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Abstract

Motivation: Protein function prediction is a difficult bioinformatics problem. Many recent methods use

deep neural networks to learn complex sequence representations and predict function from these. Deep

supervised models require a lot of labeled training data which are not available for this task. However, a

very large amount of protein sequences without functional labels is available.

Results: We applied an existing deep sequence model that had been pre-trained in an unsupervised

setting on the supervised task of protein function prediction. We found that this complex feature

representation is effective for this task, outperforming hand-crafted features such as one-hot encoding

of amino acids, k -mer counts, secondary structure and backbone angles. Also, it partly negates the need

for deep prediction models, as a two-layer perceptron was enough to achieve state-of-the-art performance

in the third Critical Assessment of Functional Annotation benchmark. We also show that combining this

sequence representation with protein 3D structure information does not lead to performance improvement,

hinting that three-dimensional structure is also potentially learned during the unsupervised pre-training.

Availability: Implementations of all used models can be found at

https://github.com/stamakro/GCN-for-Structure-and-Function.

Contact: ameliavm@ugr.es

Supplementary information: Supplementary data are available online.

1 Introduction

Proteins perform most of the functions necessary for life. However,
proteins with a well-characterized function are only a small fraction of all
known proteins and mostly restricted to a few model species. Therefore, the
ability to accurately predict protein function has the potential to accelerate
research in fields such as animal and plant breeding, biotechnology, and
human health.

The most common data type used for automated function prediction
(AFP) is the amino acid sequence, as conserved sequence implies
conserved function (Kimura and Ohta, 1974). Consequently, many widely-
used AFP algorithms rely on sequence similarity search via BLAST
(Altschul et al., 1990) and its variants or on hidden Markov models (Eddy,
2009). Other types of sequence information that have been used include
k-mer counts, predicted secondary structure, sequence motifs, conjoint

triad features and pseudo-amino acid composition (Cozzetto et al., 2016;
Fa et al., 2018; Sureyya Rifaioglu et al., 2019). Moreover, Cozzetto et
al. showed that different sequence features are informative for different
functions.

More recently, advances in machine learning have partially shifted
the focus from hand-crafted features, such as those described above, to
automatic representation learning, where a complex model -most often a
neural network- is used to learn features that are useful for the prediction
task at hand. Many such neural network methods have been proposed,
which use a variety of architectures (Bonetta and Valentino, 2019).

Some studies combined the two approaches, starting from hand-crafted
features that are fed into a multi-layer perceptron (MLP) to learn more
elaborate representations (Fa et al., 2018; Sureyya Rifaioglu et al., 2019).
Others apply recurrent or convolutional architectures to directly process
variable-length sequences. For instance, (Kulmanov et al., 2018) used a
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Fig. 1. Protein representation types considered in this study, which encode (a) amino acid sequence information (ELMo embeddings, one-hot encodings, k-mer counts, and secondary

structure and backbone angles) and (b) 3D structure information in the form of contact/distance map (as an image or graph adjacency matrix). (c) The protein representations (columns) that

are fed as input to each classification model (rows) are indicated by a shaded box, colored blue for sequence and orange for distance map representations.

neural embedding layer to embed all possible amino acid triplets into a 128-
dimensional space and then applied a convolutional neural network (CNN)
on these triplet embeddings. Moreover, (Liu, 2017) and (Cao et al., 2017)
trained Long Short-Term Memory (LSTM) networks to perform AFP.

The motivation behind these deep models is that functional information
is encoded in the sequence in a complicated way. A disadvantage is that
complex models with a large number of parameters require a large amount
of training examples, which are not available for the AFP task. There are
about 80,000 proteins with at least one experimentally-derived Molecular
Function Gene Ontology (GO) (Ashburner et al., 2000) annotation in
SwissProt and 11,123 terms in total.

On the other hand, a huge number of protein sequences of unknown
function is available (>175M in UniProtKB). Although these sequences
cannot be directly used to train an AFP model, they can be fed into an
unsupervised deep model that tries to learn general amino acid and/or
protein features. This learned representation can then be applied to other
protein-related tasks, including AFP, either directly or after fine-tuning
by means of supervised training. Several examples of unsupervised pre-
training leading to substantial performance improvement exist in the fields
of computer vision (Doersch et al., 2015; Gidaris et al., 2018; Mathis et al.,
2019) and natural language processing (NLP) (McCann et al., 2017; Peters
et al., 2018; Devlin et al., 2018).

A deep unsupervised model of protein sequences was recently made
available (Heinzinger et al., 2019). It is based on the NLP model
ELMo (Embeddings from Language Models) (Peters et al., 2018) and
is composed of a character-level CNN (CharCNN) followed by two layers
of bidirectional LSTMs. The CNN embeds each amino acid into a latent
space, while the LSTMs use that embedding to model the context of the
surrounding amino acids. The hidden states of the two LSTM layers and the
latent representation are added to give the final context-aware embedding.
These embeddings demonstrated competitive performance in both amino
acid and protein classification tasks, such as inferring the protein secondary
structure, structural class, disordered regions, and cellular localization
(Heinzinger et al., 2019; Kane et al., 2019). Other works also trained
LSTMs to predict the next amino acid in a protein sequence using the
LSTM hidden state at each amino acid as a feature vector (Gligorijevic
et al., 2019; Alley et al., 2019). Finally, a transformer neural network
was trained on 250 million protein sequences, yielding embeddings that
reflected both protein structure and function (Rives et al., 2019).

Protein function is encoded in the amino acid sequence, but sequences
can diverge during evolution while maintaining the same function. Protein
structure is also known to determine function and is -in principle- more
conserved than sequence (Wilson et al., 2000; Weinhold et al., 2008).

From an AFP viewpoint, two proteins with different sequences can be
assigned with high confidence to the same function if their structures are
similar. It is therefore generally thought that combining sequence data with
3D structure leads to more accurate function predictions for proteins with
known structure, especially for those without close homologues.

Structural information is often encoded as a protein distance map. This
is a symmetric matrix containing the Euclidean distances between pairs
of residues within a protein and is invariant to translations or rotations of
the molecule in 3D space. One can obtain a binary representation from
this real-valued matrix, called protein contact map, by applying a distance
threshold (typically from 5 to 20 Å). This two-dimensional representation
successfully captures the overall protein structure (Bartoli et al., 2007;
Duarte et al., 2010). The protein contact map can be viewed as a binary
image, where each pixel indicates whether a specific pair of residues are in
contact or not. Alternatively, it can be interpreted as the adjacency matrix
of a graph, where each amino acid is a node and edges represent amino
acids that are in contact with each other. In order to extract meaningful
information from contact maps, both two-dimensional CNNs (Zhu et al.,
2017; Zheng et al., 2019) and graph convolutional networks (GCNs) (Fout
et al., 2017; Zamora-Resendiz and Crivelli, 2019) have been proposed.

Only (Gligorijevic et al., 2019) have explored the effectiveness of a
pre-trained sequence model in AFP, but it was done in combination with
protein structure information using a GCN. We suspect that a deep pre-
trained embedding can be powerful enough to predict protein function,
in which case the structural information would not offer any significant
performance improvement. Therefore, we set out to evaluate pre-trained
ELMo embeddings in the task of predicting molecular functions, by
comparing them to hand-crafted sequence and structural features in
combination with 3D structure information in various forms. Fig. 1
provides an overview of the data and models used in our experiments. We
demonstrate the effectiveness of the ELMo model (Heinzinger et al., 2019)
and show that protein structure does not provide a significant performance
boost to these embeddings, although it does so when we only consider a
simple protein representation based on one-hot encoded amino acids.

2 Materials & Methods

2.1 Protein representations

We considered two types of representations of the proteins (Fig. 1). The
first one describes the sequence using amino acid features and the second
one the three-dimensional structure, mainly in the form of contact maps.

For each sequence of length L, we extracted amino acid-level features

using a pre-trained unsupervised language model (Heinzinger et al., 2019).
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This model is based on ELMo (Peters et al., 2018) and outputs a feature
vector of dimension d=1,024 for each amino acid in the sequence. We
denote this as a matrix XE ∈ R

L×d. As proposed in (Heinzinger et al.,
2019), we also obtained a fixed-length vector representation of each protein
(protein-level features, denoted as xE ∈ R

d) by averaging each feature
over the L amino acids.

To compare ELMo with simpler sequence representations, we used
the one-hot encoding of the amino acids, denoted by the matrix
X1h ∈ {0, 1}L×d with d=26. As before, we obtained a protein-level
representation x1h ∈ R

d, which contains the frequency of each amino
acid in the protein sequence, completely ignoring the order. We also
used a protein-level representation based on k-mer counts. To reduce the
dimensionality of this representation, we applied truncated singular value
decomposition (SVD) keeping the first 1,024 components (xkmer ∈ R

d).
With respect to structural information, we considered the protein

distance map. ThisL×Lmatrix contains the Euclidean distances between
all pairs of beta carbon atoms (alpha carbon atoms for Glycine) within
each protein chain. We converted this matrix to a binary contact map
using a threshold of 10 Å. We also tested an amino acid-level structural
representationXSA ∈ R

L×d, withd=17 features including the secondary
structure state and backbone angles. More details about the protein
representations, as well as alternative ways of thresholding the distance
maps can be found in Supplementary Material 1 (SM1).

2.2 Function prediction methods

In our experiments, we trained and evaluated several classifiers which
use the protein representations defined above (Fig. 1). Details concerning
hyperparameters and training are provided in SM2 (Tables S1-2).

We first considered methods operating on the protein-level features
(either ELMo embeddings xE , one-hot encodings x1h, or k-mer counts
xkmer). As these feature vectors are of fixed size for all proteins,
we can apply traditional machine learning algorithms. Here, we tested
the following classifiers: k-nearest neighbors (k-NN) with Euclidean
distance, logistic regression (LR) with L2 regularization, and multi-layer
perceptron (MLP) with one hidden layer. We denoted these models as
kNN_{E,1h,kmer}, LR_{E,1h,kmer} and MLP_{E,1h,kmer}, respectively.

We also trained several convolutional networks on the amino acid-level
representations (XE , X1h or structural features XSA) and distance map
data. The architectures are composed of convolutional layers; either 1D,
2D or graph-based. As the input size is variable in the sequence dimension,
these layers are followed by a global pooling operation, to obtain a fixed-
size vector for each protein. This embedding vector is then used to predict
the corresponding C outputs (GO terms) through fully-connected (FC)
layers. In the output layer we applied the sigmoid function, so that the
final prediction for each GO term is in the range [0,1]. We tested either
one or two FC layers and selected the optimal for each model based on the
validation set. As shown in Table S3 (SM2), the architecture with one FC
layer was preferred for all networks in the presence of ELMo embeddings,
and the one with two FC layers when using one-hot encodings or contact
map information only.

The one-dimensional convolutional neural network (1D-CNN) applies
dilated convolutions in two layers (Fig. S1) and we refer to this model as
1DCNN_{E,1h,SA}. To incorporate contact map information, we trained
GCN models. In this case the protein 3D structure is viewed as a graph
with adjacency matrix A ∈ {0, 1}L×L, where each amino acid of the
sequence corresponds to a node and an edge between two nodes denotes
that they are in contact. The graph convolution operator that we mainly
used was the first-order approximation of the spectral graph convolution
defined in (Kipf and Welling, 2019) as:

X
′
= D̂

−1/2
ÂD̂

−1/2
XW, (1)

where Â = A + I is the adjacency matrix with self-loops, D̂ the
diagonal degree matrix with D̂i,i =

∑L
l=1

Âi,l and W the weight
matrix that combines the node features. Equation (1) describes the
diffusion of information about each amino acid to the neighboring residues,
where the neighborhood is defined by the graph. We tested the model
proposed by (Gligorijevic et al., 2019) that has three convolutional layers
(GCN3_{E,1h,SA}_CM, Fig. S2). As we intended to use simple models,
we also considered a reduced version of this network, with only one
convolutional layer (GCN1_{E,1h,SA}_CM, Fig. S3). In addition, GCN
models can easily handle distance maps, by making use of weighted
edges in the graph. Therefore, we trained both GCN models replacing
the contact maps with quantized distance maps (GCN3_{E,1h}_DM and
GCN1_{E,1h}_DM). The optimal number of bins in the quantized map
was selected based on the validation set, as shown in Table S4 (SM2). We
also tested three other graph convolution operators, which are described
in SM3.

In order to test the ability of predicting function based on
distance/contact maps alone, we evaluated two alternative approaches.
The first one is based on the GCN model described above (Kipf and
Welling, 2019) keeping A as before, but with X ∈ R

L×1 containing
the degree of each node as amino acid feature. Therefore, by applying
the convolution operation of equation (1), the network only learns graph
connectivity patterns (GCN1_CM and GCN1_DM). The second approach
processes the maps as L × L images and learns image patterns using a
2D-CNN model with two convolutional layers (Fig. S4). We denoted this
model as 2DCNN_CM or 2DCNN_DM, if the input is the contact map or
the distance map, respectively.

Moreover, we investigated alternative ways of combining sequence
and structure information, such as a combined 1D-CNN and 2D-CNN
model that is simultaneously trained to extract a joint representation
(Fig. S5). In this case, we concatenated the outputs of the two convolutional
parts before the global pooling layer. We refer to this model as
1DCNN_E+2DCNN_CM and 1DCNN_1h+2DCNN_CM.

Finally, as baseline methods we used the naive (Radivojac et al., 2013)
and BLAST (Altschul et al., 1990) methods. The naive method assigns a
GO term to all test proteins with a probability equal to the frequency of
that term in the training set. BLAST annotates each protein with the GO
annotations of its top BLAST hit.

2.3 Data

We compared models that only use sequence information to models that
also include contact maps. To do so, we considered proteins whose
structure is available in the Protein Data Bank (Berman et al., 2000). We
refer to this dataset as PDB. To better assess the sequence-only models,
we also applied them to a larger dataset (referred to as SP) that includes all
proteins from the SwissProt database. Finally, we also evaluated the ELMo
models on the CAFA3 benchmark (Zhou et al., 2019) (CAFA dataset).

For the PDB dataset, we retrieved all protein chains with known PDB
structure and for SP all sequences that were available in SwissProt in
January 2020. We only considered proteins with sequence length in the
range [40, 1000] that had GO annotations in the Molecular Function
Ontology (MFO) with non-computational evidence codes. We used CD-
HIT (Fu et al., 2012) to remove redundant sequences with an identity
threshold of 95%. After these filtering steps, we had a total of 11,749
protein chains in PDB and 80,176 protein sequences in the SP dataset. To
ensure diversity in the evaluation, we clustered all the protein sequences in
each dataset with PSI-CD-HIT (Fu et al., 2012) into groups of maximum
30% identity, from which we randomly selected the samples to use as
test set (10% of the entire dataset). The remaining data were randomly
split into a training (80% of total proteins) and a validation set (10% of
total proteins). We further defined a subset of the test set using BLAST, in
which all proteins had sequence identity smaller than 30% to any of the
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training proteins. We excluded GO terms that had fewer than 40 positive
examples in the training set or fewer than 5 in the validation or test sets
and removed proteins that had no annotations after this filtering. Finally,
our training, validation and test sets for PDB had 9,395, 1,173 and 450
proteins, respectively, annotated with C=256 MFO GO terms. In the SP

dataset, we had 63,994 training, 8,004 validation and 3,530 test proteins,
annotated with C=441 terms. More details about the data pre-processing
steps are provided in SM4.

The CAFA training and test sets were provided by the organizers (Zhou
et al., 2019). The test set contains 454 proteins. We randomly split the given
training set into 90% for training (28,286 proteins) and 10% for validation
(3,143 proteins), annotated with C=679 MFO GO terms. We did not apply
sequence similarity filters on the CAFA dataset, as in that case we intend
to exploit information present in closely related proteins.

2.4 Performance evaluation

The performance was measured using the maximum protein-centric F-
measure (Fmax), the normalized minimum semantic distance (Smin)
(Clark and Radivojac, 2013; Jiang et al., 2016) and the term-centric
ROCAUC. We estimated 95% confidence intervals (CI’s) using
bootstrapping: we drew random samples with replacement from the test set
until we obtained a set of proteins with a size equal to the original test set
and calculated the metric values in this new set. We repeated this procedure
1,000 and 100 times for the PDB and SP test sets respectively. We used
the same bootstrap sets for all methods, enabling joint comparisons across
the bootstraps.

3 Results

3.1 Deep, pre-trained embeddings outperform

hand-crafted sequence representations

We first compared the unsupervised ELMo embeddings of protein
sequences to hand-crafted sequence representations at the task of
predicting MFO terms, using the 30% sequence identity PDB test subset
(450 protein chains). We used the amino acid-level features (XE , X1h

and XSA) in a 1D-CNN model and two GCN models, and compared
to the k-NN, logistic regression (LR) and multi-layer perceptron (MLP)
classifiers, which use the protein-level features (xE , x1h and xkmer). As
seen in Fig. 2 and Table S6 (SM5), the models using ELMo embeddings
significantly outperform their counterparts using other features on all
evaluation metrics. One exception is GCN1_1h_CM, which performs
similarly to GCN1_E_CM in terms of ROCAUC. It achieves the top
performance among models that use X1h, for all three metrics, although
MLP_1h achieved equal Fmax (Table S6, SM5). Also, the protein-level
x1h representation (k-mers with k=1) consistently outperformed xkmer

which uses larger k values.
We also evaluated the sequence-only models in the larger SP dataset

(3,530 test proteins, 441 terms) and observed a similar pattern (Table
S7, SM6). The absolute performances are better, but the superiority of
ELMo embeddings is evident, as even simple models such as kNN_E and
LR_E outperform all more complex models that use one-hot encodings.
Analyzing the performance per GO term, we found that although kNN_E

has a larger mean ROCAUC than 1DCNN_1h, its superiority is mainly
shown on the most frequent terms (Figs. S6a-b, SM7). On the contrary,
all other tested models that use ELMo embeddings tend to have better
performance for more specific terms (Fig. S7, SM7) and they consistently
outperform the one-hot encodings-based models across all levels of the
GO graph (Figs. S6c-h, SM7).

To get an additional evaluation of the ELMo embeddings compared
to the state-of-the-art, we used them in the CAFA dataset (454 test
proteins, 679 terms). Table S8 (SM6) shows the performance of kNN_E,
LR_E, MLP_E and 1DCNN_E in this dataset. All had quite competitive
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performance, outperforming at least 80% of the methods participating in
CAFA3 (Zhou et al., 2019), while having 100% coverage, meaning that
they could make predictions for all test proteins. Our top model, MLP_E,
achieved an Fmax of 0.55, outperforming all but 4 of the methods that
had participated in the challenge (Table S8, SM6).

3.2 GCN performs similarly to CNN when using ELMo

embeddings

We then tested whether combining the ELMo embeddings with contact
map information in a GCN improves the performance, for which we
considered the PDB dataset. Fig. 2 and Table S6 (SM5) show the results
in terms of Fmax, normalized Smin and ROCAUC, while Fig. S8
(SM8) shows the variance of the performance values estimated using
bootstraps. Figs. S9-S11 (SM8) show all pairwise comparisons between
the tested methods. The 3-layer GCN proposed in (Gligorijevic et al., 2019)
trained with the ELMo embeddings (GCN3_E_CM) was worse than the
1DCNN_E based on all three metrics (Smin=0.52, ROCAUC=0.75,
Fmax=0.48, compared to Smin=0.51, ROCAUC=0.77, Fmax=0.50).

We also tested whether a simpler GCN model would be more
efficient. We found that just a one layer graph convolutional network
(GCN1_E_CM) outperformed the deeper GCN model on all metrics (Fig. 2
and Table S6, SM5). In fact, GCN1_E_CM had slightly better Smin than
the 1DCNN_E (2% improvement), though worse ROCAUC.

Furthermore, we compared these models that use amino acid-level
ELMo embeddings to standard classifiers that use the protein-level
embeddings. We observed that LR_E achieved similar ROCAUC to
the 1DCNN_E (0.77). LR_E achieved a Smin of 0.55, while 1DCNN_E

was about 7% better with 0.51. Despite the small difference, 1DCNN_E

outperformed LR_E in 998 out of 1,000 the bootstraps denoting that the
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difference is significant (Fig. S10b, SM8). Note that the testSmin of LR_E

was worse than the performance achieved by the same model in the vast
majority of the bootstraps (error bar in Fig. 2). The kNN_E had comparable
Smin to LR_E and worse ROCAUC than all. The two-layer MLP on
the protein-level embeddings (MLP_E) achieved the best ROCAUC,
yielding a 5.3% improvement upon the second best method (1DCNN_E).
These two models had equal Smin (Fig. 2 and Fig. S10e, SM8). Finally,
MLP_E and GCN1_E_CM had the best Fmax (0.51), followed closely by
1DCNN_E (0.50).

Comparing all the models jointly, GCN1_E_CM had the best Smin

in 84.2% of the bootstraps followed by 1DCNN_E with 9.5% and MLP_E

with 6.2%. So, if we were able to sample future test sets from the same
distribution, we expect GCN1_E_CM to have the smallest Smin 84.2%
of the time. The conclusion is different when we evaluate on the term-
centric ROCAUC, with MLP_E being the best in all bootstraps. These
mixed results of the GCN and 1D-CNN, and the small differences to simple
models on the protein-level embeddings hint that the performance of all
tested models mainly stems from the power of the ELMo embeddings and
not from the convolutions. To ensure that our observation about GCNs does
not depend on the choice of the graph convolution operator, we repeated
the experiments using other three graph operators and obtained similar
results (Table S5, SM3).

3.3 Protein structure does not add information to the ELMo

embeddings

In order to explain the lack of significant improvement when including the
contact map information, we investigated the behavior of the GCN further,
focusing on the 1-layer model, which was the better of the two tested GCNs.
Keeping the architecture the same, we re-trained and tested the model,
replacing each contact map with (a) a disconnected graph, i.e. substituting
A with the identity matrix (GCN1_E_I), and (b) a random undirected
graph with the same number of edges as the original (GCN1_E_R). As
shown in Table S6 (SM5), the performance remains the same as that
of the original contact map for both perturbations of the graphs, hinting
that the sequence embeddings are enough for learning a good functional
representation. However, replacing ELMo with one-hot encodings in this
experiment (GCN1_1h_I and GCN1_1h_R) led to a performance drop
compared to GCN1_1h_CM (Table S6, SM5).

We then trained a GCN model without using sequence features
(GCN1_CM), "forcing" the network to learn to differentiate among the
different GO terms using only the contact map. The results in Table 1 and
Table S6 (SM5) show that the performance of that network was remarkably
worse than GCN1_1h_CM, having an Smin of 0.60 and ROCAUC of
0.64. To put these numbers into perspective, the simple BLAST baseline
hadSmin of 0.53 andROCAUC of 0.62. On the other hand, modeling the
contact maps as images and not as graphs and feeding them into a custom
2D-CNN (2DCNN_CM) achieved better performance (Smin = 0.58 and
ROCAUC = 0.68), although significantly worse than the models that used
sequence features. Furthermore, the combined 1DCNN_E+2DCNN_CM

did not outperform 1DCNN_E, and 1DCNN_1h+2DCNN_CM was worse
than 2DCNN_CM (Table S6, SM5), showing that integrating sequence
and structural features is not trivial.

We then replaced the contact map with a quantized distance map, which
led to mostly equal or worse performance (Table 1 and Table S6, SM5).
All these results demonstrate that although contact and distance maps
can in general be used for AFP, in the presence of ELMo embeddings
they are not particularly useful. In another attempt to represent structure
differently, we trained the 1D-CNN model with amino acid-level structural
features based on secondary structure and backbone angles (XSA). They
performed better than the one-hot encodings, but considerably worse than
the ELMo embeddings (Fig. 2 and Table S6, SM5).

Table 1. Smin and ROCAUC of the GCN and 2D-CNN networks that only
use distance map information, compared to the naive and BLAST classifiers.
All networks were evaluated using the 30% sequence identityPDB test subset.
The 95% confidence intervals were estimated using 1,000 bootstraps

Model Smin ↓ [95% CI] ROCAUC ↑ [95% CI]

Naive 0.61 [0.608, 0.620] 0.50 [0.500, 0.500]
BLAST 0.53 [0.512, 0.556] 0.62 [0.597, 0.642]

GCN1_CM 0.60 [0.589, 0.604] 0.64 [0.605, 0.674]
GCN1_DM 0.60 [0.589, 0.608] 0.63 [0.594, 0.664]
2DCNN_CM 0.58 [0.561, 0.592] 0.68 [0.641, 0.709]
2DCNN_DM 0.59 [0.568, 0.598] 0.66 [0.623, 0.695]

3.4 Supervised protein embeddings give insights into the

behavior of the models

To better understand the differences between the models, we compared the
embeddings learned by each of them. We fed all trained models with every
protein from our PDB dataset and saved the 512-dimensional embedding
vector after the global pooling layer, which gave us an 11, 740 × 512

embedding matrix. We then calculated the rank of each of these matrices
to assess how "rich" the learned representations are. As shown in Table S9
(SM9), all methods that use the ELMo representation are either full-rank
or very close to full-rank (508-512). On the other hand, the models that
only operated on contact maps learned much simpler, lower-dimensional
representations, with rank 310 for 2DCNN_CM and 105 for GCN1_CM.
By applying principal components analysis (PCA) to the GCN1_CM

embeddings, we found that out of the 3 components explained 99.8% of
the total variance (Fig. S12, SM9), suggesting that essentially this network
learned a 3-feature representation of the proteins.

We also compared the embeddings of the different supervised models
to the unsupervised ELMo embeddings. For every pair of test-training
proteins from our PDB dataset, we calculated their cosine similarity in
the embedding space, as well as a measure of similarity of their GO
annotations based on the Jaccard index (Pesquita et al., 2007). For the
ELMo embeddings, we found that the two similarity measures were
significantly correlated (Fig. S13, with Spearman ρ=0.07, permutation p-
value < 10−4, SM10). By extracting the embeddings from a supervised
model such as 1DCNN_E and MLP_E, the correlation value doubled
(ρ=0.14, p-value < 10−4, SM10). For the GCN1_E_CM, the correlation
value was 0.11 (Fig. S14, SM10). This verifies that unsupervised pre-
training is able to capture some information about protein function, while
additional supervised training provides extra information to the model.

Finally, to test to what extent different models learn similar
embeddings, we clustered them based on the overlap of their 40 nearest
neighborhood graphs, measured using Jaccard distance (Fig. 3 and SM11).
We observed that the embeddings of MLP_E are the most similar to
ELMo (Jaccard distance of 0.68, meaning that about one third of the
40 nearest neighbors are common). The models that used a 1-layer
GCN (GCN1_E_CM, GCN1_E_I and GCN1_E_R) learned relatively
similar neighborhoods to each other, clustering together at distance 0.77.
Moreover, all ELMo-based methods cluster together with 1DCNN_E,
which has the most different representation out of them. In contrast, the
models that do not use ELMo features learned very different embeddings,
as their neighborhoods have nearly zero overlap both to each other and to
the ELMo-based models.

4 Discussion

Our work continues upon two recent studies involving protein
representation learning (Heinzinger et al., 2019) and its combination with
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Fig. 3. Hierarchical clustering of the models based on the similarity of the 40 nearest

neighbors of each protein in the embedding space.

contact maps applied in AFP (Gligorijevic et al., 2019). We confirm
the power of the unsupervised ELMo embeddings in capturing relevant
biological information about proteins (Heinzinger et al., 2019). Simply
embedding the proteins into the learned 1,024-dimensional space and
applying the k-NN classifier led to better AFP performance than the
two baseline methods (BLAST and naive), as well as several commonly
used hand-crafted features such as one-hot encoding of amino acids, k-
mer counts, secondary structure and backbone angles. This implies that
the ELMo model was able to learn an embedding space in which the
similarity between two proteins reflects functional similarity reasonably
well, although it was only exposed to amino acid sequences and not to GO
annotations. However, this representation only coarsely reflects protein
function, as demonstrated by the poor performance of the k-NN classifier
on the most specific terms.

As expected, we were able to improve the prediction accuracy achieved
by the unsupervised embeddings by training supervised AFP methods
on the embedding space. A set of logistic regression classifiers trained
individually for each GO term achieved comparable Smin to the k-
NN, while achieving significantly higher ROCAUC in the PDB dataset.
Contrary to expectation, the GCN and CNN models trained on the amino
acid-level embeddings extracted by ELMo were not able to outperform
the logistic regression model in terms of ROCAUC and Fmax. They
did outperform it in terms of Smin, though (with the GCN being the
best according to that metric), hinting that the logistic regression might
be less effective for more specific GO terms. However, in the SP dataset,
which is larger and contains more specific GO terms, the differences in
Smin are less profound. Moreover, replacing the linear model (LR) with a
non-linear one (MLP) gave a significant performance boost, considerably
outperforming all others in ROCAUC and achieving state-of-the-art
CAFA performance. Supervised training also resulted in a more consistent
performance across all levels of GO term specificity. All in all, the
competitive performance of the protein-level models highlights the power
of the unsupervised ELMo embeddings.

In (Gligorijevic et al., 2019), the authors report on the superiority
of a 3-layer GCN using amino acid embeddings from a pre-trained
language model based on a LSTM network over BLAST and a 1D-CNN
using a one-hot encoded amino acid representation. They attribute this
superiority to the use of graph convolutions to model the protein 3D
structure represented by contact maps. However, our experiments show
that a 1D-CNN with strong amino acid embeddings is competitive with
the GCN. Both convolutional models exhibited severe performance decline
when replacing the ELMo embeddings with one-hot encoded amino acids.
Based on these, we cannot exclude the possibility that the language model

of (Gligorijevic et al., 2019) is by itself powerful enough to explain (most
of) the increase in performance. If that is indeed the case, it would account
for the fact that replacing the true contact map with a predicted one does
not cause a significant drop in performance (Gligorijevic et al., 2019). To
support this claim, we trained another GCN model from scratch, keeping
the same architecture as our best GCN, but replacing the contact map by a
graph with all nodes disconnected. The performance of that network was
similar to that of the original (using the contact map). The same pattern
was observed when replacing the contact map with a random graph (both
at training and test time), clearly demonstrating that the contribution of the
contact maps is rather small. This observation is interesting, as protein 3D
structure is much more difficult and expensive to obtain than the sequence.

One of the hyperparameters of our networks was the number of fully-
connected (FC) layers between the global pooling layer and the output FC
layer for the classification. In our experiments, we tested our models with
zero and one intermediate FC layer and used the validation ROCAUC

to select the optimal for each model. In cases where the performance was
similar, we chose to keep the simpler model for testing, as having fewer
parameters makes it less prone to overfitting and more likely to better
generalize on unseen proteins. A clear pattern emerged from this selection:
for both GCN and 1D-CNN networks trained with ELMo embeddings,
the extra FC layer was not required. On the other hand, for networks
trained with one-hot encoded amino acid features or without any sequence
features, the more complicated architecture was always selected. This
means that in the feature space learned by the convolutional layers, the
different classes (GO terms) are "more linearly separable" when ELMo
embeddings are used and learning a simple mapping from that space to the
output classes is enough for good performance. In the absence of "good"
input features, it is harder for the convolutions to learn a "good" embedding
space and as a result a more complex classifier is needed.

One can reasonably assume that also in the case of the one-hot
features, it would be possible to learn a better (supervised) embedding
space that only requires one linear classification layer. However, that
would take a deeper architecture with more convolutional layers to enable
us to discover more complicated patterns in protein sequences. This is
problematic because the amount of available labeled data is not enough
to train deep models with a larger number of parameters. Also, building
a deeper model increases not only training time but also the man-hours
spent deciding on the correct architecture and tuning the larger number of
hyperparameters. To make matters worse, one would have to repeat almost
the whole process from scratch if the task changes e.g. from function
prediction to structure prediction. Unsupervised pre-training relieves part
of that burden by creating only one complicated, deep sequence model to
learn a meaningful feature representation of amino acids or proteins, which
can then be fed to simpler classifiers to obtain competitive performance
in several tasks without much effort (Heinzinger et al., 2019), as we
demonstrated here.

Our experiments suggest that combining structure information in the
form of a contact map with sequence information is not straightforward,
especially when high-quality sequence features are available. Using a one-
layer GCN did lead to a small improvement in Smin, but at the cost of
worse term-centricROCAUC than the logistic regression baseline. Also,
joining a one-dimensional and a two-dimensional CNN that independently
extract sequence and contact map features, respectively, did not improve
performance over the 1D-CNN applied to sequence data only. It is unlikely
that contact maps do not contain any functional information, so our
observations could have two possible explanations: either the ELMo
embeddings contain three-dimensional structure information or we are
still unable to leverage the full potential of contact maps.

To test the first hypothesis one could train a classifier that takes
the amino acid-level features as inputs and predicts contacts between
amino acid pairs. Such models already exist and do quite well in the
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CASP challenges by using physicochemical properties, the position-
specific scoring matrix (PSSM) and predictions about secondary structure,
solvent accessibility and backbone angles (Cheng and Baldi, 2007; Jones
et al., 2015; Wang et al., 2017). By replacing these features with
sequence embeddings as in (Bepler and Berger, 2019), we would expect a
considerable improvement in the performance of these models.

On the contrary, finding a more effective way of using distance or
contact maps is not trivial. Here, we considered a contact threshold of
10 Å by following previous studies (Gligorijevic et al., 2019), which is
a more relaxed threshold than the one used in CASP challenges (8 Å),
but also used alternative threshold strategies and obtained similar results.
One could argue that the distance matrix is more informative and should
be preferred, but our experiments did not confirm that. A different way
of using distance maps in a GCN has been proposed by (Fout et al.,
2017) to predict protein interfaces. Firstly, instead of using a fixed distance
threshold, Fout et al. define each amino acid as being "in contact" with its
k nearest residues, which creates a directed graph as the property of being
someone’s nearest neighbor is not commutative. Moreover, the distances
between the k nearest residues were smoothed with a Gaussian kernel and
used as edge features over which a different set of filters was learned (Fout
et al., 2017). Further research is required to resolve this issue.

In conclusion, this study shows that deep unsupervised pre-training
of protein sequences is beneficial for predicting molecular function, as it
can capture useful aspects of the amino acid sequences. We also showed
that combining these sequential embeddings with contact map information
does not yield significant performance improvements in the task, hinting
that the embeddings may already contain 3D structural information.
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