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Abstract 

Objective  

The classification of patients with Primary Progressive Aphasia into variants is time 

consuming, costly, and requires combined evaluations by clinical neurologists, 

neuropsychologists, speech pathologists, and radiologists. Therefore, our aim is to determine 

if acoustic and linguistic variables provide accurate classification of PPA patients into one of 

the three variants. 

Methods  

In this paper, we present a machine learning model based on Deep Neural Networks for the 

subtyping of patients with PPA into the three main variants using combined acoustic and 

linguistic information elicited automatically using acoustic and linguistic analysis. The 

performance of the Deep Neural Networks was compared to the classification accuracy of 

Random Forests, Support Vector Machines, and Decision Trees. It was also compared to the 

classification based on auditory scores provided by clinicians. 

Results  

The DNN model resulted in 80% classification accuracy providing reliable subtyping of 

patients with PPA into variants that outperformed other machine learning models and auditory 

classification of patients into variants by clinicians. 

Conclusion 

We show that combined measures of speech and language function as the patients’ fingerprint 

and provide information about patients’ symptoms and variant subtyping. This approach can 

enable clinicians and researchers to employ this fingerprint and provide an automatic 

classification of patients with PPA saving much time and money. 
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INTRODUCTION  

Primary Progressive Aphasia (PPA) is a progressive neurological condition affecting speech 

and language1,2 with substantial symptom variability. Patients are classified into three main 

variants: nonfluent (nfvPPA), semantic (svPPA), and logopenic (lvPPA) PPA,1 to facilitate 

PPA prognosis and evaluation and ultimately improve therapy decisions. The gold standard of 

PPA classification is the manually subtyping of patients with PPA by clinical experts, which 

requires combining MRI or PET scan reports with language and cognitive evaluations by 

clinical neurologists, neuropsychologists, and speech-language pathologists. Subtyping 

patients into variants is time consuming, arduous, and expensive but it provides clues to the 

most likely pathology, guides medical treatment, and explains potential subsequent symptoms. 

So, there is a critical need for an accurate, quick, and easy evaluation system, consistent with 

the established criteria1, and sensitive to speech and language deficits that characterize patients 

by variant.  

As patients with different PPA variants differ mainly in their language symptoms, the acoustics 

of their speech and grammar can function as a fingerprint enabling the variant identification of 

patients without requiring further tasks or measures as in earlier studies or at the very least as 

an efficient aid in further clinical classification by expert clinicians 3–5. Our aim is to determine 

if combined acoustic and linguistic measures are able to provide an automated classification of 

patients with PPA into all three variants, using deep neural networks. Implemented as a web 

application, the automatic system provides a consultation tool that can expedite the opinion of 

the expert clinician and inform and guide the opinion of the less specialized clinician. 
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METHODS 

Participants 

The 44 participants had a diagnosis of PPA from an expert neurologist, a history of at least two 

years of progressive language deficits with no other etiology (e.g., stroke, tumors, etc.), and 

relatively preserved memory as shown from the general Clinical Dementia Rating (CDR)6. All 

participants were right-handed and native speakers of English. Differential diagnosis of 

patients with PPA and PPA variant subtyping was based on Magnetic Resonance Imaging 

(MRI) results, clinical and neuropsychological examination, and speech and language 

evaluations following the consensus criteria by Gorno-Tempini et al., 20111. Specifically, 9 

participants were subtyped as svPPA, 16 as lvPPA, and 19 as nfvPPA. Table 1 provides 

baseline information for the study participants. 

Table 1 Demographic information of the participants for each PPA variant (for age, education, 

onset of the condition in years, language severity and total severity, the mean and the standard 

deviation in parenthesis is provided). 

Variant svPPA lvPPA nfvPPA 

Female 5 8 7 

Male 4 8 12 

Total Speakers 9 16 19 

Age 66.59 (6.06) 67.93 (7.55) 69.07 (5.57) 

Education 16.30 (1.92) 16.92 (2.24) 16.42 (1.37) 

Onset years 6.48 (2.31) 3.88 (3.23) 3.49 (1.80) 

Language severity 2.27 (0.56) 1.39 (0.75) 1.77 (0.48) 
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Total severity 7.75 (4.36) 4.98 (2.82) 6.04 (3.10) 

 

Table 1 provides biographical demographic information of the participants for each PPA 

variant. One-way ANOVA tests showed that there were no significant differences between 

variants for sex (F=5.82, df=2, p= 0.09), age (F=0.354, df=2, p=0.705), education (F=0.162, 

df=2, p=0.853), language severity (F=0.154, df=2, p=0.86) and total severity (F=1.162, df=2, 

p=0.33). We used the revised frontotemporal dementia clinical dementia rating (FTD-CDR) to 

rate language and total severity in PPA7. Data collection was conducted as part of a clinical 

trial on Transcranial Direct Current Stimulation for Primary Progressive Aphasia conducted at 

Johns Hopkins University (NCT:02606422). The Johns Hopkins Institutional Review Board 

approved this study. All participants provided written informed consent for research 

participation. 

Materials 

Data from connected speech productions were recorded during a simple and widely used 

assessment test, the Cookie Theft picture description task from the Boston Diagnostic Aphasia 

Examination (BDAE) by trained clinicians and assistant clinicians8. A clinician presented the 

picture to the participant and prompted the participant following the standard BDAE 

instructions by saying: “tell me everything you see going on in this picture”. The patient was 

instructed to describe the picture speaking in sentences and talk about the objects, people, 

activities shown in the picture. Clinicians did not interrupt the patient during the task. The 

picture description session was audio recorded.  

Analyses 
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Picture descriptions were converted into 16000 Hz mono format and were transcribed using 

the Themis9,10. The output of the transcription was evaluated twice by the first author and by 

comparing the output manually transcribing 1/5 of the sounds and comparing the output to that 

of two independent evaluators. The transcriptions were not modified, as we were primarily 

interested in seeing how well the transcript would perform in the absence of any modification. 

No pauses were coded in the transcript, but their duration was estimated from the acoustic 

signal during speech segmentation. Fillers such as ‘um..’ and ‘uh..’ were transcribed (and 

analyzed), but were not included in the total word count. Repetitions, false starts and repeated 

but incomplete attempts at a given word were transcribed in Roman alphabet; repetitions of 

words and false starts were included in the total word count. Neologisms were transcribed using 

standard orthography using the Roman alphabet. The following three preprocessing pipelines 

were developed to analyze the acoustic and linguistic (morphosyntactic) properties and 

generate the classification data. 

Pipeline 1: Audio transcription and segmentation. The sounds were processed using ‘Themis’, 

a python library developed in house that provides a text file with the audio transcription of each 

word and segment—vowel, consonant, pause—and a table that contains the times (onset time 

and offset time) of each word and segment. All transcripts were evaluated manually by two 

independent evaluators to confirm the faithfulness of the speech-to-text system and the 

presence of incorrect transcriptions of words, for example due to environmental noise, low 

intensity speech production, etc. The text was converted into TextGrid text format files with 

time information about the beginning and end of vowels and consonants. Pause duration was 

calculated during segmentation from the automatic alignment system.  
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Pipeline 2: Audio processing. A second pipeline was employed for the extraction of acoustic 

information from the segmented vowels, namely the following acoustic properties were 

measured:  

i. Vowel formants. Formant frequencies from F1...F5 were measured at three different locations 

across a vowel: 25%, 50%, and 75% mark of vowel duration.  

iii. Vowel duration. Vowel duration was measured from the onset to the offset of the F1 and 

F2 format frequencies. 

iv. Fundamental frequency. (F0). We calculated the mean F0, minimum F0, and maximum F0 

for each vowel production. F0 calculation was conducted using pitch detection algorithm 

implemented in Praat11. 

v. H1–H2, H1–A1, H1–A2, H1–A3. Harmonic and spectral amplitude measures were extracted 

from the vowels. 

We conducted acoustic analysis for frequency determination using Praat’s standard algorithm 

for pitch detection and formant frequency identification11. Overall, we employed the following 

40 predictors: vowel duration, pause duration, F1 … F5 measured at three locations inside the 

vowel at the 25%, 50%, and 75% mark of vowel total duration, voice quality features (H1-H2, 

H1-A1, H1-A2, H1-A3), measures of F0 (Minimum F0, Mean F0, Maximum F0). 

Pipeline 3: A third pipeline was employed for conducting the automatic linguistic analysis. We 

employed the Natural Language Toolkit python library12. Measurements of characters, words, 

characters per word, etc., were calculated from the tokenized and parsed output, and the 

proportion of parts of speech: nouns, verbs, adjectives, adverbs, pronouns, and the ratio of each 

part of speech per total number of words were calculated, i.e., the noun-verb ratio, noun-
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adjective ratio, noun-adverb ratio, noun-pronoun ratio, verb-adjective ratio, verb-adverb ratio, 

verb-pronoun ratio, adjective-adverb ratio, adjective-pronoun ratio, and adverb-pronoun ratio. 

The outputs of the three pipelines were combined into a single comma-separated values (CSV) 

file that served as input for the machine learning models. 

Deep Neural Network Architecture 

We randomized the data and then we standardized them using the StandardScaler function from 

Scikit-learn13, which standardized the features by removing the mean and scaling to unit 

variance: 

 

𝑦 = (𝑥 − 𝜇)/𝜎 (1) 

where μ is the mean of the training samples; σ is the standard deviation of the training samples.  

We standardized the training data and the test data separately to ensure that there is no 

information from the test set in the training set, which occurs when training and test data are 

transformed together. Standardization was shown to improve machine learning models14.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 5, 2020. ; https://doi.org/10.1101/2020.04.04.025593doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.04.025593


 

 

10 

 

 

Figure 1. Neural Network Architecture. Structure of the neural network designed for the 

study and feature properties, including the number of input features employed, the type and 

number of units and activation functions for the input, hidden, and output layer.  

A feed-forward neural network (DNN) was designed for the classification (see Figure 1). The 

DNN presented here constitutes the final model, after tuning parameters. The DNN consists of 

an input layer with 350 dense units; the activation was a Rectified Linear Unit (ReLu). There 

were seven hidden layers all with 350 dense units and ReLu activation functions. The output 

(…)

(…)

svPPA lvPPA nfvPPA

X input features where 
X = x1 … x40

Layer No Layer type Units Activation

Input 1 Dense 350 ReLu

Hidden 8 Dense 350 ReLu

Output 1 Dense 3 Softmax
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layer had 3 units and softmax activation function, which enables the classification of the three 

variants14. The ReLU activation computes the function 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) and has the 

advantage that it computes and converges faster than other activation functions 15. 

We compiled the model using a Root Mean Square Propagation (RMSProp) optimizer. In 

RMSProp, the learning rate was adapted for each of the parameters. This optimizer relies on 

dividing the learning rate for a weight by a running average of the magnitudes of recent 

gradients for that weight, its’ mean square. Overall, RMSProp displays outstanding adaptation 

of learning rate. 

The loss function was set to categorical cross-entropy. A higher value for the loss function 

implied a greater error for the predictions of the model. We fitted the network batch size set to 

32. Within each fold, the neural net was trained for 30 epochs, using validation split to 20%. 

Comparison support vector machines, random forests, and decision trees. 

We compared three machine learning models to the DNN, which were selected because they 

are often employed in medical studies 16: support vector machines (SVM) 17, random forests 

(RF) 18, and decision trees (DT). 

i. DTs classify two categories by splitting the data using the best marker that can account for the 

data. One big advantage of DTs is that the trees can be visualized and provide an understanding 

of the structure of the data, and the exact decisions that are made by the model are overt and 

clear. Nevertheless, DTs are often prone to overfitting as they create long and complicated trees 

that generalize very well to unknown data. SVMs classify data categories using hyperspaces 

that best separate the classes. One advantage of SVMs is that they can provide good results 

with high dimensional spaces, which is often the case with acoustic data. SVMs can employ 
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both linear and non-linear Kernels for decision function. One disadvantage of SVMs is that the 

optimization of their hyperparameters can be complex and time consuming. 

ii. RFs are similar to DTs, but unlike DTs they are ensemble models, i.e., they fit several DTs on 

the acoustic samples collected, and then they consider the mean of all trees to improve the 

accuracy of the model. RFs can address the overfitting that often takes place in the case of DTs. 

Model optimization and hyperparameter tuning 

For the selection of the final neural network architecture, we tested several neural network 

architectures by varying both the number of hidden layers, the number of units per layer, the 

dropout 19, the activation methods, and the batch size. DT models are provided here as a 

comparison model and their output is reported without optimizations. We evaluated the SVMs 

models with both linear and non-linear kernels and optimized the models for the number of 

kernels by running the SVM models with 1 - 300 kernels. The SVM model contains 14 non-

linear kernels, which provided the best results in SVM optimization. We evaluated the RF 

models by optimizing for the number of trees from 1 - 300 trees. The best RF model has been 

the one with 14 trees. Note that the minimum split number was set to two.  

Model comparison and evaluation 

We compared the performance of the models using eight-fold grouped cross-validation. This 

validation method splits the randomized data into eight folds and trains and evaluates the 

machine learning models eight times. In the grouped cross-validation that we employed, the 

participant was set as the grouping factor; this ensures that, when data are randomized for 

splitting, there are always different participants in the training and test sets. For every training 

session, seven folds were employed for training and one fold was employed as an evaluation 
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set; so, the machine learning models were trained on different folds of data in the training set 

and evaluated on different test data from unknown participants during evaluation.  

To evaluate the models, we employed the following metrics: accuracy, precision, and recall. 

Accuracy is the total sum of correct predictions divided by the total number of both correct and 

incorrect predictions: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑡𝑟𝑢𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑡𝑟𝑢𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 	𝑓𝑎𝑙𝑠𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 	𝑓𝑎𝑙𝑠𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒	
(2) 

The true positive and true negative are the outcomes where the machine learning model 

correctly predicts the positive and negative class correspondingly. Also, a false positive or a 

false negative is an outcome where the model predicts the positive and negative classes 

incorrectly. Precision is the result of division of the true positives with the sum of true positives 

and false positives (see formula 3). Recall (a.k.a., sensitivity) is the result of dividing the true 

positives with the sum of true positives and true negatives (see formula 4). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	
(3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒	
(4) 

Finally, the F1 score is the weighted average of the precision and recall, and ranges between 0 

and 1. The F1 score can offer a more balanced estimate of the outcome than the accuracy. 

𝐹1	𝑠𝑐𝑜𝑟𝑒 = 2 ×
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙)
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)

(5) 

All models were implemented in Keras 20 running on top of TensorFlow 21 in Python 3.6.1. 
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Comparison to Human Raters 

Three trained speech-language pathologists were asked to provide the PPA variant of 9 

patients—three from each variant—by listening to their Cookie Theft productions. The 9 

participants were the same that we were employed for the evaluation of the machine learning 

model. No information was provided about the task, such as the aims of the task and how many 

sounds correspond to each variant. The clinicians had not previous interaction with the patients 

in the recordings. The recordings were provided in random order. To estimate the accuracy of 

their responses, we compared their responses to the information about the PPA variant from 

the clinical subtyping that employed the full battery of neurophysiological tests and imaging. 

Data Availability 

Anonymized data will be deposited in the ClinicalTrials.gov; identifier: NCT02606422. 

RESULTS 

The Cookie Theft picture description recordings were analyzed to elicit measures of speech 

and language from patients with PPA, then these measures were employed to train a Deep 

Neural Network and also three other machine learning models, namely a Random Forest, a 

Support Vector Machine, and a Decision Tree, that aim to provide comparative results for 

estimating the performance of the DNN. All machine learning models were trained and 

evaluated using an 8-fold cross-validation method. Table 2 shows the results from the 8-fold 

cross-validation method. Overall, the neural network model provided 80% classification 

accuracy and outperformed the other three machine learning methods that were employed for 

model comparison. That is, Random Forests (RFs) provided a 58% classification accuracy (see 

in Table 4 panel b), followed by the Decision Tree model (DT) with 57% classification 
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accuracy (see in Table 4 panel c). The Support Vector Machines had the worst performance in 

the cross-validation task with 45% classification accuracy (see in Table 4 panel a).  

Table 2 Results from eight-fold cross-validation for the Deep Neural Network (DNN), Support Vector 

Machines (SVM), Random Forest (RF), and Decision Tree (DT). Shown is the mean cross-validation 

accuracy, the 95% Confidence Intervals (95% CI) and the standard error (SE). 

Model Mean 95% CI SE 

DNN 80 [53, 100] 11 

SVM 45 [31, 59] 5 

RF 58 [43, 73] 8 

DT 57 [38, 75] 8 

The confusion matrix shown in Table 3 and 4 was calculated by summing the 8 confusion 

matrices produced during cross-validation for the DNN. The neural network provided 

improved identification of patients with lvPPA and nfvPPA with respect to svPPA. The patients 

with lvPPA were identified 95% correctly; 5% of patients with lvPPA were identified as 

nfvPPA. Patients with svPPA was identified correctly as svPPA in 65% of the cases, 30% of a 

sample from patients with svPPA were misclassified as lvPPA, and 6% as nfvPPA; 90% of 

patients with nfvPPA were correctly identified and 10% were classified as svPPA. 
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                       Predicted Class 

Tr
ue

 C
la

ss
 

 

svPPA lvPPA nfvPPA 

svPPA 64 30 6 

lvPPA - 95 5 

nfvPPA 10 - 90 

 

Table 3 DNN normalized confusion matrix created by summing scores across cross-validation 

scores from the 8-fold cross-validation test, showing the predicted vs. actual values from the 

DNN. 

(a) SVM 

                       Predicted Class 

Tr
ue

 C
la

ss
 

 
svPPA lvPPA nfvPPA 

SVM 
5 10 3 

RF 
13 12 6 

DT 
12 16 23 
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(b) RF 

                               Predicted Class 
Tr

ue
 C

la
ss

 

 
svPPA lvPPA nfvPPA 

SVM 
19 13 3 

RF 
10 10 6 

DT 
3 13 22 

 

(c) DT 

                               Predicted Class 

Tr
ue

 C
la

ss
 

 
svPPA lvPPA nfvPPA 

SVM 
15 14 1 

RF 
14 14 12 

DT 
1 9 19 
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Table 4 Normalized confusion matrix created by summing scores across cross-validation 

scores from the 8-fold cross-validation tests for SVM (Panel a), RF (Panel b), and DT (Panel 

c); matrices show the predicted vs. actual values from the evaluation of SVM (Panel a), RF 

(Panel b), and DT (Panel c). 

To estimate the performance of the DNN, we also compared its accuracy with the 

classification performance of three trained speech-language pathologists who were blind to 

the gold standard diagnoses. Their responses were compared to the gold standard combined 

subtyping that employs neurophysiological tests, imaging, language evaluation, etc. 

Clinicians displayed significant variation in their classification scores of patients’ variants 

with mean 67% (SD= 11). The lowest classification was just above average (5/9) 56%, 

followed by (6/9) 66%, and the highest classification reached (7/9) 77.77%. Overall, using 

the same evaluation data the DNN provided more accurate results than the clinicians. 

DISCUSSION 

Manual subtyping of patients with PPA is time-consuming and requires a high degree of 

expertise on PPA subtyping, costly scans, and lengthy evaluations. In this study, neural 

networks were trained on acoustic and linguistic predictors derived from descriptive-speech 

samples from three PPA variants. The gold-standard classification of PPA patients was based 

on expert clinical and neuropsychological examination, MRI imaging, and speech and 

language evaluations following the consensus criteria by Gorno-Tempini et al., 20111. All 

models were trained 8 times in an eight-fold cross-validation. The output of the DNN was 

compared with the performance of three other machine learning models, namely Random 

Forests, Decision Trees, and Support Vector Machines, as well as with human auditory 

classification. The DNN achieved an 80% classification accuracy and outperformed the three 
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other machine learning models. In short, we showed that combining acoustic and linguistic 

information from a short picture description, the automated machine-learning model achieved 

a high classification accuracy of the PPA variant (80% correct including the difficult lvPPA 

variant) compared to the gold standard (expert clinician’s diagnosis after neurological, 

neurolingistic and imaging evaluation). Importantly, the model outperformed clinicians when 

provided the same information (only Cookie Theft picture descriptions). These results illustrate 

three important conclusions: (a) a minimal amount of acoustic and linguistic information from 

connected speech has great discriminatory ability, providing an identification fingerprint of the 

PPA variants when used in a DNN model, (b) the DNN can simultaneously perform 

classification of all three PPA variants, and (c) the present automated end-to-end program may 

significantly help both the expert clinician by confirming the variant diagnosis as well as the 

novice or less expert clinician by guiding the variant diagnosis. 

An unexpected finding was the improved classification results for the patients with lvPPA, as 

the DNN model performed better than other machine learning models for lvPPA, such as 

employed by Hoffman et al. (2017) and Maruta et al. (2017). Hoffman et al. (2017) used 

unsupervised classification methods and analyzed results from linguistic (e.g., hesitations, 

phonological errors, picture-naming scores, single-word comprehension, category fluency 

scores, written competence) and non-linguistic (cube analysis, paired associate learning, etc.) 

neuropsychological evaluations and found that participants with lvPPA were not identified as 

a separate group but were mixed with other participants in both linguistic and non-linguistic 

tasks22. Another study by Maruta et al. using a combination of measures from language and 

neurophysiological assessments in Portuguese discriminates individuals with svPPA from 

nfvPPA but not individuals with nfvPPA and svPPA from lvPPA23. 
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Another important finding was that the DNN machine learning model provides superior results 

compared to human auditory classification. Specifically, three trained speech-language 

pathologists were asked to provide a classification by listening to Cookie Theft productions. 

Clinicians listened to the same recordings that were used for training the network and scored 

lower than the DNN. Also, the clinicians differed considerably in their judgments and often 

had to listen multiple times to the recordings to provide a judgment about the variant. The 

clinician with the highest classification accuracy reported that she had to listen several times 

for the speakers who had “mild effects.” Overall, human PPA subtyping based on the same 

information provided to the machine learning model (Cookie Theft descriptions) can be a very 

difficult task for clinicians, including SLPs, because of different training and experience levels 

and the use of different criteria for PPA subtyping. Further, speech samples are often hard to 

hear in PPA patients requiring frequent playback and attentive listening. 

The limited amount of data used could be considered as the main limitation of our model. 

Although 44 patients with PPA is a very substantial number for a rare syndrome such as PPA, 

increasing the training data will enable the neural network to identify patterns between acoustic 

and linguistic predictors that characterize each variant with increased confidence. In fact, 

during the prefinal evaluation of machine learning models, it became evident that the amount 

of data in the training set has a significant impact on model accuracy. So, by increasing the 

overall data sample and obtaining data from more patients, as we will make the code available 

to the community for clinicians’ use, our model’s performance will most likely be increasingly 

higher than the current overall accuracy. A second limitation is inherent to the task used for 

eliciting connected speech samples, i.e., the Cookie Theft picture description. This task 

constrains speech production both acoustically and with respect to the required grammar. 

Speakers provide primarily declarative intonational patterns, whereas questions, commands, 
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etc. are not elicited. Another common criticism of picture-description tasks is that they are 

inclined to elicit labelling, actions in the present tense, and sentences with factual content rather 

than wishes, commands, embedded sentences and other more complex structures. By contrast, 

other tasks, such as personal story telling, conversation, etc. have the potential to provide richer 

speech and language output that can enable an improved classification of PPA variants. Future 

classification work is likely to benefit from the employment of machine learning models that 

aim to offer simultaneous classification of PPA variants using multifactorial predictors from a 

variety of discourse settings and conversations. 
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