2016). We
employ attention pooling in our DeepRC model as detailed
in the following.

Transformer-like attention mechanism. The key-value-
attention mechanism has been very successful and became
popular through the Transformer (Vaswani et al., 2017a;b)
and BERT (Devlin et al., 2018; 2019) models in natural
language processing. Recently it was found that the key-
value-attention mechanism corresponds to a modern Hop-
field network with a storage capacity that is exponential in
the dimension of the vector space and which converges after

just one update (Ramsauer et al., 2020). Therefore using
the key-value-attention mechanism is the natural choice for
our task and is theoretically justified for the large number
of vectors (sequence patterns) that appear in the immune
repertoire classification task.

The attention mechanism assumes a similarity space of di-
mension de for keys and queries to compare them. A set
of dk key vectors are combined to the matrixK ∈ Rdk×de .
A set of dq query vectors are combined to the matrix
Q ∈ Rdq×de . Similarities between queries and keys are
computed by inner products, therefore queries can search
for similar keys that are stored. Another set of dk value
vectors are combined to the matrix V ∈ Rdk×dv . The out-
put of the attention mechanism is a weighted average of
the value vectors for each query q. The i-th vector vi is
weighted by the similarity between the i-th key ki and the
query q. The similarity is given by the softmax of the inner
products of the query q with the keys ki. All queries are
calculated in parallel via matrix operations. Consequently,
the attention function Att(Q,K,V ) maps queriesQ, keys
K, and values V to dv-dimensional outputs:

Att(Q,K,V ;β) = softmax(βQKT )V , (4)

where typically β = 1√
de

and the softmax-function is ap-
plied row-wise. While this attention mechanism has orig-
inally been developed for sequence tasks (Vaswani et al.,
2017c), it can readily be transferred to sets (Lee et al., 2019;
Ye et al., 2018). We will employ this attention mechanism
in DeepRC.

4. Deep Repertoire Classification
We propose a novel method Deep Repertoire Classification
(DeepRC) for immune repertoire classification with
attention-based deep massive multiple instance learning and
compare it against other machine learning approaches. For
DeepRC, we consider immune repertoires as input objects,
which are represented as bags of instances. In a bag, each
instance is an immune receptor sequence and each bag can
contain a large number of sequences. Note that we will
use zk to denote the sequence-representation of the k-th
sequence and z to denote the repertoire-representation. At
the core, DeepRC consists of a Transformer-like attention-
mechanism that extracts the most important information
from each repertoire. We first give an overview of the at-
tention mechanism and then provide details on each of the
sub-networks h1, h2, and o of DeepRC. (Overview: Fig. 1;
Architecture: Fig.2; Implementation details: App. A2.)

Attention mechanism in DeepRC. This mechanism is
based on the three matricesK (the keys),Q (the queries),
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and V (the values) together with a parameter β.

Values. DeepRC uses a 1D-convolutional network h1 (Le-
Cun et al., 1998; Hu et al., 2014; Kelley et al., 2016) that
supplies a sequence-representation zk = h1(sk), which
acts as the values V = Z = (z1, . . . ,zdk

) in the attention
mechanism (see Figure 2).

Keys. A second neural network h2, which shares its first
layers with h1, is used to obtain keys K ∈ Rdk×de for
each sequence in the repertoire. This network uses 2 self-
normalizing layers (Klambauer et al., 2017) with 32 units
per layer (see Figure 2).

Query. We use a fixed de-dimensional query (row-)vector ξ
which is learned via backpropagation. For more attention
heads, each head has a fixed query vector.

With the quantities introduced above, the Transformer atten-
tion mechanism (4) of DeepRC is implemented as follows:

z = Att(ξ,K,Z;
1√
de

) = softmax

(
ξKT

√
de

)
Z, (5)

where Z ∈ Rdk×dv are the sequence-representations
stacked row-wise, K are the keys, and z is the repertoire-
representation and at the same time a weighted mean of
sequence-representations zk. The attention mechanism can
readily be extended to multiple queries and heads, how-
ever, computational efficiency currently constrains this (see
paragraph ”1D-ConvNet for pattern recognition”).

Attention-pooling and interpretability. Each input object,
i.e. repertoire, consists of a large number dk of sequences,
which are reduced to a single fixed-size feature vector
of length dv representing the whole input object by an
attention-pooling function. To this end, a Transformer-like
attention mechanism adapted to sets is realized in DeepRC
which supplies ak – the importance of the sequence sk. This
importance value for each sequence, is an interpretable quan-
tity, which is highly desired for the immunological problem
at hand.

Classification layer and network parameters. The
repertoire-representation z is then used as input for a fully-
connected output network ŷ = o(z) that predicts the im-
mune status, where we found it sufficient to train single-
layer networks. In the simplest case, DeepRC is predicts a
scalar target y. That is, it predicts the class label, e.g. the
immune status of an immune repertoire, using one output
value. For this, the output values would be activated using
a sigmoid function. However, since DeepRC is an end-to-
end deep learning model, multiple targets may be predicted
simultaneously in classification or regression settings or a
mix of both. This allows for the introduction of additional

information into the system via auxiliary targets such as age,
sex, or other metadata.

Network parameters, training, and inference.
DeepRC is trained using standard gradient descent
methods to minimize a regularized cross-entropy loss. The
network parameters are θ1,θ2,θo for the sub-networks
h1, h2, and o, respectively, and additionally ξ. In more
detail, we train DeepRC using Adam (Kingma & Ba, 2014)
with a batch size 4 and learning rate 10−4. To increase
numerical stability for 16 bit float computations, the ε
parameter was set to an increased value of ε = 10−4.

1D-ConvNet for pattern recognition. In the following,
we describe how DeepRC identifies patterns in the individ-
ual sequences and reduces each sequence in the input object
to a fixed-size feature vector. DeepRC employs 1D convolu-
tion layers to extract patterns, where trainable weight kernels
are convolved over the sequence positions. In principle, also
recurrent neural networks or Transformer networks could be
used instead of 1D CNNs, however, (a) the computational
complexity of the network must be low to be able to process
millions of sequences for a single update. Additionally, (b)
the learned network should be able to provide insights in
the recognized patterns in form of motifs. Both properties
(a) and (b) are fulfilled by 1D convolution operations that
are used by DeepRC.

For the input layer of the CNN, the characters in the input
sequence, i.e. the amino acids (AAs), are encoded in a one-
hot vector of length 20. To also provide information about
the position of an AA in the sequence, we add 3 additional
input features with values in range [0, 1] to encode the posi-
tion of an AA relative to the sequence. These 3 positional
features encode whether the AA is located at the beginning,
the center, or the end of the sequence, respectively, as shown
in Figure A1. We concatenate these 3 positional features to
the one-hot vector of AAs, which results in a feature vec-
tor of size 23 per sequence position. Each repertoire, now
represented as bag of feature vectors, is then normalized to
unit variance. Since the CMV dataset provides sequences
with an associated abundance or absolute frequency value
per sequence, we incorporate this information into the input
of DeepRC. The one-hot AA features of a sequence are
multiplied by a scaling factor max (1, log ca) before nor-
malization, where ca is the count of a sequence. We feed
the sequences with 23 features per position into the CNN,
as shown in Figure 2.

We use one 1D CNN layer (Hu et al., 2014) with SELU
activation functions (Klambauer et al., 2017) to identify the
relevant patterns in the input sequences with a computa-
tionally light-weight operation. The larger the kernel size,
the more surrounding sequence positions are taken into ac-
count, which influences the length of the motifs that can be
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Figure 2. Schematic representation of the DeepRC architecture. dl
indicates the sequence length.

extracted. We therefore adjust the kernel size during hyper-
parameter search. In prior works (Ostmeyer et al., 2019), a
k-mer size of 4 yielded good predictive performance, which
could indicate that a kernel size in the range of 4 may be a
proficient choice. For dv trainable kernels, this produces a
feature vector of length dv at each sequence position. Sub-
sequently, global max-pooling over all sequence positions
reduces the sequence-representations zk to the fixed length
dv. Given the challenging size of the input data per reper-
toire, the computation of the CNN activations and weight
updates is performed using 16-bit floating point values. A
list of hyperparameters evaluated for DeepRC is given in
Table 1.

Regularization. We apply random and attention-based
subsampling of repertoire sequences to reduce over-fitting
and increase computational efficiency. During training, each
repertoire is subsampled to 10, 000 input sequences, which
are randomly drawn from the respective repertoire. This
can also be interpreted as random drop-out (Hinton et al.,
2012) on the input sequences or attention weights. During
training and evaluation, the attention weights computed by

the attention network are furthermore used to rank the input
sequences. Based on this ranking, the repertoire is reduced
to the 10% of sequences with the highest attention weights.
These top 10% of sequences are then used to compute the
weight updates and the prediction for the repertoire. Addi-
tionally, one might employ further regularization techniques,
which we did not investigate further due to the high demands
to computation time. Such regularization techniques include
l1 and l2 weight decay, noise in the form of random AA
permutations in the input sequences, noise on the attention
weights, or random shuffling of sequences between reper-
toires that belong to the negative, i.e. healthy, class. The
last regularization technique assumes that the sequences
in positive, i.e. diseased, class repertoires carry a signal,
such as an AA motif corresponding to an immune response,
whereas the sequences in negative repertoires do not. Hence,
the sequences can be shuffled randomly between negative
class repertoires without obscuring the signal in the positive
class repertoires.

Interpretability. DeepRC allows for two forms of inter-
pretability methods. (a) Due to its attention-based design, a
trained model can be used to compute the attention weights
of a sequence, which directly indicates its importance. (b)
DeepRC furthermore allows for the usage of contribution
analysis methods, such as Integrated Gradients (IG) (Sun-
dararajan et al., 2017) or Layer-Wise Relevance Propagation
(Montavon et al., 2018; Arras et al., 2019; Montavon et al.,
2019; Preuer et al., 2019). We apply IG to identify the input
patterns that are relevant for the classification. To identify
AA patterns with high contributions in the input sequences,
we apply IG to the AAs in the input sequences. Additionally,
we apply IG to the kernels of the 1D CNN, which allows
us to identify AA motifs with high contributions. In detail,
we compute the IG contributions for the AAs and positional
features in the kernels for every repertoire in the validation
and test set, so as to exclude potential artifacts caused by
over-fitting. Averaging the IG values over these repertoires
then results in concise AA motifs. We include qualitative
visual analyses of the IG method on different datasets in
Appendix A5.

Hyperparameters. Table 1 provides an overview of the
hyperparameter search, which was conducted as a grid-
search for each of the datasets in a nested 5-fold cross-
validation (CV) procedure, as described in section 5.2.

5. Experiments
5.1. Datasets

We aimed at constructing immune repertoire classification
scenarios with varying degree of realism and difficulties
in order to compare and analyze the suggested machine
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learning rate 10−4

number of kernels (dv) {8; 16; 32; 64∗; 128∗; 256∗}
number of CNN layers {1}
number of layers in key-NN {2}
number of units in key-NN {32}
kernel size {5; 7; 9}
subsampled seqences 10, 000
batch size 4

Table 1. DeepRC hyperparameter search space. Every 5 · 103
updates, the current model was evaluated against the validation
fold. The early stopping hyperparameter was determined by select-
ing the model with the best loss on the validation fold after 105

updates. ∗: Experiments for {64; 128; 256} kernels were omitted
for datasets with motif implantation probabilities below 1% in
category “simulated immunosequencing data”.

learning methods. To this end, we either use simulated or
experimentally-observed immune receptor sequences and
we implant signals, specifically, sequence motifs (Akbar
et al., 2019; Weber et al., 2020), at different frequencies
into sequences of repertoires of the positive class. It has
been shown previously that interaction of immune recep-
tors with antigen occurs via short sequence stretches (Akbar
et al., 2019). Thus, implantation of short motif sequences
simulating an immune signal is biologically meaningful.
Our benchmarking study comprises four different categories
of datasets: (a) Simulated immunosequencing data with
implanted signals (where the signal is defined as sets of
motifs), (b) LSTM-generated immunosequencing data with
implanted signals, (c) real-world immunosequencing data
with implanted signals, and (d) real-world immunosequenc-
ing data. Each of the first three categories consists of multi-
ple datasets with varying difficulty depending on the type
and frequency of the implanted signal. We consider binary
classification tasks to simulate the immune status of healthy
and diseased individuals. We randomly generate immune
repertoires with varying numbers of sequences, where we
implant sequence motifs in the repertoires of the diseased
individuals, i.e. the positive class. The sequences of a reper-
toire are also randomly generated by different procedures
(detailed below). Each sequence is composed of 20 differ-
ent characters, corresponding to amino acids, and has an
average length of 14.5 AAs.

Simulated immunosequencing data. In the first cate-
gory, we aim at investigating the impact of the signal fre-
quency and signal complexity on the performance of the
different methods. To this end, we created 18 datasets,
which each contain a large number of repertoires with a
large number of random AA sequences in each repertoire.
We then implanted signals in the AA sequences of the pos-
itive class repertoires, where the 18 datasets differ in fre-
quency and complexity of the implanted signals. In detail,

the AAs in the sequences were sampled randomly indepen-
dent of their position in the sequence, while the frequencies
of AAs, distribution of sequence lengths, and distribution
of numbers of sequences per repertoires are following the
respective distributions observed in the real-world CMV
dataset (Emerson et al., 2017). For this, we first sampled
the number of sequences for a repertoire from a Gaussian
N (µ = 316k, σ = 132k) distribution and rounded to a pos-
itive integer. We re-sampled if the size was below 5k. We
then generated random sequences of AAs with a length of
N (µ = 14.5, σ = 1.8), again rounded to positive integers.
Each simulated repertoire was then randomly assigned to
either the positive or negative class, with 2, 500 repertoires
per class. In the repertoires assigned to the positive class, we
implanted motifs with an average length of 4 AA, following
the results of the experimental analysis of antigen-binding
motifs in antibodies and T-cell receptor sequences (Akbar
et al., 2019). We varied the characteristics of the implanted
motifs for each of the 18 datasets with respect to the fol-
lowing parameters: (a) ρ, the probability of a motif being
implanted in a sequence of a positive repertoire, i.e. the
average ratio of sequences containing the motif. (b) The
number of wild-card positions in the motif. A wild-card
position contains a random AA character which is randomly
sampled for each sequence. Wild-card positions are located
in the center of the implanted motif. (c) The number of
deletion positions in the implanted motif. A deletion posi-
tion has probability of 0.5 of being removed from the motif.
Deletion positions are located in the center of the implanted
motifs.

In this way, we generated 18 different datasets of variable
difficulty containing in total roughly 28.7 billion sequences.
See Table 2 for an overview of the properties of the im-
planted motifs in the 18 datasets.

LSTM-generated data. In the second dataset category,
we investigate the impact of the signal frequency and com-
plexity in combination with more plausible immune receptor
sequences by taking into account the positional AA distribu-
tions and other sequence properties. To this end, we trained
an LSTM (Hochreiter & Schmidhuber, 1997) in a standard
next character prediction (Graves, 2013) setting to create
AA sequences with properties similar to experimentally ob-
served immune receptor sequences.

In the first step, the LSTM model was trained on all im-
munosequences in the CMV dataset (Emerson et al., 2017)
that contain valid information about sequence abundance
and have a known CMV label. Such an LSTM model is
able to capture various properties of the sequence, including
position-dependent probability distributions and combina-
tions, relationships, and order of AAs. We then used the
trained LSTM model to generate 1, 000 repertoires in an
autoregressive fashion, starting with a start sequence that
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was randomly sampled from the trained-on dataset. Based
on a visual inspection of the frequencies of 4-mers (see
section A4), the similarity of LSTM generated sequences
and real sequences was deemed sufficient for the purpose
of generating the AA sequences for the datasets in this cate-
gory. Details on LSTM training and repertoire generation
are given in Appendix A4.

After generation, each repertoire was assigned to either the
positive or negative class, with 500 repertoires per class.
We implanted motifs of length 4 and with varying proper-
ties in the center of the sequences of the positive class to
obtain 5 different datasets. Each sequence in the positive
repertoires has a probability ρ to carry the motif, which was
varied throughout 5 datasets (see Table 2). Each position
in the motif has a probability of 0.9 to be implanted, and
consequently a probability of 0.1 that the original AA in the
sequence remains, which can be seen as noise on the motif.

Simulated LSTM gen. Real world
seq. per bag N(316k, 132k) N(285k, 156k) 10k
repertoires 5, 000 1, 000 1, 500
motif noise 0% 10% ∗
wildcards {0; 1; 2} 0 0
deletions {0; 1} 0 0
mot. freq. ρ {1; 0.1; {10; 1; 0.5; {1; 0.1}
(in %) 0.01} 0.1; 0.05}

Table 2. Properties of simulated repertoires, variations of motifs,
and motif frequencies for the datasets in categories “simulated im-
munosequencing data”, “LSTM-generated data”, and “real-world
data with implanted signals”. Noise types for ∗ are explained in
paragraph “real-world data with implanted signals”.

Real-world data with implanted signals. In the third
category, we implanted signals into experimentally obtained
immunosequences, where we considered 4 dataset varia-
tions. Each dataset consists of 750 repertoires for each of
the two classes, where each repertoire consists of 10k se-
quences. In this way, we aim to simulate datasets with a
low sequencing coverage, which means that only relatively
few sequences per repertoire are available. The sequences
were randomly sampled from healthy (CMV negative) in-
dividuals from the CMV dataset (see below paragraph for
explanation). Two signal types were considered: (a) One
signal with one motif. The AA motif LDR was implanted
in a certain fraction of sequences. The pattern is randomly
altered at one of the three positions with probabilities 0.2,
0.6, and 0.2, respectively. (b) One signal with multiple
motifs. One of the three possible motifs LDR, CAS, and
GL-N was implanted with equal probability. Again, the
motifs were randomly altered before implantation. The AA
motif LDR changed as described above. The AA motif CAS
was altered at the second position with probability 0.6 and
with probability 0.3 at the first position. The pattern GL-N,

where - denotes a gap location, is randomly altered at the
first position with probability 0.6 and the gap has a length
of 0, 1, or 2 AAs with equal probability.

Additionally, the datasets differ in the values for ρ, the aver-
age ratio of sequences carrying a signal, which were chosen
as 1% or 0.1%. The motifs were implanted at positions 3, 5,
or 10 in the sequence with probabilities 0.3, 0.35, and 0.2,
respectively. With the remaining 0.15 chance, the motif is
implanted at any other sequence position.

Real-world data: CMV dataset. We used a real-world
dataset of 785 repertoires, each of which containing between
4, 371 to 973, 081 (avg. 299, 319) TCR sequences with a
length of 1 to 27 (avg. 14.5) AAs, originally collected and
provided by Emerson et al. (2017). 340 out of 785 reper-
toires were labelled as positive for cytomegalovirus (CMV)
serostatus, which we consider as the positive class, 420
repertoires with negative CMV serostatus, considered as
negative class, and 25 repertoires with unknown status. We
changed the number of sequence counts per repertoire from
−1 to 1 for 3 sequences. Furthermore, we exclude a total of
99 repertoires with unknown CMV status or unknown infor-
mation about the sequence abundance within a repertoire,
reducing the dataset for our analysis to 686 repertoires, 312
of which with positive and 374 with negative CMV status.

5.2. Methods compared

We evaluate and compare the performance of DeepRC
against a set of machine learning methods that serve as
baseline, were suggested, or can readily be adapted to im-
mune repertoire classification. In this section, we describe
these compared methods.

Known motif. This method serves as an estimate for the
achievable classification performance using prior knowledge
about which motif was implanted. Note that this does not
necessarily lead to perfect predictive performance since
motifs are implanted with a certain amount of noise and
could also be present in the negative class by chance. The
known motif method counts how often the known implanted
motif occurs per sequence for each repertoire and uses this
count to rank the repertoires. From this ranking, the Area
Under the receiver operator Curve (AUC) is computed as
performance measure. Probabilistic AA changes in the
known motif are not considered for this count, with the
exception of gap positions. We consider two versions of this
method: (a) Known motif binary: counts the occurrence
of the known motif in a sequence and (b) Known motif
continuous: counts the maximum number of overlapping
AAs between the known motif and all sequence positions,
which corresponds to a convolution operation with a binary
kernel followed by max-pooling. Since the implanted signal
is not known in the experimentally obtained CMV dataset,
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this method cannot be applied to this dataset.

SVM. The Support Vector Machine (SVM) approach uses
a fixed mapping from a bag of sequences to the corre-
sponding k-mer counts. The function hkmer maps each se-
quence sk to a vector representing the occurrence of k-mers
in the sequence. To avoid confusion with the sequence-
representation obtained from the CNN layers of DeepRC,
we denote uk = hkmer(sk), which is analogous to zk.
Specifically, ukm = (hkmer(sk))m = #{pm ∈ sk}, where
#{pm ∈ sk} denotes how often the k-mer pattern pm oc-
curs in sequence sk. Afterwards, average-pooling is applied
to obtain u = 1/dk

∑dk

k=1 uk, the k-mer representation of
the input object X . For two input objects X(n) and X(l)

with representations u(n) and u(l), respectively, we imple-
ment the MinMax kernel (Ralaivola et al., 2005) as follows:

k(X(n), X(l)) = kMinMax(u
(n),u(l))

=

∑dv

m=1 min(u
(n)
m , u

(l)
m )∑dv

m=1 max(u
(n)
m , u

(l)
m )

,
(6)

where u(n)m is the m-th element of the vector u(n). The
Jaccard kernel (Levandowsky & Winter, 1971) is identi-
cal to the MinMax kernel except that it operates on binary
u(n). We used a standard C-SVM, as introduced by Cortes
& Vapnik (1995). The corresponding hyperparameter C is
optimized by random search. The settings of the full hyper-
parameter search as well as the respective value ranges are
given in Appendix Table A1.

KNN. The same k-mer representation of a repertoire, as
introduced above for the SVM baseline, is used for the k-
nearest neighbor (KNN) approach. As this method clusters
samples according to distances between them, the previous
kernel definitions cannot be applied directly. It is therefore
necessary to transform the MinMax as well as the Jaccard
kernel from similarities to distances by constructing the
following (Levandowsky & Winter, 1971):

dMinMax(u
(n),u(l)) = 1− kMinMax(u

(n),u(l)),

dJaccard(u
(n),u(l)) = 1− kJaccard(u(n),u(l)).

(7)

The amount of neighbors is treated as the hyperparameter
and optimized by an exhaustive grid search. The settings
of the full hyperparameter search as well as the respective
value ranges are given in Appendix Table A2.

Logistic regression. We implemented logistic regression
on the k-mer representation u of an immune repertoire. The
model is trained by gradient descent using the Adam opti-
mizer (Kingma & Ba, 2014). The learning rate is treated
as the hyperparameter and optimized by grid search. Fur-
thermore, we explored 2 regularization settings using com-
binations of l1 and l2 weight decay. The settings of the full

hyperparameter search as well as the respective value ranges
are given in Appendix Table A3.

Logistic MIL (Ostmeyer et al). The logistic multiple
instance learning (MIL) approach for immune repertoire
classification (Ostmeyer et al., 2019) applies a logistic re-
gression model to each k-mer representation in a bag. The
resulting scores are then summarized by max-pooling to
obtain a prediction for the bag. Each amino acid of each
k-mer is represented by 5 features, the so-called Atchley
factors (Atchley et al., 2005). As k-mers of length 4 are
used, this gives a total of 4 × 5 = 20 features. One ad-
ditional feature per 4-mer is added, which represents the
relative frequency of this 4-mer with respect to its contain-
ing bag, resulting in 21 features per 4-mer. Two options for
the relative frequency feature exist, which are (a) whether
the frequency of the 4-mer (“4MER”) or (b) the frequency
of the sequence in which the 4-mer appeared (“TCRβ”) is
used. We optimized the learning rate, batch size, and early
stopping parameter on the validation set. The settings of the
full hyperparameter search as well as the respective value
ranges are given in Appendix Table A4.

5.3. Experimental Results

In this section, we report and analyze the predictive power
of DeepRC and the compared methods on the datasets de-
scribed in Section 5.1. The AUC is used as main metric for
the predictive power to focus on the ranking of the reper-
toires instead of the classification boundary.

Hyperparameter selection. We used a nested 5-fold
cross validation (CV) procedure to estimate the performance
of each of the methods. For all competing methods a hyper-
parameter search was performed, for which we split each
of the 5 training sets into an inner training set and inner
validation set. The models were trained on the inner training
set and evaluated on the inner validation set. The model
with the highest AUC score on the inner validation set is
then used to calculate the score on the respective test set.
For the hyperparameter search of DeepRC for the category
“simulated immunosequencing data”, we only conducted a
large-scale hyperparameter search on the datasets with motif
implantation probabilities below 1% due to computational
constraints, as described in Table 1. This process is repeated
for all 5 folds of the 5-fold CV and the average score on
the 5 test sets constitutes the final score of a method. The
results are reported in Table 3.

Results. In each of the four categories, “real-world data”,
“real-world data with implanted signals”, “LSTM-generated
data”, and “simulated immunosequencing data”, DeepRC
outperforms all competing methods with respect to average
AUC (see Table 3, Appendix Tables A5, A7, and A6). In all
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Real-world Real-World data with implanted signals LSTM-generated data Simulated

CMV OM 1% OM 0.1% MM 1% MM 0.1% 10% 1% 0.5% 0.1% 0.05% avg.

DeepRC 0.831 ± 0.002 1.00 ± 0.00 0.98± 0.01 1.00± 0.00 0.94±0.01 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.846± 0.223

SVM (MM) 0.825 ± 0.022 1.00 ± 0.00 0.58± 0.02 1.00± 0.00 0.53±0.02 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.99± 0.01 0.827± 0.210

SVM (J) 0.546 ± 0.021 0.99 ± 0.00 0.53± 0.02 1.00± 0.00 0.57±0.02 0.98± 0.04 1.00± 0.00 1.00± 0.00 0.90± 0.04 0.77± 0.07 0.550± 0.080

KNN (MM) 0.679 ± 0.076 0.74 ± 0.24 0.49± 0.03 0.67± 0.18 0.50±0.02 0.70± 0.27 0.72± 0.26 0.73± 0.26 0.54± 0.16 0.52± 0.15 0.634± 0.129

KNN (J) 0.534 ± 0.039 0.65 ± 0.16 0.48± 0.03 0.70± 0.20 0.51±0.03 0.70± 0.29 0.61± 0.24 0.52± 0.16 0.55± 0.19 0.54± 0.19 0.501± 0.007

Log. Regr. 0.607 ± 0.058 1.00 ± 0.00 0.54± 0.04 0.99± 0.00 0.51±0.04 1.00± 0.00 1.00± 0.00 0.93± 0.15 0.60± 0.19 0.43± 0.16 0.826± 0.211

Log. MIL (KMER) 0.582 ± 0.065 0.54 ± 0.07 0.51± 0.03 0.99± 0.00 0.62±0.15 1.00± 0.00 0.72± 0.11 0.64± 0.14 0.57± 0.15 0.53± 0.13 0.665± 0.224

Log. MIL (TCRB) 0.515 ± 0.073 0.50 ± 0.03 0.50± 0.02 0.99± 0.00 0.78±0.03 0.54± 0.09 0.57± 0.16 0.47± 0.09 0.51± 0.07 0.50± 0.12 0.501± 0.016

Known motif b. – 1.00 ± 0.00 0.70± 0.03 0.99± 0.00 0.62±0.04 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.890± 0.168

Known motif c. – 0.92 ± 0.00 0.56± 0.03 0.65± 0.03 0.52±0.03 1.00± 0.00 1.00± 0.00 0.99± 0.01 0.72± 0.09 0.63± 0.09 0.738± 0.202

Table 3. Results in terms of AUC of the method comparisons on all datasets. The reported errors are standard deviations across 5
cross-validation folds (except for the column “Simulated”). Real-world CMV: Average performance over 5 cross-validation folds in
terms of AUC. Real-world data with implanted signals: Average performance over 5 cross-validation folds in terms of AUC for each
of the four datasets. In each dataset, a signal was implanted with different frequency of 1% or 0.1%, and either a single motif (“OM”)
or multiple motifs (“MM”) were implanted. LSTM-generated data: Average performance over 5 cross-validation folds in terms of
AUC for each of the 5 datasets. In each dataset, a signal was implanted with different frequency of 10%, 1%, 0.5%, 0.1%, and 0.05%,
respectively. Simulated: Here we report the mean over 18 simulated datasets with implanted signals (see Table A5 for details). The error
reported is the standard deviation of the AUC values across datasets that have varying difficulties. More detailed results are provided in
Appendix A3.

categories, the runner-up method is the SVM with MinMax
kernel.

Results on simulated immunosequencing data. As
mentioned in section 5.1, in this setting the complexity
of the implanted signal is in focus and varies throughout 18
simulated datasets. Some datasets are difficult to classify
because the implanted motif is hidden by noise and others
are challenging to classify because only a small fraction
of sequences carry the motif. These difficulties become
evident by the method called ”known motif binary”, which
assumes the implanted motif is known. The performance of
this method ranges from a perfect AUC of 1.00 in several
datasets to an AUC of 0.532 in dataset ’17’ (see Appendix
Table A5).

DeepRC outperforms all other methods with an average
AUC of 0.864 ± 0.223, followed by the SVM with Min-
Max kernel with an average AUC of 0.827 ± 0.210 (see
Appendix Table A5). The predictive performance of all
methods suffers if the signal occurs only in an extremely
small fraction of sequences, which becomes evident from
datasets ’8’, ’11’, ’14’, and ’17’. In these datasets, only
0.01% of the sequences carry the motif and all AUC values
are below 0.55.

Results on LSTM-generated data. On the LSTM-
generated data, in which we implanted noisy motifs with

frequencies of 10%, 1%, 0.5%, 0.1%, and 0.05%, DeepRC
yields almost perfect predictive performance with an aver-
age AUC of 1.000± 0.001 (see Table A6). The second best
method, SVM with MinMax kernel, has a similar predictive
performance to DeepRC on all 5 datasets but the other com-
peting methods have a lower predictive performance at the
datasets with low frequency of the signal (0.05%).

Results on Real-world data with implanted motifs. In
this dataset category, we used real immuno-sequences and
implanted single or multiple noisy motifs. Again, DeepRC
outperforms all other methods with an average AUC of
0.980± 0.029, with the second best method being the SVM
with MinMax kernel an average AUC of 0.777 ± 0.258.
Notably, all methods except for DeepRC have difficulties
with noisy motifs at a frequency of 0.1% (see columns ”One
0.1%” and ”Multi 0.1%” in Table A7).

Results on Real-world data. On the real-world dataset,
in which the immune status of persons affected by the cy-
tomegalovirus has to be detected, the competing methods
yield predictive AUCs between 0.515 and 0.831. We note
that this dataset is not the exact dataset that was used in
Emerson et al. (2017). It differs in several ways in pre-
processing steps and also comprises a different set of reper-
toires, which leads to a more challenging dataset. We are
currently working on an immune receptor machine learn-
ing platform (Pavlović et al., 2020) that aims to enable
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direct replication and comparability with previous studies.
The best performing method is DeepRC with an AUC of
0.831 ± 0.002, followed by the SVM with MinMax ker-
nel (AUC 0.825 ± 0.022) and KNN with the same kernel
with an AUC of 0.678± 0.076. The top-ranked sequences
by DeepRC significantly correspond to those detected by
Emerson et al. (2017), which we tested by a U-test with the
null hypothesis that the attention values of the sequences de-
tected by Emerson et al. (2017) would be equal to the atten-
tion values of the remaining sequences (p-value 1.3 ·10−93).
The sequences and their attention values are displayed in
Appendix Table A10.

6. Conclusion
We have demonstrated how attention-based deep multiple
instance learning can be adapted to the task of classifying
the immune status of immune repertoires. For immune
state classification, methods have to identify the discrim-
inating sequences among a large set of sequences in an
immune repertoire, specifically, even motifs within those
sequences have to be identified. We have shown that a 1D-
convolutional network combined with a Transformer-like
attention mechanism with a fixed query can solve this diffi-
cult task across a range of different experimental conditions.
In large-scale experiments, we have compared a set of ma-
chine learning methods and previously suggested methods
with DeepRC and found that DeepRC yields the best predic-
tive quality with respect to AUC. Furthermore, DeepRC can
be interpreted with suitable methods, by which we extract
motifs from the sequences (Appendix A5).

The current methods are mostly limited by computational
complexity, since both hyperparameter and model selection
is computationally demanding. For hyperparameter selec-
tion, a substantial set of architectures have to be searched
to identify a proficient one. For model selection, a single
repertoire requires the propagatation of many thousands of
sequences through a neural network and keep those quan-
tities in GPU memory for the attention mechanism. Thus,
increased GPU memory would significantly boost our ap-
proach. Increased computational power would also allow
for more advanced architectures and attention mechanisms,
which may further improve predictive performance.

We envision that with the increasing availability of large
immunosequencing datasets (Kovaltsuk et al., 2018; Cor-
rie et al., 2018; Christley et al., 2018; Zhang et al., 2020),
further fine-tuning of ground-truth benchmarking immune
receptor datasets (Weber et al., 2020; Olson et al., 2019;
Marcou et al., 2018), increased GPU memory, and increased
computing power, it will be possible to identify discriminat-
ing immune receptor motifs for many diseases, potentially
even for the current SARS-CoV-2 (CoViD-19) pandemic.
Such results would pave the way towards antibody and TCR-

driven immunotherapies and immunodiagnostics as well as
rational vaccine design.

Availability
All datasets and code will be fully released at
https://github.com/ml-jku/DeepRC. The
CMV dataset is publicly available at https:
//clients.adaptivebiotech.com/pub/
Emerson-2017-NatGen.
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ing the multiple instance problem with axis-parallel rect-
angles. Artificial intelligence, 89(1-2):31–71, 1997.

Elhanati, Y., Sethna, Z., Callan Jr, C. G., Mora, T., and
Walczak, A. M. Predicting the spectrum of tcr reper-
toire sharing with a data-driven model of recombination.
Immunological reviews, 284(1):167–179, 2018.

Emerson, R. O., DeWitt, W. S., Vignali, M., Gravley, J.,
Hu, J. K., Osborne, E. J., Desmarais, C., Klinger, M.,
Carlson, C. S., Hansen, J. A., et al. Immunosequencing
identifies signatures of cytomegalovirus exposure history
and hla-mediated effects on the t cell repertoire. Nature
genetics, 49(5):659, 2017.

Fischer, D. S., Wu, Y., Schubert, B., and Theis, F. J. Predict-
ing antigen-specificity of single t-cells based on tcr cdr3
regions. BioRxiv, pp. 734053, 2019.

Georgiou, G., Ippolito, G. C., Beausang, J., Busse, C. E.,
Wardemann, H., and Quake, S. R. The promise and
challenge of high-throughput sequencing of the antibody
repertoire. Nature biotechnology, 32(2):158, 2014.

Gielis, S., Moris, P., Bittremieux, W., De Neuter, N., Ogun-
jimi, B., Laukens, K., and Meysman, P. Tcrex: detection
of enriched t cell epitope specificity in full t cell receptor
sequence repertoires. bioRxiv, pp. 373472, 2019.

Glanville, J., Huang, H., Nau, A., Hatton, O., Wagar, L. E.,
Rubelt, F., Ji, X., Han, A., Krams, S. M., Pettus, C.,
et al. Identifying specificity groups in the t cell receptor
repertoire. Nature, 547(7661):94–98, 2017.

Graves, A. Generating sequences with recurrent neural
networks. arXiv preprint arXiv:1308.0850, 2013.

Greiff, V., Bhat, P., Cook, S. C., Menzel, U., Kang, W.,
and Reddy, S. T. A bioinformatic framework for im-
mune repertoire diversity profiling enables detection of
immunological status. Genome medicine, 7(1):49, 2015.

Greiff, V., Weber, C. R., Palme, J., Bodenhofer, U., Miho,
E., Menzel, U., and Reddy, S. T. Learning the high-
dimensional immunogenomic features that predict public
and private antibody repertoires. The Journal of Immunol-
ogy, 199(8):2985–2997, 2017.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever,
I., and Salakhutdinov, R. R. Improving neural networks
by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580, 2012.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

Hochreiter, S., Heusel, M., and Obermayer, K. Fast model-
based protein homology detection without alignment.
Bioinformatics, 23(14):1728–1736, 2007.

Hu, B., Lu, Z., Li, H., and Chen, Q. Convolutional neu-
ral network architectures for matching natural language
sentences. In Advances in neural information processing
systems, pp. 2042–2050, 2014.

Ilse, M., Tomczak, J. M., and Welling, M. Attention-based
deep multiple instance learning. International Conference
on Machine Learning (ICML), 2018.

Jurtz, V. I., Jessen, L. E., Bentzen, A. K., Jespersen, M. C.,
Mahajan, S., Vita, R., Jensen, K. K., Marcatili, P., Hadrup,
S. R., Peters, B., et al. Nettcr: sequence-based prediction
of tcr binding to peptide-mhc complexes using convolu-
tional neural networks. bioRxiv, pp. 433706, 2018.

Kelley, D. R., Snoek, J., and Rinn, J. L. Basset: learning
the regulatory code of the accessible genome with deep
convolutional neural networks. Genome research, 26(7):
990–999, 2016.

Kimeswenger, S., Rumetshofer, E., Hofmarcher, M.,
Tschandl, P., Kittler, H., Hochreiter, S., Hötzenecker,
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Appendix

A1. Details on hyperparameter selection
Known motif. This method has no hyperparameters and has been applied to all datasets except for the CMV dataset.

SVM. The corresponding hyperparameter C of the SVM is optimized by randomly drawing 103 values in the range of
[−6; 6] according to a uniform distribution. These values act as the exponents of a power of 10 and are applied for each of
the two kernel types (see Appendix A1).

C 10[−6;6]]
type of kernel {MinMax; Jaccard}
number of trials 103

Table A1. Settings used in the hyperparameter search of the SVM baseline approach. The number of trials defines the quantity of random
values of the C penalty term (per type of kernel).

KNN. The amount of neighbors is treated as the hyperparameter and optimized by grid search operating in the discrete
range of [1;max{N, 103}] with a step size of 1. The corresponding tight upper bound is automatically defined by the total
amount of samples N ∈ N>0 in the training set, capped at 103 (see Appendix A2).

number of neighbors
[
1;max{N, 103}

]
type of kernel {MinMax; Jaccard}

Table A2. Settings used in the hyperparameter search of the KNN baseline approach. The number of trials (per type of kernel) is
automatically defined by the total amount of samples N ∈ N>0 in the training set, capped at 103.

Logistic regression. Hyperparameter optimization strategy: grid search.

learning rate 10−{2;3;4}

batch size 4
max. updates 105

coefficient β1 (Adam) 0.9
coefficient β2 (Adam) 0.999
weight decay weightings {(l1 = 10−7, l2 = 10−3); (l1 = 10−7, l2 = 10−5)}

Table A3. Settings used in the hyperparameter search of the Logistic Regression baseline approach.

Logistic MIL. For this method, we adjusted the learning rate as well as the batch size as hyperparameters by randomly
drawing 25 different hyperparameter combinations from a uniform distribution. The corresponding range of the learning
rate is [−4.5;−1.5], which acts as the exponent of a power of 10. The batch size lies within the range of [1; 32]. For each
hyperparameter combination, a model is optimized by gradient descent using Adam, whereas the early stopping parameter
is adjusted according to the corresponding validation set (see Table A4).
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learning rate 10[−4.5;−1.5]

batch size [1; 32]
relative abundance term {4MER;TCRβ}
number of trials 25
max. epochs 102

coefficient β1 0.9
coefficient β2 0.999

Table A4. Settings used in the hyperparameter search of the Logistic MIL baseline approach. The number of trials (per type of relative
abundance) defines the quantity of combinations of random values of the learning rate as well as the batch size.
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A2. DeepRC implementation details
In this section we provide more detailed information on the implementation of DeepRC.

Positional features. We use 3 features to encode the relative position of each AA, as illustrated in Figure A1. The inputs
are provided to the DeepRC network as 16 bit floating point values. Sequences of different lengths were zero-padded to the
maximum sequence length per batch at the sequence ends.

AA position in sequence

fe
a
tu

re
 v

a
lu

e

1

0

sequence
start

sequence
end

sequence
center

feature 2
feature 3

feature 1

Figure A1. We use 3 input features with values in range [0, 1] to encode the relative position of each AA in a sequence with respect to the
sequence. “feature 1” encodes if an AA is close to the sequence start, “feature 2” to the sequence center, and “feature 3” to the sequence
end. For every position in the sequence, the values of all three features sum up to 1.

Computation time and optimization. As mentioned in section 4, we took measures to meet the high demands of
computation time and GPU memory consumption in our implementation, in order to make the large number of experiments
feasible. We train the DeepRC model with a small batch size of 4 samples and perform computation of inference and updates
of the 1D CNN using 16 bit floating point values. The rest of the network is trained using 32 bit floating point values. The
Adam parameter for numerical stability was therefore set to an increased value of ε = 10−4. Training was performed on
various GPU types, mainly RTX 2080 Ti. Computation times were highly dependent on the number of sequences in
the repertoires and the number and sizes of CNN kernels. A single update on a RTX 2080 Ti GPU took approximately
0.0129 to 0.0135 seconds, while requiring approximately 8 to 11 GB GPU memory. Taking these optimizations and GPUs
with larger memory (≥ 16 GB) into account, it would already be feasible to train DeepRC, possibly with multi-head attention
and a larger network architecture, on larger datasets. Our network implementation is based on PyTorch 1.3.1 (Paszke
et al., 2019).

Incorporation of additional inputs and metadata. Additional metadata in the form of sequence-level or repertoire-level
features could be input via concatenation to the feature vectors that result from the maximum over the sequence positions of
the 1D-CNN output. This has the benefit that the attention mechanism and output network can utilize the sequence-level or
repertoire-level features for their predictions. Sparse metadata or metadata that is only available during training could be
used as auxiliary targets to incorporate the information via gradients into the DeepRC model.
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A3. Detailed results

ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 avg.

motif freq. ρ 1% 0.1% 0.01% 1% 0.1% 0.01% 1% 0.1% 0.01% 1% 0.1% 0.01% 1% 0.1% 0.01% 1% 0.1% 0.01% –

implanted motif SFEN SFEN SFEN SFdEN SFdEN SFdEN SFZN SFZN SFZN SFdZN SFdZN SFdZN SZZN SZZN SZZN SZdZN SZdZN SZdZN –

DeepRC 1.000 1.000 0.703 1.000 1.000 0.600 1.000 1.000 0.509 1.000 1.000 0.492 1.000 0.997 0.487 0.999 0.942 0.492 0.864

± 0.000 ± 0.000 ± 0.271 ± 0.000 ± 0.000 ± 0.218 ± 0.000 ± 0.000 ± 0.029 ± 0.000 ± 0.001 ± 0.017 ± 0.001 ± 0.002 ± 0.023 ± 0.001 ± 0.048 ± 0.013 ± 0.223

SVM (MinMax) 1.000 1.000 0.764 1.000 1.000 0.603 1.000 0.998 0.539 1.000 0.994 0.529 1.000 0.741 0.513 1.000 0.706 0.503 0.827

± 0.000 ± 0.000 ± 0.016 ± 0.000 ± 0.000 ± 0.021 ± 0.000 ± 0.002 ± 0.024 ± 0.000 ± 0.004 ± 0.016 ± 0.000 ± 0.024 ± 0.006 ± 0.000 ± 0.013 ± 0.013 ± 0.210

SVM (Jaccard) 0.783 0.505 0.500 0.656 0.504 0.492 0.629 0.499 0.505 0.594 0.508 0.497 0.620 0.496 0.506 0.595 0.507 0.505 0.550

± 0.010 ± 0.009 ± 0.010 ± 0.009 ± 0.018 ± 0.018 ± 0.011 ± 0.010 ± 0.009 ± 0.007 ± 0.017 ± 0.013 ± 0.007 ± 0.006 ± 0.019 ± 0.013 ± 0.012 ± 0.017 ± 0.080

KNN (MinMax) 0.669 0.802 0.503 0.722 0.757 0.493 0.766 0.678 0.496 0.762 0.652 0.489 0.797 0.512 0.498 0.796 0.511 0.503 0.634

± 0.204 ± 0.265 ± 0.038 ± 0.214 ± 0.255 ± 0.017 ± 0.241 ± 0.165 ± 0.014 ± 0.237 ± 0.139 ± 0.015 ± 0.271 ± 0.023 ± 0.014 ± 0.270 ± 0.037 ± 0.006 ± 0.129

KNN (Jaccard) 0.516 0.493 0.497 0.506 0.500 0.492 0.509 0.493 0.497 0.495 0.504 0.500 0.502 0.497 0.500 0.502 0.503 0.513 0.501

± 0.035 ± 0.020 ± 0.013 ± 0.015 ± 0.019 ± 0.014 ± 0.017 ± 0.011 ± 0.018 ± 0.013 ± 0.004 ± 0.017 ± 0.011 ± 0.017 ± 0.022 ± 0.015 ± 0.020 ± 0.012 ± 0.007

Logistic Regression 1.000 1.000 0.786 1.000 1.000 0.607 1.000 0.997 0.527 1.000 0.992 0.526 1.000 0.719 0.505 1.000 0.694 0.510 0.826

± 0.000 ± 0.000 ± 0.009 ± 0.000 ± 0.000 ± 0.025 ± 0.000 ± 0.002 ± 0.018 ± 0.000 ± 0.004 ± 0.019 ± 0.000 ± 0.019 ± 0.015 ± 0.001 ± 0.021 ± 0.017 ± 0.211

Logistic MIL (KMER) 1.000 1.000 0.509 1.000 0.783 0.489 1.000 0.544 0.517 1.000 0.529 0.483 0.579 0.498 0.502 0.550 0.488 0.498 0.665

± 0.000 ± 0.000 ± 0.039 ± 0.000 ± 0.216 ± 0.023 ± 0.000 ± 0.038 ± 0.018 ± 0.000 ± 0.043 ± 0.007 ± 0.042 ± 0.017 ± 0.018 ± 0.051 ± 0.009 ± 0.005 ± 0.224

Logistic MIL (TCRB) 0.544 0.505 0.493 0.487 0.476 0.500 0.520 0.495 0.510 0.492 0.506 0.503 0.509 0.505 0.500 0.475 0.489 0.500 0.501

± 0.078 ± 0.014 ± 0.018 ± 0.021 ± 0.019 ± 0.022 ± 0.053 ± 0.009 ± 0.022 ± 0.014 ± 0.019 ± 0.010 ± 0.034 ± 0.009 ± 0.011 ± 0.013 ± 0.024 ± 0.019 ± 0.016

Known motif b. 1.000 1.000 0.973 1.000 1.000 0.865 1.000 1.000 0.700 1.000 0.989 0.609 1.000 0.946 0.570 1.000 0.834 0.532 0.890

± 0.000 ± 0.000 ± 0.004 ± 0.000 ± 0.000 ± 0.004 ± 0.000 ± 0.000 ± 0.020 ± 0.000 ± 0.002 ± 0.017 ± 0.000 ± 0.010 ± 0.024 ± 0.000 ± 0.016 ± 0.020 ± 0.168

Known motif c. 0.999 0.720 0.529 0.999 0.698 0.534 0.999 0.694 0.532 1.000 0.696 0.527 0.997 0.666 0.520 0.998 0.668 0.509 0.738

± 0.001 ± 0.014 ± 0.020 ± 0.001 ± 0.013 ± 0.017 ± 0.001 ± 0.012 ± 0.012 ± 0.001 ± 0.018 ± 0.018 ± 0.002 ± 0.010 ± 0.009 ± 0.002 ± 0.012 ± 0.013 ± 0.202

Table A5. AUC estimates based on 5-fold CV for all 18 datasets in category “simulated immunosequencing data”. The reported errors are
standard deviations across the 5 cross-validation folds except for the last column “avg.”, in which they show standard deviations across
datasets. Wild-card characters in motifs are indicated by Z, characters with 50% probability of being removed by d.
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ID 0 1 2 3 4 avg.

motif freq. ρ 10% 1% 0.5% 0.1% 0.05% –

implanted motif GrSrArFr GrSrArFr GrSrArFr GrSrArFr GrSrArFr –

DeepRC 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.998 ± 0.002 1.000 ± 0.001

SVM (MinMax) 1.000 ± 0.000 1.000 ± 0.000 0.999 ± 0.001 0.999 ± 0.002 0.985 ± 0.014 0.997 ± 0.007

SVM (Jaccard) 0.981 ± 0.041 1.000 ± 0.000 1.000 ± 0.000 0.904 ± 0.036 0.768 ± 0.068 0.931 ± 0.099

KNN (MinMax) 0.699 ± 0.272 0.717 ± 0.263 0.732 ± 0.263 0.536 ± 0.156 0.516 ± 0.153 0.640 ± 0.105

KNN (Jaccard) 0.698 ± 0.285 0.606 ± 0.237 0.523 ± 0.164 0.550 ± 0.186 0.539 ± 0.194 0.583 ± 0.071

Logistic Regression 1.000 ± 0.000 1.000 ± 0.000 0.934 ± 0.147 0.604 ± 0.193 0.427 ± 0.156 0.793 ± 0.262

Logistic MIL (KMER) 0.997 ± 0.004 0.718 ± 0.112 0.637 ± 0.144 0.571 ± 0.146 0.528 ± 0.129 0.690 ± 0.186

Logistic MIL (TCRB) 0.541 ± 0.086 0.566 ± 0.162 0.468 ± 0.086 0.505 ± 0.067 0.500 ± 0.121 0.516 ± 0.038

Known motif b. 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.999 ± 0.003 0.999 ± 0.003 1.000 ± 0.001

Known motif c. 1.000 ± 0.000 1.000 ± 0.000 0.989 ± 0.011 0.722 ± 0.085 0.626 ± 0.094 0.867 ± 0.180

Table A6. AUC estimates based on 5-fold CV for all 5 datasets in category “LSTM-generated data”. The reported errors are standard
deviations across the 5 cross-validation folds except for the last column “avg.”, in which they show standard deviations across datasets.
Characters affected by noise, as described in 5.1, paragraph ““LSTM-generated data”, are indicated by r.
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One Motif 1% One 0.1% Multi 1% Multi 0.1% avg.

DeepRC 1.000 ± 0.000 0.984 ± 0.008 0.999 ± 0.001 0.938 ± 0.009 0.980 ± 0.029

SVM (MinMax) 1.000 ± 0.000 0.578 ± 0.020 1.000 ± 0.000 0.531 ± 0.019 0.777 ± 0.258

SVM (Jaccard) 0.988 ± 0.003 0.527 ± 0.016 1.000 ± 0.000 0.574 ± 0.019 0.772 ± 0.257

KNN (MinMax) 0.744 ± 0.237 0.486 ± 0.031 0.674 ± 0.182 0.500 ± 0.022 0.601 ± 0.128

KNN (Jaccard) 0.652 ± 0.155 0.484 ± 0.025 0.695 ± 0.200 0.508 ± 0.025 0.585 ± 0.104

Logistic Regression 1.000 ± 0.000 0.544 ± 0.035 0.991 ± 0.003 0.512 ± 0.035 0.762 ± 0.270

Logistic MIL (KMER) 0.541 ± 0.074 0.506 ± 0.034 0.994 ± 0.004 0.620 ± 0.153 0.665 ± 0.224

Logistic MIL (TCRB) 0.503 ± 0.032 0.501 ± 0.016 0.992 ± 0.003 0.782 ± 0.030 0.695 ± 0.238

Known motif b. 1.000 ± 0.000 0.704 ± 0.028 0.994 ± 0.003 0.620 ± 0.038 0.830 ± 0.196

Known motif c. 0.920 ± 0.004 0.562 ± 0.028 0.647 ± 0.030 0.515 ± 0.031 0.661 ± 0.181

Table A7. AUC estimates based on 5-fold CV for all 4 datasets in category “real-world data with implanted signals”. The reported errors
are standard deviations across the 5 cross-validation folds except for the last column “avg.”, in which they show standard deviations
across datasets. One Motif 1%: In this dataset, a single motif with a frequency of 1% was implanted. One 0.1%: In this dataset, a
single motif with a frequency of 0.1% was implanted. Multi 1%: In this dataset, multiple motifs with a frequency of 1% were implanted.
Multi 0.1%: In this dataset, multiple motifs with a frequency of 0.1% were implanted. A detailed description of the motifs is provided in
section 5.1, paragraph “Real-world data with implanted signals.”.

AUC F1 score balanced accuracy accuracy

DeepRC 0.831 ± 0.002 0.728 ± 0.041 0.741 ± 0.043 0.727 ± 0.049

SVM (MinMax) 0.825 ± 0.022 0.680 ± 0.056 0.734 ± 0.037 0.742 ± 0.031

SVM (Jaccard) 0.546 ± 0.021 0.272 ± 0.184 0.523 ± 0.026 0.542 ± 0.032

KNN (MinMax) 0.679 ± 0.076 0.000 ± 0.000 0.500 ± 0.000 0.545 ± 0.044

KNN (Jaccard) 0.534 ± 0.039 0.073 ± 0.101 0.508 ± 0.012 0.551 ± 0.042

Logistic Regression 0.607 ± 0.058 0.244 ± 0.206 0.552 ± 0.049 0.590 ± 0.019

Logistic MIL (KMER) 0.582 ± 0.065 0.118 ± 0.264 0.503 ± 0.007 0.515 ± 0.058

Logistic MIL (TCRB) 0.515 ± 0.073 0.000 ± 0.000 0.496 ± 0.008 0.541 ± 0.039

Table A8. Results on the CMV dataset (real world data) in terms of AUC, F1 score, balanced accuracy, and accuracy. For F1 score,
balanced accuracy, and accuracy, all methods use their default thresholds. Each entry shows mean and standard deviation across 5
cross-validation folds.
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A4. Next-character LSTM
We trained a classic next-character LSTM model (Graves, 2013) based on the implementation https://github.com/
spro/practical-pytorch using PyTorch 1.3.1 (Paszke et al., 2019). For this, we appled an LSTM model with
100 LSTM blocks in 2 layers, which was trained for 5, 000 epochs using the Adam optimizer (Kingma & Ba, 2014) with
learning rate 0.01, an input batchsize of 100 character chunks, and a character chunk lenght of 200. As input we used the
immuno-sequences in the CDR3 column of the CMV dataset, where we repeated sequences according to the counts of the
sequences in the repertoires, as specified in the templates column of the CMV dataset. We excluded repertoires with
unknown CMV status and unknown sequence abundance from training.

After training, we generated 1, 000 repertoires using a temperature value of 0.8. The number of sequences per repertoire
was sampled from a Gaussian N (µ = 285k, σ = 156k) distribution, where the whole repertoire was generated by the
LSTM at once. That is, the LSTM can base the generation of the individual AA sequences in a repertoire, including the AAs
and the lengths of the sequences, on the generated repertoire. A random immuno-sequence from the trained-on repertoires
was used as initialization for the generation process. This immuno-sequence was not included in the generated repertoire.

Finally, we randomly assigned 500 of the generated repertoires to the positive (diseased) and 500 to the negative (healthy)
class. We then implanted motifs in the positive class repertoires as described in section 5, paragraph “LSTM-generated
data.”.

As illustrated in the comparison of histograms given in Table A4, the generated immuno-sequences exhibit a very similar
distribution of 4-mers and AAs compared to the original CMV dataset.
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Real-World data LSTM generated data

a) b)

c) d)

e) f)

Figure A2. Distribution of AAs and k-mers in real-world CMV dataset and LSTM-generated data. Left: Histograms of real-world data.
Right: Histograms of LSTM-generated data. a) Frequency of AAs in sequences of the CMV dataset. b) Frequency of AAs in sequences
of the LSTM-generated datasets. c) Frequency of top 200 4-mers in sequences of the CMV dataset. d) Frequency of top 200 4-mers in
sequences of the LSTM-generated datasets. e) Frequency of top 20 4-mers in sequences of the CMV dataset. f) Frequency of top 20
4-mers in sequences of the LSTM-generated datasets. Overall the distributions of AAs and 4-mers are similar in both datasets.
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A5. Interpreting DeepRC
In this section, we provide examples for the interpretation of trained DeepRC models using Integrated Gradients (IG)
(Sundararajan et al., 2017) as contribution analysis method. Application of IG was performed as described in section 4,
paragraph “Interpretability”. The following illustrations were created using 50 IG steps, which we found sufficient to achieve
stable IG results.

A visual analysis of DeepRC models on the simulated datasets, as illustrated in Tab. A9 and Fig. A3, shows that the
implanted motifs can be successfully extracted from the trained model and are straight-forward to interpret. In the real-world
CMV dataset, DeepRC finds complex patterns with high variability in the center regions of the immuno-sequences, as
illustrated in figure A4.

Simulated

extracted motif

implanted motif(s) SFEN SFdEN SZZN SZdZN

motif freq. ρ 0.01% 0.01% 0.1% 0.1%

LSTM-generated Real-World data with implanted signals

extracted motif

implanted motif(s) GrSrArFr LrDrRr {LrDrRr; CrArS; GrL-N}

motif freq. ρ 0.05% 0.1% 0.1%

Table A9. Visualization of motifs extracted from trained DeepRC models for datasets from categories “simulated immunosequencing
data”, “LSTM-generated data”, and “real-world data with implanted signals”. Motif extraction was performed using Integrated Gradients
on the 1D CNN kernels over the validation set and test set repertoires of one CV fold. Wild-card characters are indicated by Z, random
noise on characters by r, characters with 50% probability of being removed by d, and gap locations of random lengths of {0; 1; 2} by
-. Larger characters in the extracted motifs indicate higher contribution, with blue indicating positive contribution and red indicating
negative contribution towards the prediction of the diseased class. Contributions to positional encoding are indicated by < (beginning
of sequence), ∧ (center of sequence), and > (end of sequence). Only kernels with relatively high contributions are shown, i.e. with
contributions roughly greater than the average contribution of all kernels.

a)

b)

c)

Figure A3. Integrated Gradients applied to input sequences of positive class repertoires. Three sequences with the highest contributions to
the prediction of their respective repertoires are shown. a) Input sequence taken from “simulated immunosequencing data” with implanted
motif SZdZdN and motif implantation probability 0.1%. The DeepRC model reacts to the S and N at the 5th and 8th sequence position,
thereby identifying the implanted motif in this sequence. b) and c) Input sequence taken from “real-world data with implanted signals”
with implanted motifs {LrDrRr; CrArS; GrL-N} and motif implantation probability 0.1%. The DeepRC model reacts to the fully
implanted motif CAS (b) and to the partly implanted motif AAs C and A at the 5th and 7th sequence position (c), thereby identifying the
implanted motif in the sequences. Wild-card characters in implanted motifs are indicated by Z, characters with 50% probability of being
removed by d, and gap locations of random lengths of {0; 1; 2} by -. Larger characters in the sequences indicate higher contribution, with
blue indicating positive contribution and red indicating negative contribution towards the prediction of the diseased class.
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Figure A4. Visualization of the contributions of characters within a sequence via IG. Each sequence was selected from a different
repertoire and showed the highest contribution in its repertoire. Model was trained on CMV dataset, using a kernel size of 9, 32 kernels
and 137 repertoires for early stopping. Larger characters in the extracted motifs indicate higher contribution, with blue indicating positive
contribution and red indicating negative contribution towards the prediction of the disease class.
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A6. Attention values for previously associated CMV sequences

index sequence attention quantile index sequence attention quantile index sequence attention quantile index sequence attention quantile

1 CASSGQGAYEQYF 1.000 0.999 42 CASSLGGAGDTQYF 1.000 1.000 83 CASSYVRTGGNYGYTF 0.967 0.932 124 CASSLTGGNSGNTIYF 0.991 0.977

2 CASSIGPLEHNEQFF 0.947 0.900 43 CASNRDRGRYEQYF 0.991 0.978 84 CASSLAGVDYEQYF 0.999 0.996 125 CASSRNRGQETQYF 0.978 0.952

3 CASSPDRVGQETQYF 0.995 0.987 44 CSVRDNHNQPQHF 0.965 0.929 85 CASSLGAGNQPQHF 1.000 0.999 126 CASSLGQGLAEAFF 0.996 0.989

4 CASSLEAEYEQYF 0.992 0.980 45 CASSAQGAYEQYF 0.998 0.995 86 CASSRDRNYGYTF 0.998 0.995 127 CASRTGESGYTF 0.985 0.965

5 CASSIEGNQPQHF 0.993 0.983 46 CATSRGTVSYEQYF 0.990 0.975 87 CASGRDTYEQYF 0.999 0.997 128 CASSSDSGGTDTQYF 0.951 0.906

6 CATSDGDEQFF 0.998 0.996 47 CASSPPSGLTDTQYF 0.978 0.951 88 CAWSVSDLAKNIQYF 0.954 0.911 129 CASSVDGGRGTEAFF 0.995 0.987

7 CASSLVAGGRETQYF 0.988 0.971 48 CASSGDRLYEQYF 0.998 0.994 89 CASSPNQETQYF 0.999 0.996 130 CSVEVRGTDTQYF 0.955 0.912

8 CASSRGRQETQYF 0.997 0.993 49 CASSLNRGQETQYF 0.996 0.988 90 CSASDHEQYF 0.995 0.986 131 CASSESGDPSSYEQYF 0.980 0.955

9 CASSAGQGVTYEQYF 0.998 0.995 50 CASSLGVGPYNEQFF 0.986 0.967 91 CASSWDRDNSPLHF 0.918 0.855 132 CASSEEAGGSGYTF 0.982 0.959

10 CASSQNRGQETQYF 0.995 0.987 51 CATSDSVTNTGELFF 0.989 0.973 92 CASSPGQEAGANVLTF 0.823 0.728 133 CAISESQDRGHEQYF 0.823 0.728

11 CASSPQRNTEAFF 1.000 0.999 52 CASSRNRESNQPQHF 0.968 0.934 93 CASSLVAAGRETQYF 0.959 0.919 134 CASSPTGGELFF 0.989 0.974

12 CASSLAPGATNEKLFF 0.976 0.949 53 CASSEARTRAFF 0.927 0.869 94 CASSPHRNTEAFF 0.999 0.998 135 CASSVETGGTEAFF 0.995 0.986

13 CASSLIGVSSYNEQFF 0.983 0.961 54 CASSYNPYSNQPQHF 0.892 0.819 95 CASRGQGWDEKLFF 0.994 0.984 136 CASASANYGYTF 0.816 0.720

14 CSVRDNFNQPQHF 0.915 0.851 55 CASSLGHRDSSYEQYF 0.987 0.969 96 CASSQVETDTQYF 0.994 0.984 137 CASSSRTGEETQYF 0.996 0.988

15 CASSQTGGRNQPQHF 0.997 0.992 56 CASSRLAASTDTQYF 0.992 0.979 97 CASRDWDYTDTQYF 0.994 0.984 138 CASSLGRGYEKLFF 0.985 0.965

16 CASSLVIGGDTEAFF 0.966 0.931 57 CASSVTGGTDTQYF 1.000 0.999 98 CASSSDRVGQETQYF 0.980 0.955 139 CASSGLNEQFF 0.994 0.984

17 CASSLRREKLFF 0.998 0.993 58 CASSPPGQGSDTQYF 0.975 0.946 99 CASSLGDRPDTQYF 0.940 0.889 140 CASSRNRAQETQYF 0.994 0.984

18 CASSFHGFNQPQHF 0.991 0.978 59 CATSDSRTGGQETQYF 0.900 0.829 100 CASSLEGQGFGYTF 0.944 0.895 141 CASTPGDEQFF 0.988 0.971

19 CATSRDTQGSYGYTF 0.917 0.854 60 CASSSPGRSGANVLTF 0.995 0.986 101 CASSSGQVYGYTF 0.999 0.996 142 CASSLGIDTQYF 0.997 0.991

20 CASSRLAGGTDTQYF 0.999 0.998 61 CASSPLSDTQYF 0.998 0.994 102 CASSEEGIQPQHF 0.998 0.994 143 CASSIRTNYYGYTF 0.996 0.990

21 CASSFPTSGQETQYF 0.982 0.959 62 CASSLTGGRNQPQHF 0.999 0.997 103 CASSLETYGYTF 0.998 0.995 144 CASSPISNEQFF 0.967 0.933

22 CASSPGDEQYF 0.998 0.993 63 CASSIQGYSNQPQHF 0.993 0.983 104 CASSFPGGETQYF 0.992 0.979 145 CASSQNRAQETQYF 0.984 0.962

23 CASSLPSGLTDTQYF 0.994 0.985 64 CASSTTGGDGYTF 0.978 0.952 105 CASSSGQVQETQYF 0.997 0.993 146 CASSALGGAGTGELFF 0.985 0.964

24 CASSEIPNTEAFF 0.997 0.992 65 CASSVLAGPTDTQYF 0.951 0.906 106 CASSEGARQPQHF 0.999 0.998 147 CASSLAVLPTDTQYF 0.996 0.989

25 CASSIWGLDTEAFF 0.959 0.919 66 CASSHRDRNYEQYF 0.987 0.969 107 CSALGHSNQPQHF 0.926 0.867 148 CASSLQAGANEQFF 0.969 0.935

26 CASSPGDEQFF 0.999 0.997 67 CASSPSRNTEAFF 0.999 0.998 108 CASSLLWDQPQHF 0.986 0.967 149 CASSTGGAQPQHF 0.998 0.993

27 CATSRDSQGSYGYTF 0.980 0.955 68 CASSLGGPGDTQYF 0.993 0.982 109 CASSLVGDGYTF 1.000 1.000 150 CASSLGASGSRTDTQYF 0.932 0.876

28 CASSYGGLGSYEQYF 0.995 0.987 69 CASSEARGGVEKLFF 0.989 0.974 110 CASSSRGTGELFF 0.999 0.997 151 CASSRGTGATDTQYF 0.999 0.998

29 CASSPSTGTEAFF 0.997 0.992 70 CASSTGTSGSYEQYF 0.999 0.998 111 CATSRVAGETQYF 0.980 0.955 152 CASSYPGETQYF 0.997 0.992

30 CSVEEDEGIYGYTF 0.964 0.927 71 CASRSDSGANVLTF 0.973 0.942 112 CASRGQGAGELFF 0.987 0.969 153 CASSLTDTGELFF 0.994 0.984

31 CASSPAGLNTEAFF 0.996 0.988 72 CASSLEAENEQFF 0.973 0.943 113 CASSPGGTQYF 0.999 0.996 154 CASRPQGNYGYTF 0.998 0.996

32 CASSLGLKGTQYF 0.964 0.928 73 CASSEAPSTSTDTQYF 0.989 0.973 114 CASSLQGINQPQHF 0.999 0.997 155 CASSTSGNTIYF 1.000 0.999

33 CASMGGASYEQYF 0.991 0.978 74 CASSLQGADTQYF 0.997 0.991 115 CASSQGRHTDTQYF 0.960 0.921 156 CASSSGTGDEQYF 1.000 1.000

34 CASSQVPGQGDNEQFF 0.983 0.961 75 CASSLEGQQPQHF 0.994 0.984 116 CASSPRWQETQYF 0.991 0.978 157 CASSPPAGTNYGYTF 0.947 0.900

35 CATSDGDTQYF 0.996 0.989 76 CASSYGGEGYTF 0.999 0.996 117 CASRDRDRVNTEAFF 0.970 0.938 158 CASSPLGGTTEAFF 0.995 0.988

36 CATSDGETQYF 0.998 0.994 77 CASSLRGSSYNEQFF 0.999 0.998 118 CASSWDRGTEAFF 0.999 0.999 159 CASSLGWTEAFF 0.999 0.997

37 CSVRDNYNQPQHF 0.998 0.993 78 CASSISAGEAFF 0.992 0.979 119 CASSRPGQGNTEAFF 0.994 0.984 160 CATSREGSGYEQYF 0.987 0.969

38 CASSLVASGRETQYF 0.997 0.991 79 CASRPTGYEQYF 0.987 0.969 120 CASSPGSGANVLTF 0.999 0.997 161 CASSYAGDGYTF 0.992 0.980

39 CSASPGQGASYGYTF 0.987 0.969 80 CAWRGTGNSPLHF 0.964 0.927 121 CASRRGSSYEQYF 0.999 0.998 162 CASSDRGNTGELFF 0.995 0.986

40 CASSESGHRNQPQHF 0.999 0.997 81 CASSLGDRAYNEQFF 0.996 0.988 122 CASRTDSGANVLTF 0.994 0.986 163 CSARRGPGELFF 0.839 0.749

41 CASSLGHRDPNTGELFF 0.981 0.958 82 CASSLQGYSNQPQHF 1.000 0.999 123 CASSQDPRGTEAFF 0.950 0.905 164 CASSQGLQETQYF 0.996 0.990

Table A10. TCRβ sequences that had been discovered by Emerson et al. (2017) with their associated attention-values by DeepRC. These
sequences have significantly (p-value 1.3e-93) higher attention values than other sequences. The column ”quantile” provides the quantile
values of the empiricial distribution of attention values across all sequences in the dataset.
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