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Abstract

Ecological niche models (ENM) use the environmental variables associated with the
currently known distribution of a species to model its ecological niche and project it
into the geographic space. Widely used and misused, ENM has become a common tool
for ecologists and decision-makers.

Many ENM platforms have been developed over the years, first as standalone pro-
grams, later as packages within script-based programming languages and environments.
The democratization of these programming tools and the advent of Open Science brought
a growing concern regarding the reproducibility, transparency, robustness, portability,
and interoperability in ENM workflows.

ENM workflows have some core components that are replicated between projects.
However, they have a large internal variation due to the variety of research questions
and applications. Any ecological niche modeling platform should take into account
this trade-off between stability and reproducibility on one hand, and flexibility and
decision-making on the other.
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Here, we present modleR, a four-step workflow that wraps some of the common
phases executed during an ecological niche model procedure. We have divided the
process into (1) data setup, (2) model fitting and projection, (3) partition joining and
(4) ensemble modeling (consensus between algorithms).

modleR is highly adaptable and replicable depending on the user’s needs and is
open to deeper internal parametrization. It can be used as a testing platform due to its
consistent folder structure and its capacity to control some sources of variation while
changing others. It can be run in interactive local sessions and in high-performance or
high-throughput computational (HPC/HTC) platforms and parallelized by species or
algorithms. It can also communicate with other tools in the field, allowing the user to
enter and exit the workflow at any phase, and execute complementary routines outside
the package. Finally, it records metadata and session information at each step, ensuring
reproducibility beyond the use of script-based applications.

Keywords: R package, reproducibility, scientific workflows, species distribution
models

1 Introduction

Ecological niche models (ENM) use the currently known distribution of a species and the
environmental variables associated with it to model their ecological niche in the environmental
space and project it into the geographic space. ENM have been used to bring up and test
biogeographic hypotheses, or in applications regarding conservation biology, invasion biology,
among others, and has become a basic tool for ecologists and decision makers.

ENM workflows have a general structure that is relatively common to all projects, and
internal variation that depends directly on the research question and guide decision-making
for the variety of possible applications. The specific parametrization and level of detail of
each step depend and should reflect the research questions and hypotheses, and there is not a
common recipe that will suit every project. However, a minimal ENM workflow is expected
to include some basic steps. These steps include:

• The inspection of occurrence data quality, data cleaning, the selection of biologically
meaningful, uncorrelated environmental variables, with a resolution and extent matching
the quality of the occurrence data (Giannini et al., 2012).

• The delimitation of the calibration area – that is supposed to reflect the accessible areas
for the species, i.e. areas that have been explored by the species and found appropriate
or not (Peterson et al., 2011; Barve et al., 2011).

• Data partitioning into test and training sets to perform model fitting and validation
(Fielding and Bell, 1997), i.e. checking the model’s predictive ability.

Some other steps are frequent but optional. For example, following the modeling procedure,
and depending on the application, the algorithms with the best performance may be chosen
or combined in an ensemble model sensu Araújo and New (2007) (i.e. algorithmic consensus
models).

Since their conception, a large number of platforms to perform ENM have been created,
such as Maxent (Phillips et al., 2006), DesktopGarp (Scachetti-Pereira, 2002), Ecological
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Niche Factor Analysis (ENFA, Hirzel et al. (2002), diva-gis 1, and openmodeller (de Souza
Muñoz et al., 2009). These were initially mostly point-and-click standalone applications and
focused on model fitting and projection. Other phases of the whole ENM process, such as
data preparation or output processing, were performed in a variety of tools.

With the advent of Open Science as a philosophy to guarantee the access, robustness, trans-
parency and reproducibility of the scientific workflows, the use of script-based programming
languages and environments in ENM is being favored. The R statistical environment (R Core
Team, 2018) is one of the current script-based environments that allow for such reproducible
applications, due to its large collection of functions and packages. Today, even Maxent,
the most widely used ENM application, has been implemented in R via package maxnet
(Phillips, 2017), which facilitates its integration into the whole R ecosystem. Among the
common current reproducible ENM applications in R, we may cite now classic packages such
as BIOMOD2 (Thuiller, 2003), dismo (Hijmans et al., 2017), and ENMTools (Warren
et al., 2019), and equally important newer frameworks such as sdm (Naimi and Araújo, 2016),
ENMeval (Muscarella et al., 2014), Wallace (Kass et al., 2018), and zoon (Golding et al.,
2017). In addition to these, many groups are developing tools to assist in one or more parts of
the workflow (spThin Aiello-Lammens et al. (2015), kuenm Cobos et al. (2019), blockCV
Valavi et al. (2019)), among others.

Today, R must be understood as the platform that can integrate different ENM applications.
For this, developers should be concerned with integration among packages, which implies in
having modular structures. Workflows need to be able to expand as new techniques are tested
and validated, and consensus regarding each step is reached. We also need ENM workflows
that take into account the trade-off between workflow stability (that all phases are duly
executed) and decision-making (variety of applications and parametrization).

In addition to this, it is important to note that the use of script-based applications does
not guarantee reproducibility per se. Data processing, decision steps and parametrization
options should be documented as metadata. Feng et al. (2019) listed 33 steps to check the
reproducibility of ENM workflows, grouped in (A) occurrence data collection and processing,
(B) environmental data collection and processing, (C) model calibration and (D) model
transfer and evaluation By using script-based analysis combined with detailed metadata,
workflows in ecology can achieve reproducibility and transparency (Powers and Hampton,
2019). Thourough documentation also means saving the subproducts from each step, so that
they can be examined, corrected, reused, and reinterpreted.

Here, we present modleR, a workflow designed to automatize some of the common
steps when performing ecological niche models, using the R statistical environment (R Core
Team, 2018). An early version (Sánchez-Tapia et al., 2018) had a similar structure but
several improvements have been implemented to this day, so we refer the users to the current
manuscript, with focus on the R package. We have used functions from well-known packages,
such as dismo (Hijmans et al., 2017), maxnet (Phillips et al., 2017), RandomForest (Liaw
and Wiener, 2002), and some newer but promising implementations, such as kuenm (Cobos
et al., 2019). The workflow is highly adaptable and replicable depending on the user’s needs,
and is open to deeper internal parametrization. In order to communicate with other ENM
tools within the R environment, it does not create new object classes or methods In addition

1https://diva-gis.org
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Table 1: Reproducibility information provided by modleR following the checklist by Feng
et al. (2019).
Checklist Category Item Where to find
Model calibration Data input Extent of background

data
data setup/metadata.csv

Number of back-
ground data

data setup/metadata.csv

Sampling method for
background data

data setup/metadata.csv

Variable selection data setup/metadata.csv

Algorithm Algorithm name partitions/metadata.csv
Version of algorithm
and software

partitions/sessionInfo.txt

Parameterization partitions/metadata.csv

Model transfer
and evaluation

Evaluation Evaluation index final model/metadata.csv

Threshold for evalua-
tion index

final model/metadata.csv

Dataset used to eval-
uate models

data setup/metadata.csv

Output Format/transformation partitions/metadata.csv
Threshold partitions/metadata.csv

to this, modleR records metadata and session information (i.e. loaded packages, their version
and origin) for each step in the modeling procedure in a structured way. Our workflow
complies with all the procedures listed by Feng et al. (2019) regarding model calibration and
model transfer and evaluation (Table 1).

modleR keeps memory usage low by saving outputs to the hard disk and uses a nested
folder structured that can be used as a platform for performing experiments or tests. Finally,
it can run locally, or on high performance or high throughput computational (HPC/HTC)
platforms, and be parallelized easily within the R environment. Throughout the text, we
explain the theoretical basis for some of the parametrization and highlight best practices to
ensure the robustness and reproducibility of these analytical workflows.

2 Workflow structure

2.1 Workflow overview

modleR workflow consists of mainly four steps that could be used sequentially (Figure 1).
Each step is self-contained, allowing the user to enter or exit the workflow at any step.
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Data setup: Given the occurrence records and a set of environmental predictors, the first
step of the workflow prepares the biotic data by applying some data cleaning and geographic
filters, and assists in the selection of variables by controlling their correlation. It incorporates
several options for defining the calibration area and including real absence data or sampling
pseudoabsences. Furthermore, it executes the data partition using k-fold cross-validation or
bootstrap procedures.

Model fitting and projection: The second part of the workflow fits the ecological niche
models for each of the partitions defined in the first step, and projects them into the
geographical space, using algorithms implemented in the R statistical environment. This step
also evaluates the models, and returns summaries of the performance metrics along all the
threshold values and for given specific thresholds. Optionally, it also projects the models into
other environmental datasets (for the past or the future, or different geographical locations,
for example).

Partition joining: The third part of the workflow presents several options to join the
partitions fit for each algorithm into one final model per species per algorithm and to visualize
the variation between partitions.

Ensemble modeling - algorithmic consensus The fourth part of the workflow allows
the user to select the best performing algorithm or to create an algorithmic consensus model
using different methods, and to visualize the variation between algorithms.

By setting these steps in an sequential way, modleR constitutes an ecological niche
modeling platform that allows for repeated modeling rounds in a controlled environment.
Because the modular workflow is build to enhance reproducibility, at all steps a metadata file
is written with all main parameter values and associated information of the ENM workflow.

2.2 Output definitions and folder structure created by modleR

2.2.1 Output definitions

Throughout the text, we define the output of each step of the workflow as follows (Figure
2.2.1):

• A partition is the result of the individual modeling round, that takes one training and
test dataset and a single algorithm. Although a single partition can be created, the
usual is performing several modeling rounds. A bootstrap will create several partitions
through resampling, a k-fold crossvalidation will create k partitions, and a repeated (n
times) k-fold crossvalidation will create n * k partitions. Partitions refer to present
conditions and to models projected to other environmental variables datasets.

• A final model results from joining together the partitions and obtaining one model
per species per algorithm.
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Figure 1: Overview of the modleR workflow steps
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PARTITIONS FINAL MODELS ENSEMBLE MODELS

algorithm 1

algorithm 2

algorithm 3

variation

Figure 2: Partition, final models, and ensemble models in the modleR workflow

• An ensemble model is the process of joining together the results obtained by different
algorithms, to obtain a single algorithmic consensus model per species (Araújo and New,
2007).

2.2.2 Folder structure

modleR was built to write on disk the outputs of each step as described below. This is done
for three main reasons. First, it keeps memory usage low. Second, it allows the user to enter
and leave the workflow at any step, to continue in a different session at any time or use other
tools in the R environment. Finally, an easily readable folder structure both to the user and
the computer is essential for reproducibility and portability.

• A whole modeling round will be created in a single folder - by default models dir =

"./models dir", that is, a folder within the current working directory, as indicated by
the period.

• Each species will be saved in its own subfolder, "./models dir/Genus epithet" by
default. modleR will format species names in order to avoid non-ascii characters and
spaces.
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• Inside each species subfolder, a folder for each projection will be created. The default
(and non-optional) projection to the present conditions is called present, but additional
folders will be created for each projection and named after each one (see section 4.3).

• Within each projec

• Within each projection folder, the following folders will be created, corresponding to
the four steps of the workflow

– data setup (only for the projection in the present)

– partitions

– final models

– ensemble

The resulting folder structure is shown in Figure 3.

./models_dir

./models_dir/Genus_epithet

./models_dir/Genus_epithet/present

.../data_setup*

.../partitions

.../final_model

.../ensemble

./models_dir/Genus_epithet/projection_1

.../partitions

.../final_model

.../ensemble *data_setup

Figure 3: folder structure created by modleR

Parameter models dir allows to set the output folder anywhere in the hard disk. For re-
producibility purposes, it is recommended that this folder be referred as a relative path
as in the default value (e.g. "./models dir") rather than as an absolute folder (e.g.
"C://Documents/.../models dir"), that will not be portable to different computers. The
names of the final and ensemble folders can also be modified, but the nested subfolder
structure will remain the same. If the user changes any of these names, they will need to
include the new value when calling for the rest of the functions. We strongly recommend not
using non-ascii characters or spaces on folder names.
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This partial flexibility allows for experimenting with final model and ensemble construction.
For example, final or ensemble can be run more than once in different output subfolders, with
different parameters or subsets of the algorithms that were fit initially.

In the following sections we will detail the options and implementation decisions of each
of the workflow steps.

3 Data setup: setup sdmdata().

Function setup sdmdata() performs basic data cleaning, data partitioning into training
and test sets, and pseudoabsence sampling for model calibration to take into account the
geographic area accessible to the species. It also assists in variable selection according to an
upper correlation limit within the calibration area. This step writes on disk the data needed
to fit ENM models in further steps of the workflow, and the associated metadata and session
information, including the version and origin of the packages used.

3.1 Cleaning and thinning occurrence data

Function setup sdmdata() will eliminate exact duplicates, occurrences with no environmental
data and occurrences in the same pixel of the environmental predictors through arguments
clean dupl, clean nas and clean uni, respectively. We assume that taxonomic and geo-
graphic cleaning were performed by the user. Data cleaning inside our package is mostly
directed to fit observations to the predictor variables’ scale and algorithm requirements.

For instance, some algorithms can receive only presence data and will later run even
with NAs whereas some others cannot run with NAs in the data table. By default all data
cleaning procedures are set to FALSE to avoid computational costs and assuming that the
user is responsible for this step. The user may clean the data outside the application, either
within R or using dedicated software that records the cleaning steps, such as OpenRefine 2.

In addition to this, the function can thin the occurrences according to a spatial grid,
using parameter geo filt. This step intends to control the sampling bias in occurrence data
(Varela et al., 2014) and could also be performed by controlling the environmental similarity
of the dataset. In modleR, this step is implemented according to Varela et al. (2014), within
a grid, but there are other methods, packages and functions in R that can perform geographic
and environmental thinning, of which we highlight spThin (Aiello-Lammens et al., 2015).

3.2 Pseudoabsence selection options

The next step regarding data setup is the definition of absences or pseudoabsences within
calibration areas in order to perform model fitting and data evaluation. As a first option,
modleR can receive user-defined real absences (real absences = TRUE) as a dataframe
object with longitude and latitude columns. In this case, no pseudoabsence will be sampled
internally.

In the most likely case that real absences are not available, pseudoabsences must be
sampled in order to calibrate and evaluate the models. When sampling for pseudoabsences,

2https://openrefine.org/
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the number, sampling scheme and minimum and maximum distance from occurrence points
affect considerably model performance and evaluation (Barbet-Massin et al., 2012), and
modleR has several options in this regard.

The number of pseudoabsences can be set using parameter n back. However, when
applying maximum and minimum distance buffers for sampling (see next), the final sampling
area may not be large enough to fit the number of pseudoabsences requested by the user, so
the function will check internally that enough unique pixels are available in the calibration
area and reset to a maximal n back value. If this modification takes place, the metadata (in
metadata.csv) will reflect it.

The spatial configuration for pseudoabsence sampling is another key element for pseu-
doabsence sampling, because it should reflect the accesible area for the species, i.e. areas that
were most likely explored by the species and found unsuitable (Barve et al., 2011; Peterson
et al., 2011; VanDerWal et al., 2009), so it should not be performed in areas too far away
from the occurrences.

We have implemented a scheme for pseudoabsence sampling, with two steps that can
be used alone or simultaneously (Figure 4). The first step is an inclusion buffer that sets
the maximal geographical boundaries for pseudoabsence sampling, so only accessible areas
for the species are taken into account, and the second step is an exclusion filter, that sets
the minimum distance for pseudoabsence sampling, so that areas too close (either in the
geographical or the environmental space) to the occurrence points are omitted from sampling.
These steps have been used to improve the model’s discrimination ability and to control for
spurious good performance.

For the inclusion buffers, the user may supply a shapefile with the desired calibration area
(buffer type = "user"). This is the option for workflows where the design of the M portion
of the BAM diagram (Barve et al., 2011; Peterson et al., 2011) is obtained externally. The
inclusion buffer area can also be calculated as a distance around the occurrence points, either as
an absolute numeric distance (in the units of the environmental variables, ex. buffer type

= "distance" and dist buf = 2 mean a buffer of 2 degrees around the occurrences), or
using pairwise distances between points (parameter buffer type, options "mean", "maximum"
and "median", respectively).

For the exclusion filters, the minimal distance in the geographical space is controlled by
parameter min geog dist and expressed in the units of the predictor variables raster. In
the environmental space (env filter = TRUE), the euclidean environmental distance to the
occurrences will be calculated, either as the distance of each pixel in the predictor variables
to the environmental centroid of the occurrence dataset (the multivariate median of the
environmental values for each occurrence, env distance = "centroid"), or as the minimum
distance of each pixel in the predictor variables to any occurrence point (env distance =

"minimum"). The scale of the environmental distance is inversed to transform it into similarity,
so it varies from large negative values, corresponding to high values of distance and low
suitability, to 1, corresponding to zero distance and total similarity. The range of values
depends on the predictor variables and their extent. Parameter min env dist will be used to
set the distance that should be omitted from pseudoabsence sampling, expressed in quantiles
of the overall distance range (e.g. 0.05 is 5% of the distance range -to either the centroid or
to any occurrence point- and will omit the pixels within that distance).

The inclusion buffer and the exclusion filters can be applied independently or simultaneously
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(Figure 4), and function setup sdmdata() will sample the pseudoabsences in the resulting
calibration area, using randomPoints() function form dismo package.

user
max, mean, 

median, distance

geog_dist_min

env_dist_min

Figure 4: Options included in modleR for the sampling of pseudoabsence points

3.3 Variable selection

An a priori selection of abiotic variables is emphatically recommended by many authors
(Peterson et al., 2011; Fourcade et al., 2018), in order to grasp the relevant dimensions of
the ecological niche that affect species distribution. An additional question is whether such
variables are correlated, and how this could result in model overfitting (Braunisch et al., 2013).
In modleR, the maximal correlation between the predictor variables within the calibration
area can be controlled by setting select variables = TRUE. Function setup sdmdata()

will sample a percentage of pixels in the calibration area (sample proportion, from 0 to 1),
calculate a correlation matrix and use findCorrelation() function from R package caret
(Kuhn, 2018), to retain the highest quantity of variables that have pairwise correlations under
a user-defined value (parameter cutoff). This is an automatic approach that may remove
significant variables, and it does not substitute the need for a selection based on ecological
meaningfulness.

3.4 Data partitioning into training and test sets

During data setup, occurrence and pseudoabsence data are partitioned into training and
test sets, by bootstraping or crossvalidation. Parameter partition type can receive either
"bootstrap" or "crossvalidation" values. Crossvalidation is controlled by parameters
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cv n for the number of runs and cv partitions for the number of partitions for each run.
Bootstrap is controlled by parameters boot n for the number of runs and boot proportion

for the proportion of presences and absences in the dataset that will be used as training data.

3.5 Data setup input and output

The data setup phase receives an occurrence dataset, with at least the columns for latitude
and longitude values, and a RasterStack of predictor variables. The species name must be
provided, and if column names are other than ”lat” and ”lon”, arguments lat and lon must
be specified.

At the end of the data setup step of the workflow, a sdmdata.csv file is created with
the information required for running the models. In addition to the file sdmdata.csv, a
metadata.csv file with the metadata of the current modeling round, and a sessionInfo.txt

file with the packages loaded and their version and origin will be created. Optionally, a
.png image of the data can be created (if parameter png sdmdata = TRUE), and the final
calibration area for pseudoabsences can be saved as a raster to the disk (with write buffer

= TRUE). The structure of the sdmdata data frame reflects all setup decisions as follows:

• The first n occs rows (or the corrected number after data cleaning) correspond to
presences and the last n back rows (or the corrected number due to available sampling
pixels) to the sampled pseudoabsences

• The first columns hold the data partition vectors. These can be named "boot 1" to
"boot n" in the case of bootstrap, "cv 0" in the case of one-time cross-validation or
"cv 1" to "cv n" in the case of repeated cross-validations. In the case of bootstrap,
each column consists of 0 and 1 to divide into training and test set, and in the case
of cross-validation, of numbers from 1 to n, where n is the number of partitions. The
coding for a zero in bootstrap cases indicates internally that this column will be run
only once, while in the case of cross-validation each column is run once for each group
(coded as a non-null number).

• The next column is a vector of presences and absences, named pa, with n occs presences
coded as 1 and n back pseudoabsences coded as 0. The combination of each data
partition column and this presence/absence column forms the different partitions into
the training and test sets.

• The next two columns have the longitude and latitude data.

• The last columns correspond to the environmental data associated to each coordinate.

As explained before, if the user cleans the biotic data, some lines (occurrences) will be
removed from this basic table. Likewise, if the user asks for variable selection according to
their correlation, the output sdmdata table may have less columns than the original dataset.
The resulting data frame will be saved to the HD and read by the next functions, do any()

or do many().
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3.6 Data setup optimization

In workflows where the same parametrization options are passed to different algorithms,
function setup sdmdata() will check if there is a previous folder structure and a metadata.csv
file. If the metadata in disk match the current function call and the folder names are unchanged,
the function will skip the data setup part in order to avoid repeating the data partitioning
process. This optimizes parallelization and disk usage, especially during the pseudoabsence
sampling phase. If a previous metadata file is found but it has different metadata (i.e. there
is an inconsistency between the existing metadata and the current parameters), it will run
the function with the new parameters and overwrite metadata and sdmdata files.

However, this check does not guarantee that all data in the same folder come from the
same parametrization options, since different modeling rounds can create different files and
older files are not deleted. If an experimental approach will be taken and multiple setups will
be tried by the user, it is recommended that any changes in parametrization come with a
change in the destination folder and a manual check of the preexisting files in disk.

4 Model fitting and projecting: functions do any() and

do many()

Functions do any() and do many() create a model per partition per algorithm (a partition),
and save them into the partitions subfolder. While do any() performs modeling for one
algorithm at a time –chosen by using parameter algorithm–, do many() can select multiple
algorithms, with TRUE or FALSE statements. do many() is just a wrapper that will call several
instances of do any(). The user may choose which one to choose, but for parallelization by
algorithm it may be better to call do any() individually.

4.1 Algorithm implementation

The available algorithms have been wrapped from R packages commonly used in the field of
ecological niche modeling:

• bioclim, maxent, Mahalanobis distance (mahal), domain, and Boosted Regression Trees
(brt) come from the dismo package (Hijmans et al., 2017). Here, since Mahalanobis
distance tends to have large negative values, we set up a hard lowest limit corresponding
to the Lowest Presence Training value (dismo threshold no omission) and scaled
the resulting interval from 0 to 1. BRT are fit using the default options of function
gbm.step() (Hastie et al., 2001; Elith et al., 2009), except for n.minobsinnode =

5. The rest of the dismo algorithms are implemented using the default parameters,
including maxent.

• The maxnet package implementation of maxent (maxnet) has been included as well,
as it does not depend on package rJava (Urbanek, 2019) for running.

• Two implementations of Support Vector Machines (SVM), come from packages kernlab
(Karatzoglou et al., 2004) and e1071 (Meyer et al., 2017). We call these svmk and svme

13

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 3, 2020. ; https://doi.org/10.1101/2020.04.01.021105doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.01.021105
http://creativecommons.org/licenses/by/4.0/


respectively. svmk is fit using the default parameters for function svmk() in kernlab,
and smve is implemented by using a best.tune() approach. The latter function does
not always converge on the first run, so do any() will automatically retry the fit up to
10 times before returning an error. In our experience this happens very infrequently
and only needs a second run to converge –or it never does.

• GLM (glm) comes from base R, and was implemented using a stepwise model selection
approach (function step(), also from base R) in both directions (forward and backward),
considering all possible combinations of predictor variables. When projected to the
geographical space, a parameter type = "response" is used to return values in the
scale of the response variable.

• Random Forests (rf) come from package randomForest (Liaw and Wiener, 2002).
It is executed by function tuneRF(), that finds a best value for mtry (the number of
variables randomly sampled as candidates at each split) and returns the best model fit
with this value (parameter doBest = TRUE).

We aim to improve the capacity of fine-tuning these algorithm implementations in the
future, to facilitate tests using different sets of parameters. This is especially important for
maxent, for which regularization parameters, response type curves and type of extrapolation
(clamping or not) can affect significatively the output of the results (Elith et al., 2011; Phillips
et al., 2006; Cobos et al., 2019), and for which an approach of model selection using AIC can
be applied (Muscarella et al., 2014) In the current version, algorithm parametrization can
be modified by the user directly inside the source code. Finally, for statistical algorithms
that require presence and absence data for fitting –brt, random forests–, an additional option
to equalize the number of pseudoabsences and the number of presences can be applied via
equalize = TRUE, following Barbet-Massin et al. (2012).

4.2 Model evaluation

After model fitting, do any() and do many() execute the evaluation functions available in
dismo, such as evaluate() and threshold(), and organize the evaluation statistics into
two tables that are written into the hard disk.

The first table corresponds to the output of function evaluate() from package dismo,
that calculates 1) the confusion matrices (true positives, false positives, false negatives and true
negatives), 2) the relevant evaluation statistics along the whole vector of possible thresholds
(for further details we refer the reader to dismo documentation).

Other than dismo performance metrics, we have included the calculation for the True
Skill Statistic (Allouche et al., 2006), the F-score (also known as Sorensen’s dissimilarity
score) (Powers, 2011) and Jaccard’s dissimilarity score (Leroy et al., 2018) for each threshold.
The suffix of this first table when it is written to disk is eval mod.

The second data frame summarizes 1) the relevant thresholds that maximize the perfor-
mance metrics (see dismo documentation), and the corresponding maximized values of TSS,
Cohen’s Kappa ((Cohen, 1960)), F-score and Jaccard 2) the performance metrics that do not
depend on a threshold, such as AUC (from dismo) and partial ROC (Peterson et al., 2008),
as implemented by package kuenm (Cobos et al., 2019), and their significance. This second
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table also indicates the performance metrics relative to the threshold specified by the user
(parameter dismo threshold in the function and column with the same name in the table).

4.3 Projection to other datasets

By default, do any() projects the fit model unto the prediction variables (named ”present”
for convenience, although the predictor variables used for model fitting can correspond to any
moment). It can also project the models to other predictor variable sets, representing a shift
either in time or in space.

For this, the user has to setup a folder with the environmental variables, with one subfolder
per projection, and make sure that the names of the variables in these folders match exactly
the variables in the original environmental variables dataset. This directory should contain
only raster files in their corresponding subfolder. The subfolders can hold complete datasets
(ex. bio 01 to bio 19 in Worldclim), and the function will only use the rasters that were
selected during data setup.

Functions do any() and do many() will read this folder and perform all projections when
project model = TRUE, and the relative or absolute location of the variable folder is passed
to parameter proj data folder. For reproducibility purposes we recommend that all paths
be relative.

4.4 do any() and do many() input and output

The input for do any() and do many() are the species name, the location of the models dir

folder previously created by setup sdmdata(), and, optionally, the location of the folder with
the environmental variables for projection (proj data folder). Internally, the functions will
read the sdmdata.csv file created by setup sdmdata().

Regarding the functions outputs, at the end of a modeling round the partition folder will
contain:

• A .tif file for each partition. If specified by the user, (parameter write bin cut), a
binary version cut by the specified dismo threshold, and a ”cut” version –obtained by
keeping the continuous values of the raw model above this threshold and setting all the
areas below the threshold as 0– can also be created and written to disk.

• Optional .rda files with the fitted model objects for each partition and algorithm. These
files can be saved by using parameter write rda = TRUE and their names contain the
species name, partition number and algorithm (e.g., Abarema langsdorffii 1 1 bioclim.rda).
These .rda objects can be loaded to the workspace with function load(), if needed to
apply other functions within R

• Figures in .png to explore the results readily, without reloading them into R or opening
them in a SIG program. The creation of these figures can be controlled with parameter
png partitions.

• A data frame with the evaluation data for each partition for all considered thresholds,
that corresponds to the output of evaluate() function in dismo, and the additional per-
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formance metrics. This is a csv file with the name containing the species name, partition
number and algorithm (e.g., eval mod Abarema langsdorffii 1 1 bioclim.csv).

• A data frame with the summary of the evaluation data for each partition, including the
important thresholds (output from function threshold()), the threshold-independent
metrics, and the specific metrics for the selected given threshold. This is a csv file
with the name containing the species name, partition number and algorithm (e.g.,
evaluate Abarema langsdorffii 1 1 bioclim.csv).

• If any projection was executed, additional subfolders with the projection results will be
created (Figure 3).

• Most importantly, metadata.csv and sessionInfo.txt files will record all the relevant
parametrization options and packages that were used during the last modeling run.

The final models per algorithm will be created in the next step of the workflow.

5 Partition joining: final model()

Function final model() joins the partition results into one model per species per algorithm.
This is one of the least documented steps in ENM workflows, that usually skip the partition
joining phase and discuss algorithm comparison or consensus. The most straightforward way
to build such a model is to obtain a central measure from these partitions (e.g. a mean or a
median) and ideally some variation metric, and to examine the related mean performance
metrics.

However, there is no consensus about the final way an ENM should be presented and
depending on the application the user may want a continuous output, or a binary outcome,
or understanding the degree of agreement between individual partitions. In response to
this, final model() has the following outcome possibilities. They all come from the raw
continuous partitions.

• raw mean is the mean of the raw partitions and therefore has a continuous scale

• raw mean th is raw mean cut by the mean threshold value that maximizes a selected
performance metric raw mean th, and is a binary model

• raw mean cut recovers the original continuous values of raw mean above this mean
threshold. It has a continuous scale above said threshold and zeros below it

• bin mean is the mean of the binary partitions (created by cutting the raw partitions by
their individual threshold, also set by parameter raw mean th). If there are n partitions,
this results in a discrete categorical scale that varies from 0 to 1 in 1/n intervals. The
scale reflects the number of partitions that predict the species presence on each pixel,
i.e. the degree of consensus between the partitions

• bin consensus cuts bin mean by a specific consensus level to create a binary outcome,
set by parameter consensus level (e.g. 0.5 are areas predicted by half of the partitions,
a majority consensus).
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raw_mean_cut
Recovers continuous values 
above the mean of the 
thresholds

raw_mean_th
Cut the raw_mean by the 
mean of thresholds that 
maximize the evaluation metric 
(eg. TSS) to make a binary 
model (below the threshold = 
0, above the threshold = 1)

Bin_models (still a 
stack, n = partitions)

bin_consensus
Binary model obtained by 
consensus (e.g. 0.5 half of the 
models or majority consensus)

Take the mean

Raw continuous models
(n = partitions) 

raw_mean
Mean of the raw models 
(continuous scale from 0 to 1)

Make binaryTake the mean

Select a consensus level
(consensus_level)

Make binary 
(mean_th_par ) 

bin_mean
Mean of the binary models 
(discrete scale, from 0 to 1 in 
1/n intervals, where n is the 
number of selected partitions) 

Recover values

Figure 5: Joining partition models into final models in modleR

It is helpful to see the sequence from raw mean to raw mean cut as a ”take the mean
first, make binary later” logic, and the sequence from raw mean to bin consensus as a
”make binary first, take the mean later” logic (Figure 5). These options can be passed
to parameter which final, either individually or as a character vector e.g. c("raw mean",

"bin consensus").

5.1 Uncertainty between partitions

In modleR, variation measures are implemented in this step and the following (see section 6).
Variation between partitions should be assessed and understood before reaching to conclusions
(Pearson et al., 2006; Diniz-Filho et al., 2009) in ENM, and recently many studies have focused
on the development and analysis of variation metrics.

In modleR, the range of the adequabilities (maximum - minimum) for each pixel represents
the variation between partitions. Since the number of partitions (and later, of algorithms)
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tends to be low and the distribution of adequability data is not expected to be normal, we
opted out of calculating other metrics, like the standard deviation. The user however may
extract any variation value directly from the rasterStack saved in disk from the last step.
Parameter uncertainty = TRUE controls the creation of this uncertainty map.

5.2 Other parametrization options in final model()

As explained in section 2.2, the folder where final models are saved can be renamed, by using
parameter final dir. In a testing context, we recommend that different rounds be saved in
different folders.

Parameter algorithms can take a character vector, e.g. c("bioclim", "rf"), to indi-
cate specifically which algorithms should be processed. If left unspecified, models from all
algorithms present in the partition folder will be used.

Parameter proj dir can be passed to the function in order to perform this partition
joining to projections other than "present". In this case the average threshold will come
from the present statistics table. The only way to execute this function to projected data
while avoiding any threshold that comes from the present is raw mean.

5.3 final model() input and output

Function final model() reads the partitions on the hard disk, so no object in the workspace
is needed to run it. At the end of the third step of the workflow, the final models folder
will contain:

• A .tif file for each different final models for 1) the selected algorithms and 2) the specified
outputs (which model)

• A .tif file for the uncertainty, if requested by the user

• Optional figures in .png to explore the results without loading them to R or a SIG
program (parameter png final)

• A .csv data frame with the statistics for the partitions (summarizing the results from
evaluate() function in package dismo)

• A .csv with the mean thresholds and the mean performance metrics per algorithm

• A .csv file with the metadata associated with this step

• A .txt file with the session information associated with this step

6 Algorithmic consensus: function ensemble model()

The fourth and final part of the modleR workflow joins the different models per algorithm
into an ensemble, or algorithmic consensus model (Araújo and New, 2007). As with every
other step in the ENM workflows, there is no agreement on which is the best way to implement
such consensus models.
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The discussion about consensus models is related to the fact that along the ENM/SDM
workflows there are many sources of uncertainty. Source data, sampling biases and the large
amount of options in algorithm choice and parametrization accumulate and create a variety
of responses that make interpretation difficult. The magnitude and relative importance
of these variation sources should be understood before interpreting any ENM/SDM result.
Many discussions about this step include also the projection into other datasets, that adds
the different GCMs and emission representative pathways as strong uncertainty sources.
These comparisons have concluded that algorithm choice and parametrization is a source of
uncertainty that can be larger than the choice between GCMs or RCPs [ref]. Other workflows,
such as kuenm, analyze the relative importance of these uncertainty sources but here in
modleR we calculate range-based variation metrics (maximum-minimum).

We have implemented several ways to calculate the ensemble models in modleR, partly
implemented in other works (Marmion et al., 2009; Pearson et al., 2006; Zhu and Peterson,
2017):

• "best" chooses the best algorithm according to a desired performance metric (ex.
AUC, TSS)

• "average" is the mean of the continuous final models obtained in the previous step as
raw mean

• "weighted average" is the weighted mean between the continuous raw mean models
according to a performance metric (Marmion et al., 2009)

• "median" is the median between the continuous raw mean models

• "frequency" is the mean of the binary models (raw mean th), which is analogous
to a frequency count. Here, the user may select which threshold they want to use,
independently from the decision taken in the previous workflow step, and for this they
may use parameter dismo threshold

• "consensus" extracts a binary consensus from the frequency count (e.g. consensus level

= 0.5 means a majority consensus)

• "pca" extracts the first axis of a PCA between the raw mean models (Pearson et al.,
2006)

In addition to these ensemble options, the uncertainty metric based on ranges (maximum
- minimum values) can be written using parameter uncertainty. It is important to note that
in spite of being widely used, this last step of algorithmic consensus can be useful sometimes
but it does not necessarily perform better than individual algorithms (Zhu and Peterson,
2017).

6.1 Input and output for ensemble model()

Function ensemble model() reads the evaluation tables and final models on disk, so that
outside parametrization, no object in the workspace is actually needed to run. Optionally, if
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writing png files with parameter png ensemble and asking for the original occurrences to be
plotted, the occurrence data frame should be provided.

As in the previous steps of the workflow, the output for ensemble model() are the .tif files,
optional .png figures and the metadata.csv and sessionInfo.txt files with the parametrization
options and packages.

7 Optimization and flexibilization decisions

During modleR implementation, we have included some features that allow the users to
execute projects that need higher performance. At all steps, the optional outputs such as
images, binary and cut models are only created in the workspace if they are going to be
written to the disk, sparing processing time. All the non-optional outputs are written to the
disk and read by the functions, so they do not occupy RAM memory in the workspace from
one step to the other.

The fact that the basic modeling fits one model per algorithm and species or several
algorithms per species allows the user to parallelize the modeling procedure by species or by
algorithm. Although modleR does not have internal parallelism options, a parallelization
cluster can be set up within R. The simplest form of a multi-species workflow would be
constituted by a loop along a vector of species names and a list of coordinates. However,
more detailed parametrization may be desirable, and in this case several lists of parameters
can be prepared and fed into function clusterMap() from package parallel (R Core Team,
2018), for instance. modleR constitutes a good testing platform, since at all steps one or
some of the parameters can be modified and this does not depend on running the overall
workflow repeatedly.

8 Next steps and further implementations

Due to the very nature of the workflow and the ecological niche modeling discipline, modleR
is work in progress, and will be maintained and expanded depending on new theoretical
developments. However, a shortlist of next steps includes several improvements such as:

• Independent in-depth parametrization for each algorithm

• Internal parallelization to optimize performance

• adapting the previous Shiny application to this new implementation of the package

9 Installation

Currently, modleR is available from GitHub 3 and can be installed by using the following
commands:

3https://github.com/Model-R/modleR
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# Without vignette

remotes::install_github("Model-R/modleR", build = TRUE)

# With vignette

remotes::install_github("Model-R/modleR",

build = TRUE,

dependencies = TRUE,

build_opts = c("--no-resave-data", "--no-manual"),

build_vignettes = TRUE)

The package has a vignette and a pkgdown Wickham and Hesselberth (2019) site 4 with
the basic workflow usage information.

10 Conclusions

We introduced and detailed modleR, a four step R workflow for ecological niche modeling
based on dismo (Hijmans et al., 2017) and other packages in the R statistical environment,
directed at solving the trade-off between the common tasks that are only superficially repetitive,
and the need for flexibility in decision making. The structure of this workflow includes the
basic steps that an ENM project should perform and documents them thoroughly, not only
by using a script-based approach, but by recording explicitly the metadata associated with
each modeling step.

The parametrization options and the folder structure flexibility allow for testing different
modeling options conveniently, without the need for repeating previous steps. Furthermore,
the simple objects that are used as input and outputs allow for comunication with other
ENM/SDM-related R packages.

We expect that this workflow can be used as a testing platform and expand with newer
tools and consensus in the field and welcome users and collaborators to contribute to its
development.
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