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Abstract  
 

 

Background  

 

Heat stress induced by high environmental temperature and humidity affects livestock production 

and health. With global warming on the uprise, indigenous cattle known for their heat tolerance 

are gaining importance than the crossbreds. However, systems biology behind this phenotype in 

indigenous cattle is less known. In this study using transcriptome analysis,  we identified key 

molecules and pathways that may lead to the heat tolerance phenotype in indigenous cattle 

(Tharparkar breed) 

 

Results 
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The number of DEGs in Crossbred were found to be more than in Tharparkar suggesting a greater 

dysregulation in systems biology in Crossbred. A contrast in gene expression was observed with 

18.5 % of upregulated genes in Crossbred (Vrindavani cattle) downregulated in Tharparkar and 

17.5% upregulated genes in Tharparkar downregulated in Crossbred. The increased HSPs levels 

have been found positively correlated with tolerance in many species. Upregulation of HSF, 

HSP70, HSP90, and activation of eIF2 signaling pathway in Tharparkar and vice-versa in 

Crossbred delineates how Tharparkar withstands heat stress. Unlike Crossbred, Tharparkar is not 

only endowed with higher expression of the scavengers (UBE2G1, UBE2S, and UBE2H) of 

misfolded proteins but also with protectors (VCP, Serp1, and CALR) of naïve unfolded proteins. 

Further, the apoptotic genes that were dysregulated in both genetic groups indicated a relatively 

higher probability of apoptosis in Crossbred than in Tharparkar. Also, higher expression of the 

antioxidants in Tharparkar enables it to cope up with higher levels of free radicals generated as a 

result of heat stress. 

 

Conclusion  

In this study we found relevant molecules/genes dysregulated in Tharparkar in the direction that 

can counter heat stress. To best of our knowledge this is a comprehensive comparison between 

Tharparkar and crossbred at a global level using transcriptome analysis. 

 

 Background  
  

Cattle being homoeothermic, modulate their internal body temperature with sync to 

environmental temperature by equilibrating the amount of heat produced within the body and its 

dissipation to the ambient environment. The stress that arises due to disproportionate 

thermodynamic behavior between cattle and its surrounding environment is termed as heat stress 

[1]. Environmental induced hyperthermic stress lowers feed intake, which in turn reduces growth, 

milk production, reproductive efficiency thereby negatively affecting the economics of livestock 

keepers [2-4]. It has been associated with reduced fertility through its deleterious impact on oocyte 

maturation and early embryo development  [5]. Increased morbidity and mortality was observed 

by lowering the immune response in immune-compromised animals under heat stress [6].   
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India has a wide variety of indigenous cattle breeds distributed throughout its agro-climatic 

zones. These are known for their natural tolerance to tropical heat [7, 8].To meet the growing 

demand for milk in India several crossbreeding programs were taken up. Every state had its own 

crossbreeding policy, which is agro-climatic and breed-specific. Crossbreds were found 

notwithstanding harsh climate, being susceptible to tropical diseases and require a constant input 

of good management conditions [8]. The adaptive capacity to heat stress varies between species 

and genetic groups within species. Among various adaptive mechanisms, physiological 

adaptability seems to be the primary step in cattle. Sahiwal cows better regulate body temperature 

in response to heat stress than Karan Fries [8]. It was observed that Ongole cattle rely on the 

respiration rate to maintain thermal balance, while, Bali cattle rely on rectal temperature [9]. In 

Brazil, Sindhi and Girolando breeds showed better physiological response to thermal stress than 

Gir cattle [10]. Increase in respiration rate was reported in  Nellore breed when exposed to heat 

load [11].  

Though it is known that Indigenous breeds are heat tolerant than the exotic breeds and 

Crossbreds, studies explaining the difference between these genetic groups have been done mainly 

to address the physiological responses vis – a – vis heat stress and very few studies at the genomic 

level have been taken up [12, 13]. The systems biology behind a phenotype is most commonly 

studied by transcriptome profiling [14, 15]. RNA-seq is a high throughput approach to measure 

relative global changes in the transcripts under specific condition(s) [14, 16, 17]. RNA - seq allows 

for analysis of transcriptome in an unbiased way, with, a tremendous dynamic detection range 

(>8,000 fold), and low background signals [18]. It has been used  as an investigating tool in 

understanding disease pathogenesis   [19, 20] and differential physiological response to various 

biotic and abiotic factors [21, 22]. 

In this study, we evaluated the whole genome expression level of the Peripheral blood 

mononuclear cell (PBMCs) of the two genetic groups-   Crossbred (Vrindavani) and Indigenous 

cattle breed (Tharparkar) to understand their differential response to heat stress.  

Results 

 

 Physiological Parameters  
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The overview of the analysis is given in Figure 1. Respiration rate (RR), rectal temperature 

(RT) and T3 level increased significantly (p<0.05) on 7th-day post heat stress in both the genetic 

groups (n=5) (Figure 2). However, the increase was found significantly higher in Crossbred than 

in Tharparkar. 

Comparison of DEGs of Crossbred and Tharparkar under heat stress 

  Under heat stress, global expression profiles of Crossbred and Tharparkar were identified 

with 6042 and 4718 DEGs, respectively (Supplementary Table 1)  . Among these,   3481 DEGs 

were found common between the two genetic groups, and 2561 and 1238 DEGs were uniquely 

found in Crossbred and Tharparkar, respectively (Figure 3a). Additionally, 3132 and 2924 genes 

were upregulated and downregulated in Crossbred and, 2367 and 2358 genes were upregulated 

and downregulated in Tharparkar, respectively (Figure 3b). On comparison of upregulated and 

downregulated genes, 724 and 1416 genes were found uniquely upregulated and 514 and 1145 

genes were found uniquely downregulated in Tharparkar and Crossbred, respectively. The 

comparison also revealed that 17.5% of upregulated genes (1278) in Tharparkar were 

downregulated in Crossbred and 18.5% downregulated genes (1344) in Tharparkar were found 

upregulated in Crossbred. However, the number of common upregulated and downregulated genes 

in both the genetic groups were 357 (4.9%) and 498 (6.8%), respectively (Figure 3c). 

 Functional analysis of knowledge-based genes  

Heat shock genes have been found dysregulated under heat stress in both breeds. Most of 

the HSPs -HSPA4, HSPB8, HSPA1A (HSP 70), HSPA8 (HSP 70), HSP90AB1 (HSP 90alpha) and 

HSP90AA1 (HSP 90beta) and heat shock protein regulating factors-  HSF1 and EEF1A1 have been 

found to be downregulated/not-differentially expressed in Crossbred but upregulated in 

Tharparkar. However, CAMK2D that is involved in the regulation of expression of heat shock 

genes are upregulated in Crossbred and downregulated in Tharparkar. Among the apoptotic genes,  

BCL2L11, FASLG, TICAM2, TLR4, APC, CASP3, MAPK8, MLKL, XIP,  VIM, and HMGB2  were 

found to be upregulated in Crossbred and downregulated in Tharparkar.  The number of 

upregulated genes involved in antioxidants was found to be more in Tharparkar than in Crossbred.  

Among these, GPX3, NUDT2, CAT, CYCS, CCS, PRDX5, PRDX6, PRDX1, SOD1, and CYBB 

were found either downregulated/not-differentially expressed in Crossbred and upregulated in 

Tharparkar.  More number of genes involved in Ubiquitination were differentially expressed in 
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Crossbred than in the Tharparkar. Genes like UBE2G1, UBE2S, UBE2H, UBA52, and UBA1 have 

been found downregulated/ not-differentially expressed in Crossbred and upregulated in 

Tharparkar. However, VCP, RNF40, and UBE2L3 have been found downregulated in Crossbred 

but not-differentially expressed in Tharparkar. Among the genes involved in Unfolded Protein 

folding response (UPR) - MBTPS1, CREB3L1, SERP1 GSK3A, EIF2S3, SRPA, CALR, and SERP1 

have been found downregulated in Crossbred and upregulated in Tharparkar (Figure 4). 

PPI network revealed functional importance of HSP70 (HSPA8 and HSPA1A) and ubiquitin 

(UBB, UBA52), in coordinating genes involved in heat stress  

The PPI networks were constructed for the knowledge-based genes that were common 

between Tharparkar and Crossbred. In the PPI networks, hubs define the functional and structural 

importance of a network. The genes, which act as hubs in PPI networks were found to be UBB, 

UBA52, HSPA8, and HSPA1A (Figure 5). Among the 4,  UBB was downregulated in both genetic 

groups  and the rest were downregulated in Crossbred and upregulated in Tharparkar.  

Canonical pathway analysis by IPA revealed contrast in signaling pathways in Crossbred 

and Tharparkar   

 Canonical pathways associated with Crossbred and Tharparkar are represented in Figure 

6a and 6b. In Crossbred, Oncostatin M Signaling, Phospholipase C Signaling, EIF2 Signaling, 

Integrin Signaling, IL-3 Signaling, and CXCR4 Signaling were found to be highly inactivated and 

PTEN signaling was found to be highly activated. In Tharparkar, EIF2 Signaling, Androgen 

Signaling, Oncostatin M Signaling, α-Adrenergic Signaling, BMP signaling pathway, and UVC-

Induced MAPK Signaling were found to be highly activated and PTEN signaling was found to be 

inactivated. The canonical pathway Oncostatin M Signaling and eIF2 Signaling were found to 

have the highest ratio of genes involved vis-a-vis the genes in the database in Crossbred and 

Tharparkar, respectively.  

While carrying out comparative analysis through IPA, Calcium-induced T Lymphocyte 

Apoptosis, BMP signaling pathway, UVC-Induced MAPK Signaling, Regulation of Cellular 

Mechanics by Calpain Protease, fMLP Signaling in Neutrophils, Melatonin Signaling, and 

Leukocyte Extravasation Signaling, were found inactivated in Crossbred and activated in 

Tharparkar (Figure 7). Genes involved in Oncostatin M Signaling- GRB2, HRAS, JAK1, JAK3, 

MAP2K1, MAPK1, OSM, RAP1B, RAP2A, STAT1, STAT5B, TYK2, and RRAS were found 
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downregulated in Crossbred and upregulated in Tharparkar (Figure 8a, b). While the key genes 

involved in PTEN Signaling pathway – FASLG, RAP2A, BIM, CASP3 and MSP58 were found 

upregulated in Crossbred and downregulated in Tharparkar as well (Figure 9a, b). 

Variation in microRNAs and Transcription factors 

In Crossbred, 111 miRNAs were found to be inactivated and 37 activated. In Tharparkar, 

205 miRNAs were found to be inactivated and 272 activated. Among them, 52 microRNAs were 

found common between the two genetic groups. Most of the common miRNAs were found 

activated in Crossbred and inactivated in Tharparkar (Figure 10). miR-4779, miR-4651, miR-

1207-5p, miR-6967-5p and miR-504-3p are the top 5 miRNAs that were activated in Crossbred 

and inactivated in Tharparkar.  

  Various Transcription factors were found to regulate the expression of the identified DEGs. 

Transcription factors, 19 in Tharparkar (11activated and 8 inactivated) and 26 in Crossbred 

(8activated and 18 inactivated) were identified in IPA that regulate the expression of DEGs. 

Among them, PAX5, MTA3, MYC, PROX1 and SMAD7   in Crossbred and, HMGA1, MAF, MAX 

NOTCH22 and  NCOR1 in Tharparkar are top5  upregulated and activated TFs.  On comparing the 

TFs of Tharparkar and Crossbred, it was found that BHLHE40, HMGA1, HMGB1, IKZF1, and 

TCF7 were found to be common. BHLHE40, HMGA1, and TCF7 were found to be activated in 

Tharparkar and inactivated in Crossbred and it was vice - versa with HMGB1 and IKZF1 (Figure 

11) 

 Real-time validation. 

 To confirm the dysregulation of genes, qRT-PCR was used to validate the expression under 

heat stress. The expression of genes  (selected based on their role in heat stress) was in concordance 

with the RNA- Seq results (Figure 12)  

 

Discussion 

 

Heat stress is a natural phenomenon that affects domestic animals in tropical, sub-tropical 

and often in temperate regions of the world during summer months. Heat and humidity during the 
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summer months combine to make an uncomfortable environment for dairy cattle. Heat stress 

negatively impacts a variety of dairy parameters resulting in economic losses [23]. Response to 

heat stress varies with species and genetic groups within species [5, 24, 25]. In this study, the 

global transcriptome of genetic groups – Crossbred and Tharparkar cattle under heat stress was 

evaluated to understand their differential response to heat stress.  

  Animals  (n=5) of both the genetic groups were exposed to a temperature of 42 °C for 7 

days. Around 5th- 6th day,  short term heat acclimation occurs [26, 27].  This time point was selected 

to understand the differences in systems biology to heat stress in the two genetic groups. Initially, 

heat stress indicators - RR, RT, and T3 level were evaluated. RR was found to increase in both 

genetic groups under heat treatment and the increase in Crossbred was found to be significantly 

(P<0.05) different from that in Tharparkar. A positive correlation exists between RR and heat 

treatment [28-30]. This increase is an attempt to dissipate excess body heat by vaporizing more 

moisture in expired air or response to a greater requirement of oxygen by tissues under heat stress. 

Also, the physiological response to heat stress includes reduced heat production, which is achieved 

by lowering feed intake and thyroid hormone secretion [31]. T3 level increases under heat stress 

[32, 33].  A significant increase in T3 level in Crossbred as compared to Tharparkar indicates an 

effective regulatory mechanism in modulating T3 levels  in Tharparkar in response to heat stress.  

The T3 triggered metabolism may be one of the reasons that increase heat production resulting in 

increased rectal temperature in Crossbred in comparison to Tharparkar as was found in our study. 

The significant increase in RR, RT and T3 level in Crossbreed than in Tharparkar, suggests the 

inability of Crossbred to cope up with high stress in comparison to Tharparkar. 

      A phenotype is defined by the changes in systems biology. Transcriptome profiling by 

RNA-seq is the most common methodology to study the changes in systems biology. RNA 

profiling based on next-generation sequencing enables to measure and compare gene expression 

patterns  [16]. The global transcriptome of Tharparkar and Crossbred indicated differential 

response to heat stress as evident from the DEGs, that are either distinct to both or have a difference 

in expression. The number of DEGs in Crossbred were found to be more than in Tharparkar 

suggesting a greater dysregulation in systems biology in Crossbred. Among the dysregulated 

genes, the number of upregulated genes were more than the downregulated genes in both genetic 

groups. However, a contrast in expression was observed with 18.5 % of upregulated genes in 
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Crossbred downregulated in Tharparkar and 17.5% upregulated genes in Tharparkar 

downregulated in Crossbred. 

While exploring the DEGs at a functional level, it was found that most of heat shock genes 

were found upregulated in Tharparkar and downregulated in Crossbred. The increased HSPs levels 

have been found positively correlated with tolerance in many species[34, 35]. HSF1, that 

positively regulates the transcription of HSP70  and HSP90 [36, 37] was found upregulated in 

Tharparkar and downregulated in Crossbred. Pathway analysis through IPA revealed eIF2 

signaling pathway to be highly activated in Tharparkar and inactivated in Crossbred under heat 

stress. Upregulation of HSF, HSP70, HSP90, and activation of eIF2 signaling pathway in 

Tharparkar and vice-versa in Crossbred delineates how Tharparkar withstands heat stress. In an 

attempt to ensure that the HSP70 in Tharparkar is maintained at an optimum level, dysregulation 

of CAMK2D and GSK3A seems to act as negative feedback. CAMK2D that induces the 

transcription of HSP70 via HSF1 [38] has been found downregulated in Tharparkar. GSK3A that 

inhibits the trimerization of HSF1 that is needed for the induction of HSP70 [39] has been found 

upregulated in Tharparkar. The decreased level of HSP70 in Crossbred makes it inevitable that 

such negative feedbacks would further reduce its level and GSK3A was found downregulated and 

CAMK, upregulated. 

Ubiquitination is positively correlated with heat tolerance [40, 41]. Ubiquitin-Proteasome 

System (UPS) regulates the levels of  proteins and acts by removing the misfolded or damaged 

proteins that may accumulate as a result of exposure to abiotic stress. Malfunctioning of ubiquitin-

proteasome system UPS could have negative consequences for protein regulation, including loss 

of function  [42]. In Tharparkar after heat acclimation, HSP70 tends to activate the ubiquitination 

pathway to minimize the accumulation of the unfolded proteins that can't be refolded by it [43]. 

This pathway activation is supported by upregulation of E3 ligases - UBE2G1, UBE2S, and 

UBE2H that catalyze covalent attachment of E3 to unfolded proteins [44-47] in Tharparkar.  USP7 

that deubiquitinates target proteins [48, 49] was found upregulated in Crossbred and 

downregulated in Tharparkar.  Further, a group of molecules – VCP, Serp1, and CALR that ensure 

the protection of naïve proteins during their transport within the cell [50-52]were found 

upregulated in Tharparkar and downregulated in Crossbred. Unlike Crossbred, Tharparkar is not 

only endowed with higher expression of the scavengers of misfolded proteins but also with 

protectors of naïve unfolded proteins.   
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Activation of apoptosis pathway is one of the major physiological processes linked with 

heat stress. Among the apoptotic genes, BCL2L11, FASLG, MLKL, CASP3, MAPK8, and VIM 

have been found upregulated in Crossbred and downregulated in Tharparkar under heat stress. 

BCL2L11 induces apoptosis by neutralizing key molecules of pro-survival BCL2 sub-family [53, 

54], FASLG   transduces the apoptotic signal into cells[55, 56],  CASP3  activates caspases and  

executes apoptosis [57], and  MAPK8, MLKL, and VIM  also induce apoptosis  [58, 59]. PTEN 

signaling pathway that drives apoptosis [60, 61] was found inactivated in Tharparkar and activated 

in Crossbred. This indicates a relatively higher probability of finding apoptosis in Crossbred than 

in Tharparkar.    

The ability to balance the ROS and antioxidant level,  is one of the key factors that would 

determine the tolerance of an individual to heat stress. The antioxidant triad of GPX, SOD, and 

CAT that forms the first line of defense against reactive oxygen species [62-64], was found 

upregulated in Tharparkar and downregulated in Crossbred. Additionally, genes belonging to 

Peroxiredoxins - PRDX3, PRDX5 and PRDX6  that catalyzes the reduction of hydrogen peroxide 

and organic hydroperoxides  [65-69],were also found upregulated in Tharparkar and were either 

downregulated or not-differentially expressed in Crossbred. Higher expression of the antioxidants 

in Tharparkar enables it to cope up with higher levels of free radicals generated as a result of heat 

stress while Crossbred is unable to do so.  

 

Conclusion  

 

A contrast in expression was observed with 18.5 % of upregulated genes in Crossbred 

downregulated in Tharparkar and 17.5% upregulated genes in Tharparkar downregulated in 

Crossbred. Transcripts of molecules that stimulate heat shock response, Ubiquitination, unfolded 

protein response and antioxidant level were found upregulated in Tharparkar and downregulated 

in Crossbred. EIF2 Signaling that promotes protein translation and PTEN signaling that drives 

apoptosis were found activated and inactivated in Tharparkar, respectively and vice-versa in 

Crossbred. We found relevant molecules/genes dysregulated in Tharparkar in the direction that 

can counter heat stress. A proposed contrasting interplay of molecules in both two groups is shown 
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in Figure 13. To best of our knowledge this is a comprehensive comparison between Tharparkar 

and crossbred at a global level using transcriptome analysis. 

 

 Methods 

 

Experimental condition and Ethical Statement 

The animals used for the study were from the Indian Veterinary Research Institution. The 

permission to conduct the study was granted by Indian Veterinary Research Institutional Animal 

Ethics Committee (IVRI-IAEC) under the Committee for Control and Supervision of Experiments 

on Animals (CPCSEA), India, vide letter no 387/CPSCEA.  Prior to experiment, the animals -5 

Tharparkar and 5 Crossbred (Vrindavani) cattle, were acclimatized for 15 days outside the 

Psychometric chamber. Tharparkar is one among the best dairy breeds in the Indian subcontinent, 

adapted to the Indian states of Punjab and Haryana. Tharparkar cattle are lyre horned type of zebu 

cattle that have been frequently used for upgrading local low-yielding cattle breeds [70, 71].  

Vrindavani is a synthetic Crossbred cattle strain of India with exotic inheritance of Holstein-

Friesian, Brown Swiss, Jersey and indigenous inheritance of Hariana cattle [72]. The experiment 

was conducted during October when the environmental THI was 73.0242. These animals were 

exposed in Psychometric chamber at 42 °C for six hours for 7 days (THI =78.5489). All the animals 

were fed with wheat straw and concentrate mixture in 60:40 ratios. Respiration rate (RR) and rectal 

temperature (RT) of animals from each genetic group were measured on 0 day (Control) before 

exposure to Psychometric chamber and on 7th day of heat exposure (Treated).  Blood samples were 

collected from the animals at the mentioned time points and serum concentration of 

Triiodothyronine (T3) was estimated by RIA technique using T3 
125I (Immunotech) as per the 

manufacturer’s instructions.  

RNA sequencing  

 PBMCs were collected from the blood Samples . Total RNA from each of the collected 

samples (PBMCs) was isolated using the RNeasy Mini kit (Qiagen GmbH, Germany) according 

to the manufacturer’s protocol. The integrity and quantity of isolated RNA were assessed on a 

Bioanalyzer  2100 (Agilient Technologies, Inc). The library was prepared using NEBNext Ultra 

RNA Library Prep Kit for Illumina (NewEngland Biolabs Inc.) following the manufacturer’s 
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protocol. Approximately, 100ng of RNA from each sample was used for RNA library preparation. 

The quality of the libraries was assessed on Bioanalyzer. Libraries were quantified using a Qubit 

2.0 Fluorometer (Life technologies) and by qPCR. Library (1.3ml, 1.8pM) was denatured, diluted 

and loaded onto a flowcell for sequencing. cDNA library preparation and Illumina Sequencing 

was performed at Sandor Life Sciences Pvt. (Hyderabad, India). Finally, the RNA-seq data were 

provided in FASTQ format. 

Raw data processing 

 The reads generated were paired end and 150bp in length. Quality control checks on raw 

sequence data from each sample were performed using FastQC (Babraham Bioinformatics). 

Processing of the data was performed using prinseq-lite software [73] to remove reads of low 

quality (mean phred score 25) and short length (< 50) for downstream analysis.  

 Identification of Differentially Expressed Genes (DEGs)   

 Bos taurus reference genome (release 94) and its associated gene transfer file (GTF) were 

downloaded from Ensembl FTP genome browser [74]. The reference genome was prepared and 

indexed by RNA-Seq by expectation maximization (RSEM) [75] by rsem-prepare-reference 

command. Further, the clean reads obtained from filtering of raw data were aligned to the indexed 

reference genome by Bowtie2 [76] to estimate transcript abundance in counts by rsem-calculate-

expression command. To compare the gene expression levels among different samples, the aligned 

reads were used to generate a data matrix by rsem-generate-data-matrix command. The data was 

submitted to the GEO database with accession number GSE136652.  In each genetic group, all the 

samples of day 0 (Control) were compared with the day 7 (treated) for the calculation of differential 

gene expression by edgeR [77]  package. A P-value threshold of 0.05 was applied to determine 

transcripts significantly differentially expressed between treated and control samples. The 

Ensemble IDs were converted to the respective gene ID by g: Convert of g: Profiler [78, 79].  

Functional Analysis of DEGs   

Under heat stress four major physiological processes are found to be usually associated -  

Induction of  apoptosis  [80, 81]; Ubiquitination [82, 83]; elicitation of unfolded protein response 

(UPR) in cells [84] and ;  Imbalance in production of ROS  and  antioxidants [85, 86]. The genes 

involved in these processes were retrieved from Reactome database [87]. From this data set the 
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genes that were differentially expressed in both the genetic groups were extracted to study the 

contrast in their expression between genetic groups. Their protein-protein interaction network was 

also studied in both the genetic groups.  

Predicted protein-protein interaction of the knowledge-based genes 

 Protein-protein interaction (PPI) network among the knowledge-based DEGs that were 

found common to both Tharparkar and Crossbred was retrieved using interactions available in the 

String database [88]. The degree was calculated using igraph package (https://cran.r-

project.org/web/packages/igraph/ index.html). The PPI network was then visualized using 

Cytoscape software V. 3.7 [89]  

Ingenuity Pathway Analysis (IPA) Analysis 

QIAGEN’s IPA (QIAGEN, Redwood City, USA)  [90] was used to analyze the identified 

DEGs of Crossbred and Tharparkar. The list of DEGs was used to identify the canonical pathways 

and the most significant biological processes against Ingenuity Pathways Knowledge Base (IKB). 

Core analysis for each dataset was performed to know activated (Z score > 2) or inactivated (Z 

score < −2) canonical pathways. Upstream regulators- Transcription factors and microRNAs were 

also identified.  

Validation of reference genes identified 

 Genes - BCL2L11, FASLG, CASP3, CAT, SOD1, GSK3A, CALR, HSF1, APC, and GPX3 

were selected based on their role in heat stress and qRT-PCR was performed on Applied 

Biosystems 7500 Fast system. GAPDH was taken as the internal control. Each of the samples was 

run in triplicates and relative expression of each gene was calculated using the 2−ΔΔCT method with 

control as the calibrator [91].  

Statistical Analysis 

Student's t-test was done in JMP9 (SAS Institute Inc., Cary, USA) to test the significance 

of the difference between the control and treated. Differences between groups were considered 

significant at P ≤ 0.05. 
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NUDT2 Nudix Hydrolase 2 

BIM Bcl-2-like protein 11  

MSP58 Microspherule protein 1 

SMAD7 Mothers against decapentaplegic homolog 7  

XIP Late endosomal/lysosomal adaptor and MAPK and MTOR activator 5 

HSPA4 Heat shock 70 kDa protein 4  

GPX3 Glutathione peroxidase 3  

UBE2G1 Ubiquitin-conjugating enzyme E2 G1 

VCP Valosin-containing protein 

MBTPS1 Membrane-bound transcription factor site-1 protease  

GRB2 Growth factor receptor-bound protein 2  

FASLG Tumor necrosis factor ligand superfamily member 6  

PAX5 Paired box protein Pax-5 

HMGA1 High mobility group protein A 

BHLHE40 Class E basic helix-loop-helix protein 40  

HSPB8 Heat shock protein beta-8 

UBE2S Ubiquitin-conjugating enzyme E2 

RNF40 RING finger protein 40 

CREB3L1 Cyclic AMP-responsive element-binding protein 3-like protein 1 

RAP2A Ras-related protein Rap-2a  

MTA3 Metastasis-associated protein MTA3 

MAF Transcription factor Maf  

HSPA1A Heat shock 70 kDa protein 1A  

TICAM2 TIR domain-containing adapter molecule 2 

CAT Catalase  

UBE2H Ubiquitin-conjugating enzyme E2 H 

UBE2L3 Ubiquitin-conjugating enzyme E2 L3 

SERP1 Stress-associated endoplasmic reticulum protein 1  

JAK1 Janus kinase 1 

MYC Myc proto-oncogene protein  
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MAX MYC Associated Factor X 

HMGB1 High mobility group protein B1  

TCF7 Transcription factor 7  

HSPA8 Heat shock cognate 71 kDa protein  

TLR4 Toll-like receptor 4 

CYCS Cytochrome c 

UBA52 Ubiquitin A-52 residue ribosomal protein fusion product 1 

EIF2S3 Eukaryotic translation initiation factor 2 subunit 3 

JAK3 Tyrosine-protein kinase JAK3  

CASP3 Caspase-3  

PROX1 Prospero homeobox protein 1  

NCOR1 Nuclear receptor corepressor 1  

IKZF1 Ikaros family zinc finger protein 1 

HSP90AB1 Heat shock protein HSP 90-beta  

APC Adenomatous polyposis coli protein  

CCS Copper chaperone for superoxide dismutase 

UBA1 Ubiquitin-activating enzyme E1 

MAP2K1 MAP kinase kinase 1 

HSP90AA1 Heat shock protein HSP 90-alpha  

PRDX5 Peroxiredoxin-5 

CALR Calreticulin  

MAPK1 Mitogen-activated protein kinase 1  

MAPK8 Mitogen-activated protein kinase 8  

PRDX6 Peroxiredoxin-6  

OSM Oncostatin-M (OSM) 

MLKL Mixed lineage kinase domain-like protein 

PRDX1 Peroxiredoxin-1  

GSK3A Glycogen synthase kinase-3 alpha  

RAP1B Ras-related protein Rap-1b 

SOD1 Superoxide dismutase 

VIM Vimentin 

CYBB Cytochrome b-245 heavy chain  

STAT1 Signal transducer and activator of transcription 1-alpha/beta  

HMGB2 High mobility group protein B2  

STAT5B Signal transducer and activator of transcription 5B 

TYK2 Non-receptor tyrosine-protein kinase  

RRAS Ras-related protein R-Ras (p23) 

PBMCs Peripheral blood mononuclear cell 

RIA Radioimmunoassay 

THI Temperature Humidity Index 

Cxcr4 C-X-C chemokine receptor type 4 
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PTEN Phosphatase And Tensin-Like Protein 

EIF2 Eukaryotic translation initiation factor 2 

BMP Bone Morphogenetic Proteins 

FMLP N-formyl-methionyl-leucyl-phenylalanine 
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Legends  

Figure 1: Overview of the work done : Two genetic groups (Tharparkar and Crossbred) of cattle 

were exposed to a temperature of 42 °C for 7 days. Heat stress indicators - Respiration rate (RR), 

Rectal temperature and T3 level before exposure to heat (0day – control group) and at  7th  day of 

exposure (treated) were measured to evaluate heat stress. At these time points, RNA was isolated 

from PBMCs for high throughput sequencing. Transcriptome analysis was done to identify 

differentially expressed genes (DEGs) under heat treatment in both genetic groups. Genes involved 

in physiological processes (heat stress response, apoptosis, ubiquitination, unfolded protein 

response and antioxidant level) that are commonly associated with heat stress were compared 

between the two genetic groups. Further, functional annotation of DEGs was done using IPA.  

Figure 2: Respiration rate, Rectal Temperature and T3 level measured at 0 day (control) and 7 day 

post-heat exposure (treated) in Crossbred and Tharparkar (n=5) . Levels not connected by the same 

superscript are significantly different ( p ≤ 0.05)..  

Figure 3: Expression of DEGs in Crossbred and Tharparkar under heat stress: (a) Venn diagrams 

showing unique/common DEGs between Crossbred and Tharparkar (b) Number of upregulated 

and downregulated in both genetic groups (c) Contrast in the expression of common DEGs 

Figure 4: Contrast in the expression of genes involved in heat stress response, apoptosis, 

ubiquitination, unfolded protein response and balance in the production of ROS and antioxidants 

between two genetic groups.  
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Figure 5: Predicted Protein-protein interaction network of expressed genes common to Tharparkar 

and Crossbred. The diameter of the node represents the connectivity/degree of the node among the 

genes. 

Figure 6: Canonical pathways activated/inactivated in (a) Crossbred (b) Tharparkar under heat 

stress generated in the core analysis of Ingenuity pathway analysis tool. Orange color pathways 

are activated (Z > 2) and blue color pathways are inactivated (Z< -2). Height of the bar graphs 

indicates -log (p-value) and line graph showing the ratio of list genes found in each pathway over 

the total number of genes in that pathway. 

Figure 7:  Comparison of activated/inactivated pathways in Crossbred and Tharparkar. Activated 

pathways have Z score > 2 and indicated by red color while inactivated pathways are having Z 

score < - 2 and indicated by green color. 

Figure 8:   Canonical pathways generated in Ingenuity Pathway Analysis of Oncostatin M 

signaling pathway of DEGs in (A) Crossbred, (B) Tharparkar. Genes that were upregulated are 

shown in red and downregulated in green. The intensity of red and green corresponds to an increase 

and decrease, respectively, in Log2 fold change. Genes in grey were not significantly dysregulated 

and those in white are not present in the dataset but have been incorporated in the network through 

the relationship with other molecules by IPA. 

Figure 9:   Canonical pathways generated in Ingenuity Pathway Analysis of PTEN signaling 

pathway of DEGs in (A) Crossbred, (B) Tharparkar. Genes that were upregulated are shown in red 

and downregulated in green. The intensity of red and green corresponds to an increase and 

decrease, respectively, in Log2 fold change. Genes in grey were not significantly dysregulated and 

those in white are not present in the dataset but have been incorporated in the network through the 

relationship with other molecules by IPA. 

Figure 10: Comparison of activated/inactivated miRNAs in Crossbred and Tharparkar as 

predicted by IPA upstream analysis. Activated pathways have Z score > 2 and indicated by red 

color while inactivated pathways are having Z score < - 2 and indicated by green color. 

Figure 11:  Comparison of activated/inactivated Transcription factors as predicted by IPA 

upstream analysis (Transcription factors of Crossbred are red-colored and Tharparkar are blue 
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colored )  vis-à-vis their Log2FC in both genetic groups. The encircled ones are common to both 

groups  

Figure 12: Validation of RNA sequencing data by Real-Time data in Crossbred (a) and Tharparkar 

(b). The expression of 10 selected genes was found in concordance with RNA Sequencing data. 

The correlation ( r2 =  0.9942 in  (a)  and   0.9972  in (b) )  was found to be significant  (P< .01) in 

both cases .  

Figure 13: Predicted interplay of molecules that is underway during heat stress in both 

groups : Heat stress causes unfolding of native proteins. HSP70 acts as a chaperone to facilitate 

refolding to restore the structure of unfolded proteins. Under normal condition, HSP70 is bound 

to HSF1 thereby preventing HSF1 to promote transcription of HSP70. Under heat stress ATP binds 

to the HSP70 and HSF1 complex to release HSF1, promoting the binding of the unfolded protein 

to HSP70 and ATP. CAMK2D that induces the transcription of HSP70 via HSF1 was  found 

downregulated in Tharparkar. GSK3A that inhibits the trimerization of HSF1 that is needed for 

the induction of HSP70 expression was found upregulated in Tharparkar. The decreased level of 

HSP70 in Crossbred makes it inevitable that such negative feedbacks would further reduce its level 

and GSK3A was found downregulated and CAMK2D, upregulated. Further, in Tharparkar, HSP70 

tends to activate ubiquitination pathway to decrease the accumulation of unfolded proteins that 

can’t be refolded by it. This pathway activation is supported by upregulation of E3 ligases 

(UBE2G1, UBE2S, and UBE2H) in Tharparkar. However, the E3 ligase in Crossbred was found 

downregulated. With HSP70 being upregulated and having cytoprotection activity, Tharparkar 

shows the decline in apoptosis as compared to Crossbred. This is supported by downregulation of 

BCL2L11, FASLG, MLKL, CASP3, MAPK8 and VIM in Tharparkar and vice-versa.  Besides, 

higher expression of the antioxidants (SOD, CAT, GPX) in Tharparkar enables it to cope up with 

higher levels of free radicals generated as a result of heat stress while Crossbred is unable to do 

so. 
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