
Subcellular structure segmentation from cryo-electron
tomograms via machine learning

Li Zhou1, Chao Yang3*, Weiguo Gao1,2, Talita Perciano3, Karen M. Davies4, Nicholas
K. Sauter4,

1 School of Mathematical Sciences, Fudan University, Shanghai, China 200433
2 School of Data Sciences, Fudan University, Shanghai, China 200433
3 Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley,
CA, 94720, USA
4 Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley
National Laboratory, Berkeley, CA 94720, USA

* CYang@lbl.gov

Abstract

We describe how to use several machine learning techniques organized in a learning
pipeline to segment and identify subcellular structures from cryo electron tomograms.
These tomograms are difficult to analyze with traditional segmentation tools. The
learning pipeline in our approach starts from supervised learning via a special
convolutional neural network trained with simulated data. It continues with
semi-supervised reinforcement learning and/or a region merging techniques that try to
piece together disconnected components that should belong to the same subcellular
structure. A parametric or non-parametric fitting procedure is then used to enhance the
segmentation results and quantify uncertainties in the fitting. Domain knowledge is
used in generating the training data for the neural network and in guiding the fitting
procedure through the use of appropriately chosen priors and constraints. We
demonstrate that the approach proposed here work well for extracting membrane
surfaces of protein reconstituted liposomes in a cellular environment that contains other
artifacts.

1 Introduction

Despite the tremendous progress made in biological imaging that has yielded
tomograms with ever-higher resolutions, the interpretation of data, (e.g., the
segmentation of cell tomograms into organelles and proteins) remains a challenging task.
The difficulty is most extreme, in our experience, in the case of cryo-electron
tomography (cryo-ET), where the samples exhibit inherently low contrast due to the
limited electron dose that can be applied during imaging before radiation damage
occurs. The resulting tomograms thus have a low signal-to-noise ratio (SNR), as well as
missing-wedge artifacts caused by the limited sample tilt range that is accessible during
imaging [1]. Figure 1 shows one slice of a partial cryo-EM tomogram of
membrane-bound proteins reconstituted into liposomes.

Our objective is to identify and isolate from such tomograms multiple cellular
substructures such as membranes, organelles and protein complexes that can be further
analyzed. This objective is often achieved through an image segmentation procedure.

April 2, 2020 1/25

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.09.034025doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.09.034025
http://creativecommons.org/licenses/by/4.0/

Fig 1. A slice of a partial cryo-EM tomograph of membrane-bound ATP synthase
proteins reconstituted into liposomes. The proteins are shown as small dots attached to
the circular-shaped liposome membranes.

Currently, such a procedure is performed, in most cases, by a human expert manually
tracing or highlighting specific features in a tomogram, which are then extracted and
analyzed for length, curvature, volume, distance, etc. This is an extremely
time-consuming and labor-intensive process.

Although a number of automated segmentation algorithms and tools have been
developed in the last few decades for high contrast medical 3D imaging [2–8], most of
them perform poorly on cryo-ET datasets.

While SNR can be partially improved by applying contrast enhancement and edge
detection algorithms, such as nonlinear anisotropic diffusion, wavelet transforms, or
Sobel filters, these algorithms can also generate false connectivity and additional
artifacts that degrade the results produced by automatic segmentation methods.

The reason why a human scientist can do a much better job at segmenting and
extracting subcellular structures than a computer program is that he/she has prior
knowledge (size, shape, etc.) about the biological object to be segmented. If we can
train a machine to learn such knowledge, it may be possible to develop a more reliable
automated segmentation tool that can be used to improve the throughput of the
visualization and analysis and tie the structure to function, etc.

In recent years, there has been tremendous progress in the development of machine
learning tools for image analysis and segmentation. In particular, convolutional neural
network (CNN) based tools such as U-Net [9] have been developed for cryo-ET
segmentation, where any arbitrary feature may be selected from the tomogram to be
used as CNN training data [10]. Although the output is promising, this automatic
machine learning algorithm still suffers from problems similar to pixel-based density
thresholding algorithms used to assist manual segmentation. In addition, the success of
this approach is hampered by the limited number of existing segmented structures to be
used for training. Even though the recent development of cryo-electron tomography has
produced many tomograms, high-quality substructure segmentations that can be used
to train a neural network are still scarce and will always be scarce.

Given the complexity of the segmentation task and the inherent challenge in
obtaining high-quality tomograms, it is unlikely a single image processing or machine
learning technique can produce satisfactory results.

However, multiple machine learning techniques can be combined to enhance the
segmentation results produced by a CNN based procedure. Among these are 1)

April 2, 2020 2/25

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.09.034025doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.09.034025
http://creativecommons.org/licenses/by/4.0/

reinforcement learning algorithms that can be used to connect multiple segmented
pieces that belong to the same subcellular structure 2) classification algorithms that can
separate different subcellular structures and place fragments of the same structure into
the same group. 3) parametric and non-parametric fitting algorithms that produce a
smooth and continuous surface representation of membranes.

In this paper, we will illustrate how these methods can be combined in an image
analysis and segmentation pipeline that can significantly enhance the fidelity of
segmentation of cryo-tomograms.

Although some of these methods can be directly applied to 3D tomograms, the large
data volume of cellular cryo-tomograms makes direct 3D segmentation computationally
costly in practice. Therefore, we choose to perform the 2D segmentation of tomogram
slices first and refine these segmentation results in 3D by taking into account the
correlation among images in adjacent slices of the tomogram.

This paper is organized as follows. In the next section, we will provide an overview
of the main workflow of the overall segmentation procedure and how they fit together to
meet the ultimate of structure analysis goal. This is followed by detailed discussion of
each individual component of the methodology which includes the preprocessing of
tomogram slices to improve image contrast (section 3), the initial segmentation by
U-Net (section 4), the refinement of the segmentation in 2D using reinforcement
learning, classification, and parametric/non-parametric fitting (section 5), as well as 3D
refinement (section 6).

2 Main Workflow

Figure 2 depicts the overall workflow of the machine learning-based tomogram
segmentation strategy we propose to analyze cryo-ET images. We first preprocess the
tomogram slices to enhance the image contrast using the techniques to be presented in
the next section.

We then generate training data for a U-Net by taking into account prior knowledge
of the type of subcellular structure we plan to segment and analyze. The generation of
the training data combines simple 2D geometric motifs with measured signal and noise
features in the tomogram.

The training data is then used to train a U-Net, a CNN based segmentation tool
that identifies subcellular structures that match the geometric motifs used in the
training data from tomogram slices.

Because the output from the U-Net is typically not perfect and may contain
fragmented components and artifacts, it is corrected by a 2D refinement procedure that
tries to identify components that belong to the same subcellular structure using either a
reinforcement learning algorithm or a region merging based algorithm.

A parametric or non-parametric nonlinear fitting procedure is then used to create
smooth and continuous boundaries of membrane structures.

Corrected 2D sections are then combined in 3D and refined through a
non-parametric fitting procedure to produce the final 3D segmentation.

3 Preprocessing by Contrast Enhancement

The preprocessing step used in our pipeline includes the application of the bilateral
filter and an adaptive local contrast enhancement. The bilateral filter is an
edge-preserving and noise-reducing filter [11]. It averages pixels based on their spatial
closeness and radiometric similarity. In other words, it smooths homogeneous regions of
the image and preserves details (such as borders of objects). After improving the

April 2, 2020 3/25

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.09.034025doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.09.034025
http://creativecommons.org/licenses/by/4.0/

Tomogram
Contrast

enhancement
Unet

Training data
generation

Connecting broken segments

Reinforcement
learning

Region
merging

2D Fitting

Parametric
Non-

parametric

3D
refinement

Fig 2. The main workflow of a machine learning-based approach that combines a
number of techniques for segmenting cryo-EM tomograms and improving the
segmentation.

signal-to-noise ration using the bilateral filter, the next step is to emphasize targeted
structures for segmentation. We apply a technique called Contrast Limited Adaptive
Histogram Equalization (CLAHE) [12]. This method uses histograms computed over
different tile regions of the image. In doing so, local details are enhanced even in regions
that are darker or lighter than most of the image. The final result after applying the
two steps above to the image shown in Fig. 1 is presented in Fig. 3. In this image, the
organelles in the tomogram, as well as the membrane-embedded ATP synthase proteins,
are much more distinctive compared to the raw data, making this image more suitable
for the segmentation step.

Fig 3. Contrast-enhanced tomogram slice

4 Segmentation by U-Net

U-Net [9] is a convolutional neural network (CNN) [13] based segmentation tool that has
enjoyed tremendous success in biomedical image segmentation. The letter U in the name

April 2, 2020 4/25

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.09.034025doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.09.034025
http://creativecommons.org/licenses/by/4.0/

characterizes the layout of the CNN, which consists of a contracting path (the left half
the U) and an expansion path (the right half of the U.) The contracting path maps the
input image to a set of features through successive layers of convolution, rectified linear
unit (ReLU) and max pooling operations. The expansive path upsamples the feature
channels before convolving them with weighting matrices, concatenating with them
feature maps produced in the contracting path, and feeding them into the ReLU layer.

One of the algorithmic ingredients that make U-Net robust is its ability to use
excessive data augmentation generated by applying elastic deformations to the available
training images. This algorithmic feature allows us to use a few well defined geometric
motifs (such as circles and ellipses) to generate training data without relying on manual
segmentated data that are difficult to obtain.

4.1 Generating training Data

Ideally, a U-Net should be trained by a set of manually segmented tomogram slices.
However, because it is often time-consuming to perform manual segmentation, there is
generally a limited amount of labeled data we can use. Hence it is not realistic to rely
on using manually segmented tomograms to train a U-Net to perform additional
segmentation.

Fortunately, training a U-Net does not necessarily require using precisely segmented
images. We train the network to recognize subcellular structures that often have
characteristic geometric features and shapes. If there is prior knowledge about the
general shapes and features of these subcellular structures, we can generate training
data through simulation.

The simulated 2D images we generate combine simple geometric motifs (such as
ellipses and circles) with a simulated noisy background. The intensity profiles of both
the geometric motifs and the background are chosen to match those in the tomogram to
be segmented.

For example, Figure 4 shows the intensity of a selected region of the background and
the histogram of the pixel intensities within this region, which clearly exhibits a
Gaussian distribution. Figure 5 shows part of a liposome membrane with the
background (a) and the mask used to extract membrane pixels (b). The histogram of
membrane pixel intensity is also shown (c). Although the histogram does not strictly
represent a Gaussian distribution, we can fit the histogram with a Gaussian. Gaussian
fittings are performed on the histograms associated with both the background and the
membranes to produce parameters we can use to generate simulated images.

Fig 4. The histograms of the background intensity.

The simulated membranes we generated have different sizes and thicknesses. Their
positions and orientations are randomly chosen. Figure 6 shows one of such simulated
images.

April 2, 2020 5/25

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.09.034025doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.09.034025
http://creativecommons.org/licenses/by/4.0/

(a) Sampled image (b) Segmentation mask
generated by hand

(c) Histogram of the membrane

Fig 5. The histograms of the membrane intensity.

In addition to the membranes, we also generate small solid circles near the
membrane to mimic intrinsic membrane proteins (e.g., ATP synthase) with globular
domains adjacent to the membrane. We label the membranes and proteins separately.
The use of three distinct labels, i.e., 0 for background, 1 for the membrane and 2 for
protein, (see Figure 6) significantly improves the segmentation result.

Fig 6. The simulated membranes and protein particles (left) and their labels (right).

4.2 Training and testing

To segment images like the one shown in Figure 1, we use 2000 simulated images to
train the U-Net. For each input pixel x, the U-Net computes the activation function
ak(x), which gives the likelihood of x being in the class k, for k = 0, 1, 2. A softmax
function pk(x), which is defined as

pk(x) =
exp[ak(x)]∑

k′=0,1,2 exp[ak′(x)]
, (1)

normalizes the likelihood to a value between 0 and 1. If pk(x) = 1, U-Net predicts x to
be in class k with full certainty. If pk(x) = 0, U-Net predicts x not to be in class k.

Progress of the training process can be monitored by examining a loss function E,

April 2, 2020 6/25

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.09.034025doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.09.034025
http://creativecommons.org/licenses/by/4.0/

which is defined by the cross entropy

E = −
∑
x∈Ω

log pl(x)(x), (2)

at each iteration (epoch), where l(x) is the true class label for pixel x, and Ω is the set
of all pixels in the image to be segmented. A perfect segmentation would yield E = 0.

During the training process, an extra 5 images are used for testing, and 10
additional simulated images are reserved for validation after the training is over.
Figure 7(a) shows the average loss function for 5 test images decreases rapidly as the
number of training epochs increases. Figure 7(b) shows that the loss function associated
with the validation images decreases in general also, but the change of E is not
monotonic, and it is less smooth also.

(a) The change of the loss function on the
testing images with respect to training
epochs.

(b) The change of the loss function on the
validation images with respect to the
training epochs.

Fig 7. The convergence of the training process.

We choose the ADAM method [14] to train the U-Net by minimizing the loss
function. The learning rate of the training method is set to 0.001, the exponential decay
rate of the first and second moments is set to β1 = 0.9 and β2 = 0.999 respectively. The
training batch size is set to 20. The choice of these hyperparameters are usually
problem-dependent, and may need to be optimized for different datasets.

Once the U-Net is trained, we can check the accuracy of the segmentation by
computing the ratio of pixels assigned with the correct class labels and the total number
of pixels in the image to be segmented. Table 1 shows the accuracy of the segmentation
for 10 validation images in the first column. The overall classification accuracy is over
99%. This means more than 99% of pixels are correctly classified. In addition to this
accuracy measurement, we also report the Intersection-Over-Union(IoU) value for each
of the validation images. IoU is a widely used metric for evaluating the quality of image
segmentation. It defined as

IoU =
Tp

Tp + Fp + Fn
, (3)

where Tp is the number of true positives, Fp is the number of false positives, and Fn is
the number of false negatives. IoU places more emphasis on the ratio between correctly
classified feature pixels (True positives) over incorrectly classified pixels (false positives
and false negatives). Column two in Table 1 gives the total IoUs for all pixels, which are
less than the accuracy metric reported in Column 1. We can in fact evaluate IoU for
each class (i.e., background, membrane and protein). These values are reported in
columns 3–5. We can see that IoU values for background pixels are consistently higher
than those of membrane and protein pixels. The membrane pixels seem to have the
lowest IoU, indicating that it is more difficult to segment membranes from the
background than the proteins.

April 2, 2020 7/25

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.09.034025doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.09.034025
http://creativecommons.org/licenses/by/4.0/

Accuracy Total IoU IoU (background) IoU (membrane) IoU (protein)
0.996 0.949 0.995 0.885 0.968
0.996 0.949 0.995 0.885 0.968
0.996 0.942 0.996 0.865 0.966
0.995 0.946 0.994 0.882 0.962
0.997 0.950 0.997 0.893 0.961
0.995 0.949 0.995 0.883 0.968
0.995 0.948 0.995 0.874 0.974
0.997 0.954 0.997 0.899 0.966
0.996 0.953 0.996 0.894 0.969
0.994 0.941 0.994 0.877 0.952
0.995 0.945 0.995 0.871 0.968

Table 1. The accuracy of the U-Net segmentation on the validation images.

4.3 U-Net segmentation results

Figure 8 shows the initial segmentation results produced by the U-Net for one of the
tomogram slices shown in Figure 3. The liposome membranes shown in Figure 8(a) are
separated from the proteins shown in Figure 8(b). These two types of subcellular
structures are shown together in Figure 8(c).

(a) Segmented membrane (b) Segmented proteins (c) Segmented membrane
and proteins overlaid on the
original tomogram slice(slice
120)

Fig 8. U-Net segmentation

5 Connecting Broken Segments

Although the U-Net does a remarkable job at identifying membranes of subcellular
structures as shown in Figure 8, some of the membrane segments are disconnected. The
gaps in the segmented membrane result from 1) low contrast and signal to noise ratio in
the tomogram 2) incomplete tomogram reconstruction due to the missing wedge
problem.

However, human vision can easily recognize how some of the disconnected
components should be joined. With some prior knowledge of the possible shapes of the
targeted subcellular structure, we can deduce how the disconnected components should
be connected and how open boundaries can be closed. In this section, we discuss how to
use a number of learning algorithms to join all disconnected membrane segments that
should lie on the same subcellular membrane surface.

April 2, 2020 8/25

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.09.034025doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.09.034025
http://creativecommons.org/licenses/by/4.0/

Our goal is to perform this type of postprocessing in an automated fashion with as
little human intervention as possible. The challenge is that a tomogram may contain
multiple subcellular structures, each enclosed by a membrane. If there were only one
such structure, we could possibly use a curve or model fitting procedure to connect the
membrane segments identified by the U-Net. Other contour completion algorithms may
also be used [8].

In the presence of multiple subcellular structures, we need to determine, in an
automated fashion, which labeled pixels belong to the same membrane segment, and
which segments belong to the same membrane surface. While the first question is
relatively easy to address by grouping labeled pixels that are within ε-distance with
each other, the second question is much harder to address because the labeled
membrane segments can have different shapes, lengths, and curvatures, etc.

We present two strategies for achieving this task. The first strategy is based on
reinforcement learning. The second strategy is based on region-based pixel merging.

5.1 Reinforcement Learning

Our first strategy is to train an agent to walk along segmented components and make
connections with other segmented components with the goal of returning to the point it
started from without crossing any segmented components that have already been
traversed. Once the agent successfully returns to the starting point, the traversed
segments are selected for further processing, and the agent can start again from a
segmented component that has not been traversed. Otherwise, the agent is allowed to
backtrack or start a new exploration trip (episode) if the existing journey is unlikely to
be successful. The learning process is terminated when the number of attempts to
traverse and return to the starting point exceeds a preset number. This type of learning
algorithm is often referred to as reinforcement learning.

A reinforcement learning (RL) algorithm is often characterized by an agent
performing a sequence of tasks to move from state to state in order to reach a certain
goal. Each task involves taking one of the actions from a predefined set of actions. Each
action is associated with a local reward used to indicate incremental progress toward
accomplishing the final goal. Which action to take depends on a policy, which is
described by what is often called a Q-value table (Q-table) that assigns a value to each
(state, action) pair. For each state, the action that yields the largest Q-value is taken.
The Q-table can be constructed iteratively by a training procedure in which the agent is
encouraged to take an action that leads to the highest reward. However, randomness is
built into the training algorithm so that the agent can take a locally non-optimal action
from time to time at any given state to explore a larger search space. The stochastic
nature of the training algorithm is formally characterized as a Markov decision process
in which transition probabilities between different states and local reward for each
transition are taken into account to define an iterative process that should ultimately
yield the desired Q-table. However, in practice, due to the large number of states and
the difficulty of defining transition probabilities in advance, the mapping between a
(state, action) pair and its Q-value is constructed approximately by some means.

The RL algorithm we use consists of two phases. In the first phase, an agent is
trained to traverse through U-Net segmented pixels that are sufficiently close with the
goal of creating ordered lists of pixels that are connected. The walker starts at a labeled
pixel on a segmented component that has not been included in any of the connected
membrane surfaces. It moves around by taking one of the eight actions (move up, down,
left, right, up then left, down left, up right, down right by one pixel).

The Q-table that defines the walking policy is constructed iteratively by taking into
account the geometric features (position, orientation and curvature) of the segmented
components as well as the local reward that is dynamically defined.

April 2, 2020 9/25

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.09.034025doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.09.034025
http://creativecommons.org/licenses/by/4.0/

When the walker is on a segmented component, the reward for each of its actions is
defined by the number of new labeled pixels resulting from the change in the field of
view, which is defined to be a rectangular window of a certain size. Figure 9 shows that,
when the walker moves from the blue pixel (state) to the red pixel (state), its new field
of view (defined by the red rectangle) contains 4 new labeled pixels (enclosed by the
yellow box in the image). This is the local award associated with the action that takes
the walker from the blue pixel to the red pixel. In the case in which multiple actions
yield the same reward, the action that keeps the walker in the middle of the segmented
component is favored. This modified reward is also the Q-value associated with that
particular (state, action) pair. By taking the actions that are associated with the largest
Q-values, the walker traces out the segmented component as a 1D parameterized curve.
When the walker reaches the end of a segmented component, it returns to the starting
point and tries to traverse in the opposite direction if that has not been done.
Otherwise, it picks another pixel on another segmented component and repeats the
same process until all segmented components have been traversed. This procedure
allows us to generate a set of ordered and connected pixels (segments) from the output
returned from the U-Net. We remove segments that have very few pixels. These tend to
be introduced by the noise picked up by U-Net. Figure 10 shows all segments identified
by the RL algorithm when it is applied to the U-Net output shown in Figure 8(a). Each
segment is labeled by a number.

(a) The field of view of the walker and the
local reward associated with moving up
and left by one pixel from the blue pixel.

(b) The learned path is labeled by
numbers from 1 to 13.

Fig 9. A schematic illustration of how local reward is calculated in the reinforcement
learning algorithm as the walker traverses the segmented component (a) and the learned
path (b).

In the second phase of the RL algorithm, our goal is to connect segmented
components (ordered lists of pixels) identified in the first phase if they belong to the
membrane of the same subcellular structure. The walker is initialized to exit from an
endpoint A of a segmented component, e.g. as shown in Figure 11. It has to make a
decision on which segmented component to connect to in order to have the best chance
to return to the same component it starts from along a smooth path without revisiting
any segments that have already been traversed. Once the decision is made, it picks one
of the endpoints of the next component to enter and exit from the other endpoint.

In this case, the local reward for jumping to an endpoint B of another segmented
component is determined by the distance between A and B, the direction of the line

April 2, 2020 10/25

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.09.034025doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.09.034025
http://creativecommons.org/licenses/by/4.0/

Fig 10. All connected segments identified by the RL algorithm after it is applied to the
tomogram slice shown in Figure 8. Each segment is labeled by a distinct number.

segment AB, as measured by the angles formed between AB and the tangent lines of
each component near A and B, as well as the approximate curvatures of the segments
containing A and B respectively. (See Figure 11)

Fig 11. The local reward for moving from A to B is calculated from the distance L
between A and B as well as the difference between angles θA and θB .

The Q-value of each action is initially determined by the local reward. However,
taking the action associated with the highest Q-value does not guarantee that the walker
can return to the segment it starts from within a fixed number of jumps, which form a
training episode. Therefore, multiple episodes may be needed to produce a Q-table that
provides an optimal policy for the walker to successfully return to the original
segmented component after going through several components that can be connected in
a smooth manner. The process of generating an optimal policy (encoded by a Q-table)
is often referred to as Q-learning. During the training and learning process, entries of
the Q-table are updated according to the standard Q-learning update formula

Qk+1(s, a) = (1− α)Qk(s, a) + α
[
rk + λmax

a′
Qk(s′, a′)

]
, (4)

where k is the episode number, rk is the local reward for taking action a at s in kth
episode, s′ is the observed state that can be reached from s by taking the action a,
0 < α < 1 is the learning rate and 0 < λ < 1 is the discount rate. For each state, we

April 2, 2020 11/25

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.09.034025doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.09.034025
http://creativecommons.org/licenses/by/4.0/

apply the so-called ε-greedy policy to select an action. In such a policy, we make the
walker take the action that yields maximum Q(s, a) value most of the time, but allow it
to take a random action occasionally. The value of ε defines the probability of taking a
random action in an ε-greedy policy. To be specific, before taking an action, we
generate a random number. If the number is less than ε, we pick one of the possible
actions randomly. Otherwise, we pick the action a that yields that largest Q(s, a) for
the current s. Both α and ε can be adjusted dynamically. For example, at the
beginning of the training episodes, both ε and α are set to a relatively large value. They
are gradually decreased in subsequent episodes.

The basic procedure for updating the Q-table in a Q-learning algorithm is
summarized in Algorithm 1 [15]. In this algorithm, Nepisode refers to the number of
episodes allowed to identify one set of connected components, maxact refers to the
maximum number of actions that can be taken within one episode. For simplicity, we
assume a fixed learning rate ε is used. The function rand() generates a uniformly
distributed random number between 0 and 1.

Algorithm 1 Q-learning with ε-greedy policy

1: Initialize Q(s, a) for all (s, a) pairs;
2: for k = 1, 2, ..., Nepisode do
3: Mark all remaining segments as unvisited;
4: nact = 0;
5: while nact < maxact do
6: if rand() ¡ ε then
7: Randomly pick an action a that takes the agent to an unvisted segment;
8: else

9:
Pick the action a with the largest Qk(s, a) that takes the agent to an
unvisited segment;

10: Evaluate the local reward rk associated with (s, a);
11: Take the action a and update

Qk+1(s, a) = (1− α)Qk(s, a) + α
[
rk + λmax

a′
Qk(s′, a′)

]
;

12: nact ← nact + 1.

The local reward rk (in line 10 of the algorithm) we assign to each action of moving
from the end of one segment to that of another is typically a negative number
determined by the distance of the segments, the difference in their curvature and
orientation (in terms of incident angles). The reward is much smaller (more negative) if
the transition from one segment to another is not smooth. A positive reward is given
only when the action takes the agent (walker) back to the segment it starts from. If no
positive rk is ever generated in an episode, that episode is considered a failed episode.

After a Nepsisode Q-learning step is terminated, we can use the final Q-table to
define the optimal policy for connecting different components. We start from starting
component and connect to the next component by selecting among all actions that yield
the largest Q(s, a) value.

Figure 12(a) shows the final Q-table as a heatmap produced from several Q-learning
episodes applied to the identified segments shown in Figure 10. These episodes start
from segment 3 shown in Figure 10. The Q-table heatmap is rescaled to make it easier
to interpret. The vertical axis labels the states, which are the segment numbers, and the
horizontal axis labels the actions the agent can take, which are labeled by the target
segment numbers since each action corresponds to a jump from one segment to another.
According to this table, if the agent starts from segment 3, the next action will take it

April 2, 2020 12/25

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.09.034025doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.09.034025
http://creativecommons.org/licenses/by/4.0/

to segment 4, followed by another action that takes it back to segment 3. This sequence
of actions allows us to connect segments 3 and 4. Figure 13 shows all connections made
by the RL algorithm when it is applied to the image shown in Figure 10. Each
connection is marked by a black line connecting two segments. Although all connections
in this particular example consist of two segments, the RL algorithm we developed can
be used to connect several segments. Figure 14(a) shows a heatmap representation of
the Q-table produced by the RL algorithm when it is applied to multiple hand-drawn
segments shown in Figure 14(b). Using the Q-table, we can easily connect segments
labeled by 3,7,2,6,0,8,1.

Fig 12. The heatmap produced from several episodes of the RL algorithm applied to
Figure 10 starting from segment 3

Fig 13. All connections made by the RL algorithm. Each connection is marked by a
black line in the figure.

5.2 Classification via Region Merging

What is essentially achieved by the reinforcement learning algorithm presented above is
the classification of U-Net segmented components into separate classes that represent
membrane structures of distinct subcellular structures. Segmented components

April 2, 2020 13/25

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.09.034025doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.09.034025
http://creativecommons.org/licenses/by/4.0/

Fig 14. (a) The heatmap representation of the Q-table produced from several episodes
of the RL algorithm applied to connect the hand drawn segments in (b). The connected
path is [3,7,2,6,0,8,1].

belonging to the same class can be connected via a number of geometric fitting
procedure to be discussed in section 5.3.

In this section, we consider another strategy to perform this classification. Standard
classification techniques such as K-means and principal component analysis are not
directly applicable because the objects to be classified in our case are ordered sets of
pixels with different sizes. They are not convenient descriptors as are used in the
standard classification methods which treat each data point as a vector of numbers.

The classification scheme we use is a variant of the statistical region merging method
originally developed in [16]. In this approach, each pixel identified by U-Net to be part
of the membrane forms its own region initially. Regions that are sufficiently close are
merged successively. The distance between two regions R1 and R2 is defined by

d(R1, R2) = min
x
(1)
i ∈R1,x

(2)
j ∈R2

‖x(1)
i − x

(2)
j ‖, (5)

where x
(1)
i and x

(2)
j are the coordinates of two points in regions R1 and R2 respectively.

In addition to using d as a metric to decide whether to merge two adjacent regions,
other visual cues such as curvature of the existing region can be used to define a
predicate for reaching a merging decision. Such a predicate may also take into account
uncertainty in the data (due to the presence of noise, artifacts and missing information)
to allow merging decisions to be made on a statistical basis [17].

At the end of the merging process, each distinct region represents a distinct
(membrane) class which is assigned a unique label.

If we simply perform region merging within each 2D tomogram slice, disconnected
components with a relatively large gap will remain in different regions and thus be
disconnected after the merging process is completed. However, if we allow merging to be
performed in 3D, i.e., allowing pixels in different slices to be merged into the same
region, then two disconnected segments on the same membrane can be merged into the
same region when each one of these segments contains separated pixels that can be
connected to other pixels in an adjacent slice that have already been merged into a
common region. This is possible because segmented components that belong to the
same membrance surface may be disconnected at different locations in different slices.
By exploiting the continuity of a membrane structure among different tomogram slices,
we can successfully place two disconnected segments in a single tomogram slice into the
same class.

Figure 15 shows that even though segments A and B are disconnected in slice 90,
they contain pixels that can be connected (via the path shown in the right subfigure) to

April 2, 2020 14/25

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.09.034025doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.09.034025
http://creativecommons.org/licenses/by/4.0/

other pixels in an adjacent slice that has been merged into a common region on slice 105.

(a) The U-Net segmentation
performed on slice 90 yields
two disconnected segments
A and B.

(b) Slice 105 shows that the
A and B segments on slice
90 are likely to be
connected.

(c) A 3D path that connects
pixels in A and B on slice
90 to pixels in other slices
that have been merged into
a common region identified
in slice 105.

Fig 15. Placing two disconnected segments A and B in slice 90 into the same class
through 3D region merging.

To accelerate the class merging process, we use an efficient union-find data structure
and a tree-based merging algorithm [18]. In such an algorithm, each pixel is treated as a
node on a tree. Pixels merged into the same class are nodes on the same tree organized
in a hierarchical fashion. Each tree is labeled by its root node. Finding all pixels
belonging to the same tree essentially amounts to a breadth-first traversal of the tree,
which is constructed as it is being traversed. We can start from an arbitrary pixel and
add all adjacent pixels as its children in a tree. Each of its children adds more
descendants to the tree until no pixel can be added. If there are still pixels that have
not been used, the construction of a new tree starts from an arbitrary unused pixel.
This process continues until all pixels are used.

An alternative way to construct these trees simultaneously is to go through all pixels
in some order. A pixel B adjacent to the pixel A being examined is added as a child of
A in the tree TA that A belongs to if B has not been merged with other pixels in
another tree. Otherwise, the tree that contains B, denoted by TB , is merged with TA.
The merge involves placing the root of TB as a child of A in TA. Once we have gone
through all pixels, each pixel will belong to one of the trees. To find out which tree each
pixel belongs to, we simply traverse from the node the pixel is mapped to towards the
root since the root node is essentially the label of the tree.

Figure 16 shows the final six regions created by the region merging procedure. We
assign a different color for each region, which corresponds to one membrane structure
(except the sheet in the upper left corner of the 3D rendering.) Although these regions
can be viewed as a 3D segmentation of the tomogram, the segmented structures contain
visible artifacts such as extra voxels protruding from a membrane surface and gaps in
the membrane surface. We will show in section 6 that this problem can be fixed by a 3D
fitting and refinement procedure.

5.3 Connecting segmented components via 2D parametric and
non-parametric fitting

Once the segmented components have been classified, the pixels belonging to the same
class can be connected in 2D via a parametric and non-parametric fitting scheme by
taking into account prior knowledge of the subcellular structure to be examined.

April 2, 2020 15/25

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.09.034025doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.09.034025
http://creativecommons.org/licenses/by/4.0/

Fig 16. 3D rendering of six regions obtained at the end of the region merging
procedure applied to the entire tomogram. Each region is labeled by a unique color.

5.3.1 Parametric fitting

If the object to be segmented has a simple geometry, we can use a parametric fitting
scheme to deduce the missing pieces between disconnected components that have
already been segmented out by U-Net. If, for example, the horizontal slice of vesicle
membranes in Figure 8(a) all have a elliptical shape, we can parametrize the points on
the vesicle membrane as solutions of

(x− x0)2

a2
+

(y − y0)2

b2
= 1, (6)

where x0, y0, a and b are parameters to be determined from a nonlinear least squares
fitting procedure that minimizes the discrepancy between the left-hand and the
right-hand sides of (6) among all pixels on the segmented components that belong to
the same class.

(a) input images (b) output of U-Net (c) output of segments

Fig 17. Fitting U-Net segmented components with ellipses for the 120th tomogram
slice.

April 2, 2020 16/25

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.09.034025doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.09.034025
http://creativecommons.org/licenses/by/4.0/

5.3.2 Non-parametric fitting via Gaussian process

When the membrane of the subcellar structures cannot be easily described by simple
geometric objects that admit an analytic parameterization, we use a non-parametric
fitting procedure based on the Gaussian process (GP) formalism [19] and the implicit
surface [20] formulation.

The basic idea is to view the 2D curve that encloses a subcellular structure as the
zero level set of a smooth 2D scalar function f(x, y). Our goal is to construct this
non-parametric function f(x, y) such that f(x, y) = 0 for (x, y) ∈ U , where U contains
pixels in segmented components that have been identified and connected by algorithms
presented in sections 4, 5.1 and 5.2. In addition to the segmented pixels, the set U also
includes the pixel coordinates of a number of anchor points both inside and outside of
the expected membrane surface so that a smooth convex or concave function f(x, y) can
be constructed. The choice of these anchor points represents our prior belief that
certain parts of the image should belong to the exterior of the membrane while the
other parts should belong to the interior even though we do not know the precise
location of the interior/exterior separation in the region of interest.

We set the values of f to negative and positive constants at these anchor points as
shown in the example given in Fig. 18.

Fig 18. The anchor points added to a partially segmented membrane slice. The value
of f(x, y) is set to -1 for blue anchor points (outside the membrane), and to 1 for the
red anchor points (inside the membrane).

If f(x, y) is continuous and sufficiently smooth, the pixels in the zero level set of
f(x, y) that have not been included in the set U defined above will fill in the gaps of the
partially segmented membrane components returned from algorithms used in
sections 5.1 and 5.2 to form a continuous and smooth boundary (surface) as shown by
the example given in Fig. 19.

A GP is a prior of the distribution of functions f that is generally defined by a
multivariate Gaussian N (µ,K), with a mean function µ and covariance function K.
Since we are only interested in function values at the n pixels of a 2D image, µ is a
vector of length n, and K is a n× n matrix. We denote the function values of f on n
pixels by f .

The vectors f and µ, and the covariance matrix K can be partitioned as

f =

(
f1
f2

)
, µ =

(
µ1

µ2

)
, K =

(
K11 K12

K21 K22

)
, (7)

where f1 corresponds to random variables associated with values of f defined on pixels
contained in the set U described above, which includes both the coordinates of the
segmented components and the coordinates of the anchor points, and f2 corresponds to
random variables associated with values of f defined on the other pixels in the image.

April 2, 2020 17/25

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.09.034025doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.09.034025
http://creativecommons.org/licenses/by/4.0/

The vectors µi are the means of fi, i = 1, 2 respectively. The partition of K is conformal
to that of f and µ.

The conditional probability density function (PDF) of f2 given f1 yields the posterior
PDF of f2 given f1. It is well known [21] that this PDF is a multivariate Gaussian also
with the mean

µ̂2 = µ2 + K21K
−1
11 (f1 − µ1), (8)

and covariance matrix
K̂22 = K22 −KT

21K
−1
11 K21. (9)

The mean µ̂2 yields a good estimate of the values of f on pixels outside of U . It allows
us to reconstruct the missing components on the membrane surface by finding pixels
(x, y) /∈ U that satisfy |µ̂2| < ε for some small constant ε. In practice, µ1 and µ2 are
often set to 0. Therefore, (8) and (9) can be computed explicitly through the solution of
a linear system, matrix-vector and matrix-matrix multiplications. Regularization may
be needed when K11 is ill-conditioned. Fig. 19 (left) shows the mean function defined
on pixels outside of the segmented surface (curve) shown in Fig. 18. The segmented
surface is shown in black. The zero level set that fills in the opening on the segmented
surface is shown in blue. The figure on the right shows more clearly the reconstructed
surface (curve) as a 2D contour.

Fig 19. The mean function produced by GP (left) and its zero-level set (right).

In addition to providing a mean estimate of where the missing components of the
segmented surface (curve) should lie, we can also quantify the uncertainty associated
with the reconstructed surface by evaluating the marginal likelihood of a pixel being on
the zero level set of f , i.e.

p(f2(i) = 0|f1) =
1√
2σ2

i

exp

[
− (0− µ̂2(i))2

2σ2
i

]
, (10)

where f2(i) and µ̂2(i) denote the ith component of f2 and µ̂2 respectively, and σi is the

ith diagonal element of K̂22. This marginal PDF quantifies the uncertainty of a
particular pixel being on the surface of the membrane. Fig. 20 shows the marginal PDF
associated with the µ̂2 shown in Fig. 19 as a grayscale image. The darker the pixel, the
higher the likelihood of the value of µ̂2 being zero (hence on the membrane) at that pixel.
We exclude the previously segmented pixels by setting the color of these pixels to red.

Note that the GP prior on the distribution of f is largely determined by the
covariance K. The mean µ does not play an essential role and is usually set to 0. The
covariance describes how function values f(x, y) are correlated for different (x, y)’s. It is
often expressed in terms of the distance between different (x, y)’s. A commonly used
covariance kernel is the Gaussian kernel defined as

K(i, j) = exp

[
−(xi − xj)2 − (yi − yj)2

η2

]
, (11)

April 2, 2020 18/25

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.09.034025doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.09.034025
http://creativecommons.org/licenses/by/4.0/

Fig 20. The marginal likelihood of each pixel being on the zero level set of f , i.e. on
the surface/boundary of the membrane (left). The marginal likelihood of pixels along
the line segment AB (shown in the left figure) being on the zero level set of f (right).

for some appropriately chosen length scale parameter η, where (xi, yi) and (xj , yj) are
coordinates of the ith and jth pixels respectively.

However, this particular kernel does not work well in sufficiently constraining the
zero level set of µ2 by that of µ1 through the smoothness of f . A more effective
covariance kernel proposed in [22] has the form

K(i, j) = 2r2
ij log rij − (1 + 2 logR)r2

ij +R2, (12)

where rij =
√

(xi − xj)2 + (yi − yj)2 and R is the maximum distance between any two
pixels in the 2D image. Note that K(i, i) = R2 for all i. This kernel function is the
Green’s function of a 4th order differential operator. It is related to smoothing splines
interpolation [23] and the thin-plate spline regularizer [22].

The GP framework is flexible in allowing us to construct the mean of f (and the
implicit surface associated with its zero level set) to match prior knowledge about
certain biological structures. For example, by placing one anchor point within the inner
ring of the double membrane structure present in, for example, Fig. 17(b), some anchor
points between the inner and outer rings and some outside of the outer ring, and setting
the values of anchor points to -1, 1 and -1, we can reconstruct the missing segments in
both the inner and outer membrane as can be seen in Fig. 21.

Fig 21. The mean function produced by GP and the zero-level set for inner and outer
surfaces.

6 Refinement in 3D

Although 2D parametric and non-parametric fittings allow us to fill in the missing
pixels in the segmented component in each slice of the tomogram and produce smooth

April 2, 2020 19/25

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.09.034025doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.09.034025
http://creativecommons.org/licenses/by/4.0/

2D curves in each slice, stacking these 2D curves together may produce a nonsmooth 3D
surface with gaps or bumps along the vertical direction as can be seen in Figure 22.

Fig 22. The isosurface of the 3D segmentation obtained by stacking the segmented
slices 60 through 160.

The nonsmoothness of the surfaces can also be quantified by the maximum of
distances between each membrane pixel and its nearest neighboring pixel on an adjacent
slice. We plot in Figure 23 a histogram of such maxima for all slices shown in Figure 22.
We can see from the histogram that most of the maximum distances are within 2 pixels,
but there are quite a few between 2 and 5 pixels. There is even one that is 8 pixels long.

Fig 23. Histogram of the maximum distance between a membrane pixel and its nearest
neighboring membrane pixel on an adjacent slice for all slices shown in Figure 22.

The lack of smoothness along the vertical direction results partially from artifacts
produced by the U-Net segmentation which picks up some spurious pixels that do not
belong to the surface of the membrane. It may also be caused by either an ill-posed 2D
fitting (due to the presence of only a few pixels grouped into the same class) or
overfitting that tries to connect pixels on the membrane with spurious pixels. Neither
procedure is properly constrained by the continuity and smoothness of the membrane
surface across tomogram slices.

To address this problem, we develop a refinement procedure to first collect
segmented pixels in different tomogram slices that belong to the same membrane
surface. Spurious pixels are pruned. We then use the 3D Gaussian process formalism to
construct 3D membrane surfaces that are zero level sets of a continuous function defined
on a 3D volume and anchored by a few voxels both inside and outside of the membrane
surfaces to be reconstructed.

April 2, 2020 20/25

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.09.034025doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.09.034025
http://creativecommons.org/licenses/by/4.0/

6.1 Voxel selection

In order to make effective use of the Gaussian process technique in 3D to construct the
desired membrane surfaces, we need to identify as many voxels that lie on the same
surface as possible. These voxels are collected from segmented pixels within each
tomogram slice. Pixels that belong to the same class produced from the classification
schemes discussed in sections 5.1 and 5.2 are grouped together. However, in some
tomogram slices, only a few pixels belonging to the surface are visible. Even fewer can
be identified by the U-Net. Although parametric or non-parametric fitting can be used
to reconstruct some of the pixels, the lack of visible pixels in these slices makes the
fitting procedure ill-posed. For example, Figure 24 shows that U-Net picked up a few
pixels on the inner membrane of a vesicle in the upper left corner of the 100th
tomogram slice. Some of these pixels were filtered out during the classification
procedure because they are isolated and not connected to other pixels. Only a small
number of pixels at the top of the inner membrane are retrained. When an elliptic
parametric fitting procedure is applied, a small ellipse is produced, which does not
correctly characterize the shape of the inner membrane.

However, the correct shape of the inner membrane is obtained when the parametric
fitting procedure is applied to the 120th tomogram slice shown in Figure 17. For that
tomogram slice, many pixels can be seen to lie on the inner membrane. They are
correctly identified by the U-Net segmentation. The parameters associated with the
ellipse that closes the gap in the U-Net segmented inner membrane can be used to train
the parameters to be optimized when a nonlinear least squares fitting is applied to the
100th tomogram slice. To be specific, we can use the parameters x0, y0, a and b
obtained from the least squares fit of the inner membrane for the 120th tomogram slice
as the starting guesses to the parameters associated with the ellipse that fit the selected
pixels in tomogram slice 100. Upper and lower bounds for these parameters are also set
based on the parameters obtained from the 120th tomogram slice. The constrained
optimization with a good starting guess yields an ellipse shown as the green curve in
Figure 24(c). Once this ellipse is constructed, all segmented pixels produced by U-Net
that are sufficiently close to the ellipse are selected as voxels to be used in the 3D
Gaussian process fit.

(a) The 100th tomogram
slice.

(b) The U-Net output. (c) An ill-posed fit of the
inner membrane due to the
lack of data (red), and the
corrected fit obtained by
constraining the fit with
parameters obtained from
another tomogram slice.

Fig 24. An elliptic fitting of the inner membrane on the 100th tomogram slice using
filtered U-Net segmentation and the correction made by taking into account the fitting
made on the 120th slice.

April 2, 2020 21/25

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.09.034025doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.09.034025
http://creativecommons.org/licenses/by/4.0/

6.2 3D fitting via Gaussian process

Once all valid voxels for each one of the organelles in the tomogram have been
identified, we use the technique of Gaussian process discussed in section 5.3.2 to
construct an isosurface that connects all these voxels. This isosurface is defined as the
zero level set of a 3D function f(x, y, z) that is smooth. For an organelle with a single
membrane, we choose an anchor point interior to membrane and set the function value
of that point to 0. This point can typically be chosen as the centroid of all validated
voxels that are considered to be on the membrane. A number of anchor points (xi, yi, zi)
in the exterior region of the membrane must also be chosen. The value of f is set to 1
at these anchor points. There are a few ways to choose these anchor points. These
choices represent our prior knowledge of the shape of the membrane. For example, if the
organelle is believed to have an ellipsoidal shape, we can enclose the validated voxels
associated with this organelle by an ellipsoid with an appropriate size and orientation
estimated from the selected voxels, and sample quasi-uniformly on the surface of the
ellipsoid. Another possible way is to simply choose a few validated voxels that are well
separated, and extend the ray connecting the centroid with the selected voxel
proportionally to the distance between the selected voxel and the centroid (See
Figure 25). For example, point A is obtained by connecting the centroid at C with a
validated voxel B and extending the ray so that the distance between A and C is 1.2
times the distance between B and C.

Fig 25. The anchor point (C) is chosen by connection a validated voxel B with the
centroid of all validated voxels C and extending the ray away from the centroid so that
|AC| = 1.2× |BC|.

For 3D fitting, each element of the covariance matrix associated with the joint
Gaussian distribution (11) is chosen as

K(i, j) = 2(rij)
3 + 3Rr2

ij +R3, (13)

where rij =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2, and R is the maximum distance
between any two validated voxels that are considered to be on the membrane surface of
a single organelle.

Figure 26 shows the lower half of the reconstructed surfaces for several organelles
within the tomogram as well as the validated voxels selected for fitting in the upper half
of the tomogram.

Figure 27 shows the entire reconstructed exterior surfaces that characterize the
shape of these organelles as well as the ATP synthase proteins identified by the U-Net.

April 2, 2020 22/25

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.09.034025doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.09.034025
http://creativecommons.org/licenses/by/4.0/

Fig 26. Lower half of the reconstructed membrane surfaces for several organelles within
a single tomogram as well as validated voxels selected for the GP fitting procedure.

Fig 27. The entire exterior surfaces of the reconstructed membranes of different
organelles within the tomogram as well as the ATP synthase proteins (blue) outside of
the membranes.

April 2, 2020 23/25

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.09.034025doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.09.034025
http://creativecommons.org/licenses/by/4.0/

7 Discussion and Conclusion

The extreme low contrast of cryo-electron tomograms and artifacts introduced by the
limited sample tilt range that is accessible during imaging (the missing wedge problem)
makes it difficult to use existing segmentation tools developed in the last few decades
mainly for high contrast 3D medical imaging to analyze the tomogram and identify
important biological structures.

We presented a machine learning-based segmentation approach to overcome this
difficulty. Our approach uses a variety of techniques organized in a learning pipeline to
automate the segmentation process. The learning pipeline starts from supervised
learning via a U-Net trained with simulated data. It continues with semi-supervised
reinforcement learning and/or a region merging techniques that try to piece together
disconnected components that should belong to the same subcellular structure. A
parametric or non-parametric fitting procedure is then used to enhance the
segmentation results and quantify uncertainties in the fitting. Domain knowledge is
used in generating the training data for U-Net and in guiding the fitting procedure
through the use of appropriately chosen priors and constraints (e.g., anchor points for
GP). We demonstrated that the approach proposed here worked well for extracting
membrane surfaces of protein reconstituted liposomes in a cellular environment that
contains other artifacts. Although we have only demonstrated the effectiveness of our
approach on one dataset, the approach itself is quite flexible and can be applied to a
different dataset with minimal modifications. New domain knowledge for a different
dataset can be incorporated by providing new simulated training data for U-Net and
new priors through the choice of different anchor points in GP fitting.

Acknowledgement

This research was supported by the Laboratory Directed Research and Development
(LDRD) Program award 20-122 of Lawrence Berkeley National Laboratory (LBNL)
under U.S. Department of Energy Contract No. DE-AC02-05CH11231. Z. Li would like
to acknowledge support from both LBNL and the Chinese Ministry of Education for
carrying out this research during his visit to LBNL.

References

1. Lučić V, Rigort A, Baumeister W. Cryo-electron tomography: The challenge of
doing structural biology in situ. The Journal of Cell Biology. 2013;202(3):407–419.
doi:10.1083/jcb.201304193.

2. Beucher S, Meyer F. The morphological approach to segmentation: the
watershed transformation. In: Dougherty ER, editor. Mathematical Morphology
in Image Processing; 1993. p. 433–481.

3. Batenburg KJ, Sijbers J. Optimal Threshold Selection for Tomogram
Segmentation by Projection Distance Minimization. IEEE Transactions on
Medical Imaging. 2009;28(5):676–686. doi:10.1109/TMI.2008.2010437.

4. Kimmel R, Bruckstein AM. Regularized Laplacian Zero Crossings as Optimal
Edge Integrators. International Journal of Computer Vision. 2003;53(3):225–243.
doi:10.1023/A:1023030907417.

5. Caselles V, Kimmel R, Sapiro G. Geodesic Active Contours. International
Journal of Computer Vision. 1997;22(1):61–79. doi:10.1023/A:1007979827043.

April 2, 2020 24/25

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.09.034025doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.09.034025
http://creativecommons.org/licenses/by/4.0/

6. Osher S, Sethian JA. Fronts propagating with curvature-dependent speed:
Algorithms based on Hamilton-Jacobi formulations. Journal of Computational
Physics. 1988;79(1):12–49. doi:https://doi.org/10.1016/0021-9991(88)90002-2.

7. Jiang X, Zhang R, Nie S. Image Segmentation Based on Level Set Method.
Physics Procedia. 2012;33:840–845.
doi:https://doi.org/10.1016/j.phpro.2012.05.143.

8. Chan TF, Vese LA. Active contours without edges. IEEE Transactions on Image
Processing. 2001;10(2):266–277. doi:10.1109/83.902291.

9. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical
image segmentation. In: International Conference on Medical image computing
and computer-assisted intervention. Springer; 2015. p. 234–241.

10. Chen M, Dai W, Sun SY, Jonasch D, He CY, Schmid MF, et al. Convolutional
neural networks for automated annotation of cellular cryo-electron tomograms.
Nature methods. 2017;14(10):983.

11. Tomasi C, Manduchi R. Bilateral filtering for gray and color images. In: Sixth
International Conference on Computer Vision (IEEE Cat. No.98CH36271); 1998.
p. 839–846.

12. Zuiderveld K. In: Contrast Limited Adaptive Histogram Equalization. USA:
Academic Press Professional, Inc.; 1994. p. 474–485.

13. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep
convolutional neural networks. In: Advances in neural information processing
systems; 2012. p. 1097–1105.

14. Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv preprint
arXiv:14126980. 2014;.

15. Sutton RS, Barto AG. Reinforcement learning: An introduction. MIT press;
2018.

16. Nock R, Nielsen F. Statistical Region Merging. IEEE Transactions on Pattern
Analysis and Machine Intelligence. 2004;26(11):1452–1458.

17. Peng B, Zhang L, Zhang D. Automatic Image Segmentation by Dynamic Region
Merging. IEEE Transactions on Image Processing. 2011;20(12):3592–3605.
doi:10.1109/TIP.2011.2157512.

18. Fiorio C, Gustedt J. Two Linear Time Union-Find Strategies for Image
Processing. Theoretical Computer Science. 1996;154:165–181.

19. Rasmussen CE. Gaussian processes in machine learning. In: Summer School on
Machine Learning. Springer; 2003. p. 63–71.

20. Turk G, O’brien JF. Variational implicit surfaces. Georgia Institute of
Technology; 1999.

21. Murphy K. Machine Learning: A Probabilistic Perspective. MPI press; 2012.

22. Williams O, Fitzgibbon A. Gaussian Process Implicit Surfaces. Gaussian
Processes in Practice. 2007;.

23. Green P, Silverman B. Non-parametric regression and generalized linear models.
Chapman and Hall; 1994.

April 2, 2020 25/25

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.09.034025doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.09.034025
http://creativecommons.org/licenses/by/4.0/

